4 research outputs found

    PUMA criterion = MODE criterion

    Full text link
    We show that the recently proposed (enhanced) PUMA estimator for array processing minimizes the same criterion function as the well-established MODE estimator. (PUMA = principal-singular-vector utilization for modal analysis, MODE = method of direction estimation.

    Minimum mean square distance estimation of a subspace

    Get PDF
    We consider the problem of subspace estimation in a Bayesian setting. Since we are operating in the Grassmann manifold, the usual approach which consists of minimizing the mean square error (MSE) between the true subspace UU and its estimate U^\hat{U} may not be adequate as the MSE is not the natural metric in the Grassmann manifold. As an alternative, we propose to carry out subspace estimation by minimizing the mean square distance (MSD) between UU and its estimate, where the considered distance is a natural metric in the Grassmann manifold, viz. the distance between the projection matrices. We show that the resulting estimator is no longer the posterior mean of UU but entails computing the principal eigenvectors of the posterior mean of UUTU U^{T}. Derivation of the MMSD estimator is carried out in a few illustrative examples including a linear Gaussian model for the data and a Bingham or von Mises Fisher prior distribution for UU. In all scenarios, posterior distributions are derived and the MMSD estimator is obtained either analytically or implemented via a Markov chain Monte Carlo simulation method. The method is shown to provide accurate estimates even when the number of samples is lower than the dimension of UU. An application to hyperspectral imagery is finally investigated

    Single snapshot DOA estimation

    Get PDF

    Statistical Performance Analysis of Sparse Linear Arrays

    Get PDF
    Direction-of-arrival (DOA) estimation remains an important topic in array signal processing. With uniform linear arrays (ULAs), traditional subspace-based methods can resolve only up to M-1 sources using M sensors. On the other hand, by exploiting their so-called difference coarray model, sparse linear arrays, such as co-prime and nested arrays, can resolve up to O(M^2) sources using only O(M) sensors. Various new sparse linear array geometries were proposed and many direction-finding algorithms were developed based on sparse linear arrays. However, the statistical performance of such arrays has not been analytically conducted. In this dissertation, we (i) study the asymptotic performance of the MUtiple SIgnal Classification (MUSIC) algorithm utilizing sparse linear arrays, (ii) derive and analyze performance bounds for sparse linear arrays, and (iii) investigate the robustness of sparse linear arrays in the presence of array imperfections. Based on our analytical results, we also propose robust direction-finding algorithms for use when data are missing. We begin by analyzing the performance of two commonly used coarray-based MUSIC direction estimators. Because the coarray model is used, classical derivations no longer apply. By using an alternative eigenvector perturbation analysis approach, we derive a closed-form expression of the asymptotic mean-squared error (MSE) of both estimators. Our expression is computationally efficient compared with the alternative of Monte Carlo simulations. Using this expression, we show that when the source number exceeds the sensor number, the MSE remains strictly positive as the signal-to-noise ratio (SNR) approaches infinity. This finding theoretically explains the unusual saturation behavior of coarray-based MUSIC estimators that had been observed in previous studies. We next derive and analyze the Cramér-Rao bound (CRB) for general sparse linear arrays under the assumption that the sources are uncorrelated. We show that, unlike the classical stochastic CRB, our CRB is applicable even if there are more sources than the number of sensors. We also show that, in such a case, this CRB remains strictly positive definite as the SNR approaches infinity. This unusual behavior imposes a strict lower bound on the variance of unbiased DOA estimators in the underdetermined case. We establish the connection between our CRB and the classical stochastic CRB and show that they are asymptotically equal when the sources are uncorrelated and the SNR is sufficiently high. We investigate the behavior of our CRB for co-prime and nested arrays with a large number of sensors, characterizing the trade-off between the number of spatial samples and the number of temporal samples. Our analytical results on the CRB will benefit future research on optimal sparse array designs. We further analyze the performance of sparse linear arrays by considering sensor location errors. We first introduce the deterministic error model. Based on this model, we derive a closed-form expression of the asymptotic MSE of a commonly used coarray-based MUSIC estimator, the spatial-smoothing based MUSIC (SS-MUSIC). We show that deterministic sensor location errors introduce a constant estimation bias that cannot be mitigated by only increasing the SNR. Our analytical expression also provides a sensitivity measure against sensor location errors for sparse linear arrays. We next extend our derivations to the stochastic error model and analyze the Gaussian case. We also derive the CRB for joint estimation of DOA parameters and deterministic sensor location errors. We show that this CRB is applicable even if there are more sources than the number of sensors. Lastly, we develop robust DOA estimators for cases with missing data. By exploiting the difference coarray structure, we introduce three algorithms to construct an augmented covariance matrix with enhanced degrees of freedom. By applying MUSIC to this augmented covariance matrix, we are able to resolve more sources than sensors. Our method utilizes information from all snapshots and shows improved estimation performance over traditional DOA estimators
    corecore