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ABSTRACT OF THE DISSERTATION

Statistical Performance Analysis of Sparse Linear Arrays

by

Mianzhi Wang

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2018

Professor Arye Nehorai, Chair

Direction-of-arrival (DOA) estimation remains an important topic in sensor array signal

processing. With uniform linear arrays (ULAs), traditional subspace-based methods can

resolve only up to M − 1 sources using M sensors. On the other hand, by exploiting

their so-called difference coarray model, sparse linear arrays, such as co-prime and nested

arrays, can resolve up to O(M2) sources using only O(M) sensors. Various new sparse linear

array geometries were proposed and many direction-finding algorithms were developed based

on sparse linear arrays. However, the statistical performance of such arrays has not been

analytically conducted. In this dissertation, we (i) study the asymptotic performance of the

MUtiple SIgnal Classification (MUSIC) algorithm utilizing sparse linear arrays, (ii) derive

and analyze performance bounds for sparse linear arrays, and (iii) investigate the robustness

of sparse linear arrays in the presence of array imperfections. Based on our analytical results,

we also propose robust direction-finding algorithms for use when data are missing.
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We begin by analyzing the performance of two commonly used coarray-based MUSIC direc-

tion estimators. Because the coarray model is used, classical derivations no longer apply.

By using an alternative eigenvector perturbation analysis approach, we derive a closed-form

expression of the asymptotic mean-squared error (MSE) of both estimators. Our expression

is computationally efficient compared with the alternative of Monte Carlo simulations. Using

this expression, we show that when the source number exceeds the sensor number, the MSE

remains strictly positive as the signal-to-noise ratio (SNR) approaches infinity. This finding

theoretically explains the unusual “saturation” behavior of coarray-based MUSIC estimators

that had been observed in previous studies.

We next derive and analyze the Cramér-Rao bound (CRB) for general sparse linear arrays

under the assumption that the sources are uncorrelated. We show that, unlike the classical

stochastic CRB, our CRB is applicable even if there are more sources than the number

of sensors. We also show that, in such a case, this CRB remains strictly positive definite

as the SNR approaches infinity. This unusual behavior imposes a strict lower bound on

the variance of unbiased DOA estimators in the underdetermined case. We establish the

connection between our CRB and the classical stochastic CRB and show that they are

asymptotically equal when the sources are uncorrelated and the SNR is sufficiently high. We

investigate the behavior of our CRB for co-prime and nested arrays with a large number of

sensors, characterizing the trade-off between the number of spatial samples and the number

of temporal samples. Our analytical results on the CRB will benefit future research on

optimal sparse array designs.

We further analyze the performance of sparse linear arrays by considering sensor location

errors. We first introduce the deterministic error model. Based on this model, we derive a

closed-form expression of the asymptotic MSE of a commonly used coarray-based MUSIC

x



estimator, the spatial-smoothing based MUSIC (SS-MUSIC). We show that deterministic

sensor location errors introduce a constant estimation bias that cannot be mitigated by only

increasing the SNR. Our analytical expression also provides a sensitivity measure against

sensor location errors for sparse linear arrays. We next extend our derivations to the stochas-

tic error model and analyze the Gaussian case. We also derive the CRB for joint estimation

of DOA parameters and deterministic sensor location errors. We show that this CRB is

applicable even if there are more sources than the number of sensors.

Lastly, we develop robust DOA estimators for cases with missing data. By exploiting the

difference coarray structure, we introduce three algorithms to construct an augmented co-

variance matrix with enhanced degrees of freedom. By applying MUSIC to this augmented

covariance matrix, we are able to resolve more sources than sensors. Our method utilizes

information from all snapshots and shows improved estimation performance over traditional

DOA estimators.
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Chapter 1

Introduction

Direction-of-arrival (DOA) estimation is an important topic in array signal processing, with

wide applications in radar, sonar, audio and speech processing, geophysics, and communi-

cations [1–4]. To estimate the DOAs of the impinging signals, sensor arrays are deployed

to collect spatial samples of these source signals. Given a sufficient number of samples,

various algorithms can be applied to obtain the DOAs. In general, these algorithms can be

divided into spectral-based algorithms and parametric model based algorithms. Spectral-

based algorithms include conventional beamforming-based algorithms [5–8], and MUtiple

SIgnal Classification (MUSIC) [9]. Parametric model based algorithms usually obtains the

DOAs by solving maximum-likelihood (ML) problems. Typical ML-based algorithms in-

clude the conditional maximum likelihood estimator, the stochastic maximum-likelihood

estimator, weighed-subspace fitting and their variants [3, 10–20]. There are also paramet-

ric model based algorithms that utilize the signal subspace, such as root-MUSIC [21–23],

and the estimation of signal parameters via rotational invariance techniques algorithm (ES-

PRIT) [24, 25]. Recently, with the development of compressed sensing theory [26, 27], new

DOA estimation methods have been developed based on sparse recovery [28–31], sparse

Bayesian learning [32,33], and super-resolution theory [34,35].
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The development of various DOA estimation algorithms is accompanied by the consideration

of new linear array geometries. Traditionally, a uniform linear array (ULA) is deployed to

uniformly sample the source signals in spaces. However, with conventional subspace-based

methods, an M -sensor ULA can resolve only up to O(M − 1) sources [9, 15]. Additionally,

many sensors are required to cover a large aperture. To tackle these issues, the concept

of sparse linear arrays was developed. By utilizing their so-called difference coarray model,

up to O(M2) uncorrelated sources can be resolved using only M sensors. In [36] and [37],

the authors introduced minimum redundancy arrays (MRAs). However, these arrays do not

have closed-form expressions for their geometries and cannot easily be generalized when the

number of sensors is large. Recently, Pal and Vaidyanathan introduced nested arrays [38] and

co-prime arrays [39], both of which have closed-form expressions and can resolve up to O(M2)

uncorrelated sources using only M sensors. The introduction of nested and co-prime arrays

has generated renewed interest in sparse linear arrays [31,40–44], leading to new sparse linear

array geometries such as generalized co-prime arrays [45], and super nested arrays [46, 47].

There have also been extensions to 2D arrays [48,49] and vector-sensor arrays [50,51].

With the introduction of new sparse linear arrays, it became important to statistically an-

alyze their performance. Previous performance analysis of such arrays relies on numerical

simulations, which are computationally expensive. Most of the existing analytical perfor-

mance analysis approaches are based on the array model of ULAs, and cannot be readily

extended to the difference coarray model [7, 21, 25, 52, 53]. In this dissertation, we mainly

focus on the statistical performance analysis of sparse linear arrays. By developing such a

statistical performance analysis framework, we are able to gain more insights of the perfor-

mance of sparse linear arrays without computationally expensive simulations. In practice,

arrays will not always be perfectly calibrated, and various perturbations will exist. Our

2



analysis covers both the perturbation-free case and the perturbed case. Based on our the-

oretical results, we also develop robust DOA estimation algorithms for sparse linear arrays

that utilize the difference coarray model.

1.1 Contributions of this work

In this dissertation, we provide a thorough statistical performance analysis of sparse linear

arrays, and develop robust direction finding algorithms. Our contributions can be summa-

rized as follows:

Performance analysis of coarray-based MUSIC algorithms: Coarray-based MUSIC

algorithms resolve the DOAs by applying the classical MUSIC algorithm to the augmented

covariance matrix constructed according to the difference coarray model. We investigate two

common methods of constructing such an augmented covariance matrix, namely, the direct

augmentation based approach (DAA) [54,55] and the spatial smoothing based approach [38].

We show that MUSIC yields the same asymptotic estimation error for both methods. Based

on this finding, we are the first to derive a closed-form asymptotic mean-squared error (MSE)

expression that is applicable to both methods. This expression is more computationally

efficient than traditional Monte Carlo simulations, and facilitates the performance analysis

of coarray-based MUSIC algorithms. Using this expression, we show that, when there are

more sources than the number of sensors, the asymptotic MSE does not drop to zero even if

the SNR approaches infinity. This result theoretically explains the “saturation” behavior of

the coarray-based MUSIC algorithms in high SNR regions observed in previous studies.

3



Analyses of Cramér-Rao bounds (CRBs) for general sparse linear arrays: The

CRB gives the lower bound on the minimum variance any unbiased estimator can achieve.

The classical stochastic CRB for general linear arrays was derived and analyzed by Stoica et

at. [52,56]. This CRB is derived without the assumption that sources are uncorrelated, and

does not exist when the number of sources exceeds the number of sensors. We derive the

CRB for general sparse linear arrays under the assumption that the sources are uncorrelated,

which is applicable even if the number of sources is greater than the number of sensors.

We show that in high SNR regions our CRB is asymptotically equivalent to the classical

stochastic CRB for uncorrelated sources. We also show that, when there are more sources

than the number of sensors, our CRB is strictly nonzero as the SNR goes to infinity. We

further analyze the behavior of our CRB for co-prime and nested arrays with a large number

of sensors. We show that this CRB can decrease at a rate of O(M−5) for large values of

M for co-prime and nested arrays, but this rate is only O(M−3) for an M -sensor ULA.

This finding analytically demonstrates that co-prime and nested arrays can achieve better

estimation performance when the number of sensors is a limiting factor. We also show that

for a fixed aperture, co-prime and nested arrays require many more snapshots to achieve

the same performance as ULAs. This finding illustrates the trade-off between the number

of spatial samples and the number of temporal samples.

Perturbation analysis of the difference coarray model: The above results are based

on the assumption that the arrays are perfectly calibrated. However, array imperfections

exist and the difference coarray model may be perturbed. We introduce a signal model for

sparse linear arrays in the presence of deterministic unknown location errors. Based on this

signal model, we derive a closed-form expression of the asymptotic MSE of coarray-based

MUSIC algorithms. With this expression, we show that the sensor location errors introduce

a constant bias depending on both the physical array geometry and the coarray geometry,

4



which cannot be mitigated by only increasing the SNR. We also extend our analysis to

cases when the sensor location errors are stochastic, and we investigate the Gaussian case.

Additionally, we derive the Cramér-Rao bound for joint estimation of DOAs and sensor

location errors for sparse linear arrays, which can be applicable even if the number of sources

exceeds the number of sensors.

Direction finding in the presence of missing data: We investigate the problem of

robust DOA estimation using sparse linear arrays in the case of missing data resulting from

sensor failures. We introduce a signal model where sensor failures occur after a certain num-

ber of snapshots. Based on our signal model, we formulate a structured covariance estimation

problem by exploiting the special geometry of sparse linear arrays. By utilizing the infor-

mation in both complete measurements and incomplete measurements, our method achieves

better estimation accuracy than the traditional method using only complete measurements.

We also derive the CRB in the missing data case.

1.2 Organization of this dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we present the background

for sparse linear arrays, the concept of the difference coarray model, and the coarray-based

MUSIC. In Chapter 3, we conduct detailed statistical performance analyses of sparse linear

arrays. We first derive and analyze the asymptotic mean-squared error (MSE) for two

commonly used coarray-based MUSIC algorithms, and then derive and analyze the CRB.

In Chapter 4, we investigate the effect of sensor location errors on coarray-based MUSIC

algorithms and the achievable performance bounds. Then in Chapter 5, we introduce a

robust direction finding algorithm in the case of missing data resulting from sensor failures
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and derive the corresponding CRB. Finally, in Chapter 6, we draw conclusions and propose

potential future directions.

1.3 Notations

Given a matrixA, we useAT ,AH , andA∗ to denote the transpose, the Hermitian transpose,

and the conjugate of A, respectively. We use Aij to denote the (i, j)-th element of A, and

ai to denote the i-th column of A. If A is full column rank, we define its pseudo inverse

as A† = (AHA)−1AH . We also define the projection matrix onto the null space of A as

Π⊥A = I−AA†. Let A = [a1 a2 . . . aN ] ∈ CM×N , and we define the vectorization operation

as vec(A) = [aT1 a
T
2 . . . aTN ]T , and matM,N(·) as its inverse operation. We use ⊗, �, and ◦

to denote the Kronecker product, the Khatri-Rao product (i.e., the column-wise Kronecker

product), and the Hadamard product (i.e., the element-wise product), respectively. We

denote by <(A) and =(A) the real and the imaginary parts of A. If A is a square matrix,

we denote its trace by tr(A).
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Chapter 2

Direction Finding Using Sparse

Linear Arrays

In this chapter, we provide a comprehensive overview of direction finding methods utilizing

sparse linear arrays. We first introduce the definition of sparse linear arrays and their

relationship with ULAs. We then introduce the difference coarray model of general sparse

linear arrays. Finally, we introduce the MUSIC algorithm and show how it can be applied

to the difference coarray model to identify the DOAs. In this chapter, we assume that the

arrays are perfectly calibrated.

2.1 ULAs and sparse linear arrays

Without loss of generality, we assume that the first sensor is placed at the origin. Let d0

denote the smallest inter-element spacing. An M -sensor ULA is defined as follows:

Definition 2.1. An M-sensor ULA is given by {0, 1, . . . ,M − 1}d0.
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Sparse linear arrays can be constructed by strategically removing sensors from ULAs. Typical

sparse linear arrays include MRAs [36], co-prime arrays [39], and nested arrays [38]. Fig. 2.1

shows examples of a ULA plus three different types of sparse linear arrays. We can observe

that all three sparse linear arrays, below the ULA, can be constructed by removing certain

sensors from the ULA on top.

ULA:

Co-prime array:

Nested array:

MRA:

Sparse linear arrays

Figure 2.1: Examples of a ULA and three different types of sparse linear arrays.

MRAs do not have closed-form expressions, and a list of MRAs can be found in [37]. The

definitions of co-prime1 and nested arrays are stated in Definition 2.2 and Definition 2.3.

Definition 2.2. A co-prime array generated by the co-prime pair (N1, N2) is given by

{0, N1, . . . , (N2 − 1)N1}d0 ∪ {N2, 2N2, . . . , (2N1 − 1)N2}d0.

Definition 2.3. A nested array generated by the parameter pair (N1, N2) is given by {0, 1, . . . , N1−

1}d0 ∪ {N1, 2N1 + 1, . . . , N2N1 +N2 − 1}d0.

The structures of co-prime arrays and nested arrays are illustrated in Fig. 2.2 and Fig. 2.3.

Both co-prime arrays and nested arrays consist of two subarrays with different inter-element

spacings.

1In fact, given a co-prime pair (M,N), there are two difference co-prime array configurations, namely the
“M” configuration and the “2M” configuration [39]. Throughout this dissertation, we will consider only the
“2M” configuration, which is stated in Definition 2.2.
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N1d0

N2d0

Figure 2.2: Illustration of the structure of a co-prime array. The red triangles represent the
first subarray with inter-element spacing N1d0, while the blue circles represent the second
subarray with inter-element spacing N2d0.

d0

(N1 + 1)d0N1d0

Figure 2.3: Illustration of the structure of a nested array. The red triangles represent the first
subarray with inter-element spacing d0, while the blue circles represent the second subarray
with inter-element spacing (N1 + 1)d0.

2.2 Signal model

In this section, we introduce the stochastic signal model and the difference coarray model of

sparse linear arrays.

2.2.1 The stochastic signal model

We consider a sparse linear array consisting of M sensors whose locations are given by D =

{d1, d2, . . . , dM}. Each sensor location di is chosen to be an integer multiple of d0. Therefore

we can also represent the sensor locations using the integer set D̄ = {d̄1, d̄2, . . . , d̄M}, where

d̄i = di/d0 for i = 1, 2, . . . ,M . Without loss of generality, we assume that d1 = 0.

We consider K narrow-band sources θ = [θ1, θ2, . . . , θK ]T impinging on the array from the

far field. Denoting λ as the wavelength of the carrier frequency, we can express the steering
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Figure 2.4: Illustration of our signal model. s1, s2, and s3 denote three far-field narrow-band
sources whose DOAs are given by θ1, θ2, and θ3, respectively. y1, . . . , yM represent the sensor
output of a linear array.

vector for the k-th source as

a(θk) =

[
1 exp

(
j 2πd2

λ
sin θk

)
. . . exp

(
j 2πdM

λ
sin θk

)]T
, (2.1)

or equivalently,

a(ωk) =

[
1 ejd̄2ωk . . . ejd̄Mωk

]T
, (2.2)

where ωk = (2πd0 sin θk)/λ. Because a one-to-one mapping exists between ωk and θk for

every θk ∈ (−π/2, π/2), there is no loss of information if we represent the DOAs using ω =

[ω1, ω2, . . . , ωK ]T instead of θ. Typically, d0 is chosen to be λ/2, and we have ωk ∈ (−π, π).
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The received signal vectors are given by [3]

y(t)︸︷︷︸
M×1

= A(θ)︸ ︷︷ ︸
M×K

x(t)︸︷︷︸
K×1

+n(t)︸︷︷︸
M×1

, t = 1, 2, · · · , N, (2.3)

where A = [a(θ1)a(θ2) · · · a(θK)] denotes the array steering matrix, x(t) denotes the source

signal vector, n(t) denotes additive noise, and N denotes the number of snapshots. Fig. 2.4

shows our signal model.

In the stochastic signal model, the source signals are assumed to be random and un-

known [52]. In the following discussion, we make the following assumptions:

A1 The source signals are uncorrelated, and follow a zero-mean circularly-symmetric com-

plex Gaussian distribution.

A2 The source DOAs are distinct (i.e., θk 6= θl ∀k 6= l).

A3 The additive noise is circularly-symmetric complex, white, and uncorrelated with the

sources.

A4 The is no temporal correlation between snapshots.

Under A1–A4, the received snapshots follow a circularly-symmetric complex Gaussian dis-

tribution whose mean is zero and whose covariance matrix is given by

R = APAH + σ2I, (2.4)

where P = diag(p1, p2, . . . , pK) denotes the source covariance matrix, and σ2 denotes the

variance of the additive noise. In practice, only a finite number of snapshots are available,
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and R is estimated via

R̂ =
1

N

N∑
t=1

y(t)yH(t). (2.5)

We can then apply various direction finding algorithms (e.g., MUSIC) to R̂ to obtain the

DOAs.

2.2.2 The difference coarray model

Based on (2.4), we now introduce the difference coarray model. By vectorizing R in (2.4),

we obtain that

r := vec(R) = Adp+ σ2i, (2.6)

where Ad = A∗ �A, p = [p1, p2, . . . , pK ]T , and i = vec(I). From the observation that

Ad =



ej(d̄1−d̄1)ω1 · · · ej(d̄1−d̄1)ωK

...
. . .

...

ej(d̄m−d̄n)ω1 · · · ej(d̄m−d̄n)ωK

...
. . .

...

ej(d̄M−d̄M )ω1 · · · ej(d̄M−d̄M )ωK


M2×K

, (2.7)

we know that Ad corresponds to the steering matrix of the coarray whose sensor locations

are given by Dco = {dm − dn|1 ≤ m,n ≤ M}. By carefully combining repeated rows of

(A∗�A), we can construct a new steering matrix representing a virtual ULA with enhanced

degrees of freedom. Because Dco is symmetric, this virtual ULA is centered at the origin. The

sensor locations of the virtual ULA are given by [−Mco + 1,−Mco + 2, . . . , 0, . . . ,Mco− 1]d0,

where Mco is defined so that 2Mco − 1 is the size of the virtual ULA. Fig. 2.5 provides an

illustrative example of the relationship between the physical array and the corresponding
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virtual ULA. To capture this combination process, we need to introduce the definition of a

coarray selection matrix.

(a)
O

d0

(b)

O

(c)

O

−Mcod0 Mcod0

ULA of 2Mco − 1 sensors

Figure 2.5: (a) A co-prime array with sensors located at [0, 2, 3, 4, 6, 9]d0; (b) its difference
coarray; (c) central ULA part of the difference coarray.

According to (2.4),

Rmn =
K∑
k=1

pk exp[j(d̄m − d̄n)ωk] + δmnσ
2,

where δmn denotes Kronecker’s delta. This equation implies that the (m,n)-th element of

R is associated with the difference (d̄m − d̄n). To capture this property, we introduce the

difference matrix ∆, such that ∆mn = d̄m− d̄n. We also define the weight function as follows:

Definition 2.4. The weight function w(n) : Z 7→ Z is defined as [38]

w(l) = |{(m,n)|∆mn = l}|,

where |A| denotes the cardinality of the set A.

Intuitively, w(l) counts the number of all possible pairs of (d̄m, d̄n) such that d̄m − d̄n = l.

Clearly, w(l) = w(−l). With the definition of the weight function, we can formally introduce

the definition of the coarray selection matrix as follows:
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Definition 2.5. The coarray selection matrix F is a (2Mco − 1)×M2 matrix satisfying

Fm,p+(q−1)M =


1

w(m−Mco)
,∆pq = m−Mco,

0 , otherwise,

(2.8)

for m = 1, 2, . . . , 2Mco − 1, p = 1, 2, . . . ,M, q = 1, 2, . . . ,M .

To better illustrate the construction of F , we consider a toy array whose sensor locations

are given by {0, d0, 4d0}. The corresponding difference matrix of this array is

∆ =


0 −1 −4

1 0 −3

4 3 0

 .

The ULA part of the difference coarray consists of three sensors located at −d0, 0, and d0.

The weight function satisfies w(−1) = w(1) = 1, and w(0) = 3, so Mco = 2. We can write

the coarray selection matrix as

F =


0 0 0 1 0 0 0 0 0

1
3

0 0 0 1
3

0 0 0 1
3

0 1 0 0 0 0 0 0 0

 .

If we pre-multiply the vectorized sample covariance matrix r by F , we obtain

z =


z1

z2

z3

 =


R12

1
3
(R11 +R22 +R33)

R21

 .
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It can be seen that zm is obtained by averaging all the elements in R that correspond to the

difference m−Mco, for m = 1, 2, . . . , 2Mco−1. This process is also referred to as redundancy

averaging [57]. To provide a more intuitive understanding, we have illustrated this process

in Fig. 2.6.

𝒓𝑇

𝒛𝑇

……

Figure 2.6: An illustration of the redundancy averaging process: (1) R is first vectorized into
r; (2) elements in r are grouped according to the difference matrix ∆; (3) z is constructed by
averaging the elements in each group. Elements Rmn having the same ∆mn share the same
color. For example, the diagonal elements of R share the same red color because ∆mm = 0
for all m.

Based on Definition 2.5, we now derive several useful properties of F .

Property 2.1. Fm,p+(q−1)M = F2Mco−m,q+(p−1)M for m = 1, 2, . . . , 2Mco−1, p = 1, 2, . . . ,M, q =

1, 2, . . . ,M .

Proof. If Fm,p+(q−1)M = 0, then ∆pq 6= m−Mco. Because ∆qp = −∆pq, ∆qp 6= −(m−Mco).

Hence (2Mco −m)−Mco = −(m−Mco) 6= ∆qp, which implies that F2Mco−m,q+(p−1)M is also

zero.

If Fm,p+(q−1)M 6= 0, then ∆pq = m − Mco and Fm,p+(q−1)M = 1/w(m − Mco). Note that

(2Mco − m) − Mco = −(m − Mco) = −∆pq = ∆qp. We thus have F2Mco−m,q+(p−1)M =

1/w(−(m−Mco)) = 1/w(m−Mco) = Fm,p+(q−1)M .

Property 2.2. Let R ∈ CM be Hermitian symmetric. Then z = F vec(R) is conjugate

symmetric.
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Proof. By Property 2.1 and R = RH ,

zm =
M∑
p=1

M∑
q=1

Fm,p+(q−1)MRpq =
M∑
q=1

M∑
p=1

F2Mco−m,q+(p−1)MR
∗
qp = z∗2Mco−m.

Property 2.3. Let z ∈ C2Mco−1 be conjugate symmetric. Then matM,M(F Tz) is Hermitian

symmetric.

Proof. Let H = matM,M(F Tz). Then

Hpq =
2Mco−1∑
m=1

zmFm,p+(q−1)M . (2.9)

We know that z is conjugate symmetric, so zm = z∗2Mco−m. Therefore, by Lemma 2.1

Hpq =
2Mco−1∑
m=1

z∗2Mco−mF2Mco−m,q+(p−1)M =

[
2Mco−1∑
m′=1

zm′Fm′,q+(p−1)M

]∗
= H∗qp. (2.10)

From definition 2.5, the observation vector of the virtual ULA is given by

z︸︷︷︸
(2Mco−1)×1

= F︸︷︷︸
(2Mco−1)×M2

r︸︷︷︸
M2×1

= Ac︸︷︷︸
(2Mco−1)×K

p︸︷︷︸
K×1

+ σ2Fi︸ ︷︷ ︸
(2Mco−1)×1

, (2.11)

where Ac represents the steering matrix of the virtual ULA whose sensors are located at

[−Mco + 1, . . . , 0, . . . ,Mco − 1]d0. We refer to (2.11) as the difference coarray model2. In

2For brevity, we will use the terms difference coarray model and coarray model interchangeably in the
following discussion.
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practice, only a finite number of snapshots are available, and z is replaced with its estimate

ẑ = F r̂, where r̂ = vec(r̂).

2.3 Direction finding using MUSIC

MUSIC is a classical subspace-based DOA estimation algorithm first introduced by Schmidt [9].

In this section, we first provide a brief review of the MUSIC algorithm, and then extend it

to the difference coarray model and introduce two commonly used coarray-based MUSIC

algorithms.

2.3.1 Direct MUSIC

Recall that the covariance matrix of y(t) is given by

R = APAH + σ2I. (2.12)

Assuming that both A and P are full column rank, then APAH will be a rank-K matrix. If

we perform eigendecomposition over R, the eigenvectors corresponding to the first K largest

eigenvalues will span the same subspace as A, which we call the signal subspace. The last

M −K eigenvalues will all equal to σ2, and their corresponding eigenvectors span the noise

subspace. In other words, we can rewrite the eigendecomposition of R as

R = EsΛsE
H
s + σ2EnE

H
n , (2.13)
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where Es and Λs denote the eigenvectors and eigenvalues for the signal subspace, respec-

tively. Λn denotes the eigenvectors for the noise subspace. Because the two subspaces are

orthogonal, if θ ∈ {θ1, θ2, . . . , θK}, we must have aH(θ)EnE
H
n = 0. Therefore we can find

the DOAs by searching for θ ∈ (−π/2, π/2) that minimizes aH(θ)EnE
H
n a(θ).

Given the estimated covariance matrix R̂, its eigendecomposition can be expressed as

R̂ = ÊsΛ̂sÊ
H
s + ÊnΛ̂nÊ

H
n . (2.14)

Following the above reasoning, the MUSIC pseudo-spectrum is defined as

PMUSIC(θ) =
1

a(θ)HÊnÊH
n a(θ)

, (2.15)

and the DOAs can be identified by performing a grid search and finding the peaks in the

resulting pseudo-spectrum.

Remark. The MUSIC algorithm requires knowing the number of sources. In the literature

of array signal processing, there are various source number detection methods, such as the

Akaike information criterion (AIC) [58], Rissanen’s minimum description length (MDL) [59],

and the second order statistic of eigenvalues (SORTE) [60]. Therefore, we assume that the

number of sources K is known when conducting the performance analysis of MUSIC-based

direction finding algorithms.

2.3.2 Coarray-based MUSIC

Because R is an M ×M matrix, we can resolve only up to M − 1 sources using the MUSIC

algorithm. In Fig. 2.5, we observe that the central ULA part has more virtual sensors than
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physical sensors in the original array. If we can apply MUSIC to the difference coarray model,

we can gain more degrees of freedom and resolve more DOAs. However, we effectively have

only one snapshot from the difference coarray model: ẑ. Therefore, ẑẑH will be a rank-one

matrix and MUSIC cannot be applied.

To apply MUSIC to the difference coarray model, we need to construct an augmented co-

variance matrix. We observe that the virtual ULA can be divided into Mco overlapping

uniform subarrays of size Mco. The output of the i-th subarray is given by ẑi = Γiẑ for

i = 1, 2, . . . ,Mco, where Γi = [0Mco×(i−1) IMco×Mco 0Mco×(Mco−i)] represents the selection ma-

trix for the i-th subarray.

Given the outputs of the Mco subarrays, the augmented covariance matrix is commonly

constructed via one of the following methods [38,55]:

R̂v1 = [ẑMco ẑMco−1 · · · ẑ1], (2.16a)

R̂v2 =
1

Mco

Mco∑
i=1

ẑiẑ
H
i , (2.16b)

where method (2.16a) corresponds to DAA , while method (2.16b) corresponds to the spatial

smoothing approach. Here R̂v1 and R̂v2 are estimates of their true versions, Rv1 and Rv2.

Following the results in [38] and [55], Rv1 and Rv2 are related via the following equality:

Rv2 =
1

Mco

R2
v1 =

1

Mco

(AcoPA
H
co + σ2I)2, (2.17)

where Aco corresponds to the steering matrix of a ULA whose sensors are located at

[0, 1, . . . , Mco − 1]d0. If we design a sparse linear array such that Mco > M , we imme-

diately gain enhanced degrees of freedom, because the rank of Rv1 (or Rv2) is greater than
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that of R. For example, in Fig. 2.5, we have a co-prime array with Mco = 8 > 6 = M .

Because MUSIC is applicable only when the number of sources is less than the number of

sensors, we assume that K < Mco throughout this dissertation. This assumption, combined

with A2, ensures that Aco is full column rank.

For brevity, we use the term direct augmentation based MUSIC (DA-MUSIC), and the term

spatial smoothing based MUSIC (SS-MUSIC) to denote the MUSIC algorithm applied to

Rv1 and Rv2, respectively. We will focus on analyzing the performance of these two coarray-

based MUSIC algorithms in the following chapter.

2.4 Chapter summary

In this chapter, we presented the background of direction finding using sparse linear arrays.

We reviewed the concepts of ULAs and sparse linear arrays, the stochastic signal model,

and the MUSIC algorithm. We introduced the difference coarray model and the underlying

mathematics. We showed the construction of the augmented covariance matrix based on the

difference coarray model, and also reviewed two existing coarray-based MUSIC algorithms.
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Chapter 3

Statistical Performance Analysis of

the Coarray Model

Statistical performance analysis remains an important topic in array signal processing. The

performance of the classical MUSIC estimator and its variants (e.g., root-MUSIC [22, 23])

was thoroughly analyzed by Stoica et al. in [61], [62] and [52], where the authors derived the

asymptotic MSE expression of the MUSIC estimator and rigorously studied its statistical

efficiency. In [53], Li et al. derived a unified MSE expression for common subspace-based

estimators (e.g., MUSIC and ESPRIT [24]) via first-order perturbation analysis. However,

the aforementioned results are based on the physical array model and make use of the

statistical properties of the original sample covariance matrix, which cannot be applied

when the difference coarray model is utilized. In [63], Gorokhov et al. first derived a general

MSE expression for the MUSIC algorithm applied to matrix-valued transforms of the sample

covariance matrix. While this expression is applicable to coarray-based MUSIC, its explicit

form is rather complicated, making it difficult to conduct analytical performance studies.

Therefore, a simpler and more revealing MSE expression is desired. The classical stochastic
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CRB was derived and analyzed in [52]. However, it does not exist in the underdetermined

case, when there are more sources than the number of sensors.

In this chapter, we consider the statistical performance analysis of sparse linear arrays3. We

first derive the closed-form asymptotic MSE expression for DA-MUSIC and SS-MUSIC and

investigate their properties. Our expression successfully explains the “saturation” behavior

of SS-MUSIC in high SNR regions in previous studies. We next derive the CRB for sparse

linear arrays. We analyze its behavior in high SNR regions, establish its connection with the

classical stochastic CRB, and derive its approximated expression for co-prime and nested

arrays with large numbers of sensors. Through these analyses, we theoretically show that

co-prime and nested arrays can achieve much better performance than ULAs with the same

number of sensors. Finally, we use numerical experiments to demonstrate the correctness of

our theoretical results.

3.1 Asymptotic MSE of coarray-based MUSIC

Recall that in Chapter 2, we constructed the augmented covariance matrices R̂v1 and R̂v2

from the coarray measurement vector ẑ, which is transformed from R̂. Because only a finite

number of snapshots are available in practice, the estimation error ∆R = R̂−R is nonzero.

Consequently, R̂v1 and R̂v2 will deviate from their true values, Rv1 and Rv2. When applying

MUSIC, the estimated noise eigenvectors will also deviate from the true one, leading to DOA

estimation errors.

3This chapter is based on M. Wang and A. Nehorai, “Coarrays, MUSIC, and the Cramér Rao bound,”
IEEE Trans. Signal Process., vol. 65, no. 4, pp. 933–946, Feb. 2017, c© IEEE 2017, and M. Wang, Z. Zhang,
and A. Nehorai, “Further results on Coarrays, MUSIC, and the Cramér Rao bound,” submitted to IEEE
Trans. Signal Process.
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In general, the eigenvectors of a perturbed matrix are not well-determined [64]. For instance,

in the very low SNR scenario, ∆R may cause a subspace swap, and the estimated noise

eigenvectors will deviate drastically from the true ones [65, 66]. Nevertheless, as shown in

[53, 63] and [67], given enough samples and sufficient SNR, it is possible to obtain a closed-

form expressions for DOA estimation errors via first-order analysis. Following similar ideas,

we are able to derive the closed-form error expression for DA-MUSIC and SS-MUSIC, as

stated in Theorem 3.1.

Theorem 3.1. Let θ̂
(1)
k and θ̂

(2)
k denote the estimated values of the k-th DOA by DA-MUSIC

and SS-MUSIC, respectively. Let ∆r = vec(R̂ −R). Assume the signal subspace and the

noise subspace are well-separated, so that ∆r does not cause a subspace swap. Then

θ̂
(1)
k − θk

.
= θ̂

(2)
k − θk

.
= −(γkpk)

−1<(ξTk ∆r), (3.1)

where
.
= denotes asymptotic equality, and

ξk = F TΓT (βk ⊗αk), (3.2a)

αTk = −eTkA†co, (3.2b)

βk = Π⊥Aco
ȧco(θk), (3.2c)

γk = ȧHco(θk)Π
⊥
Aco
ȧco(θk), (3.2d)

Γ = [ΓT
Mco

ΓT
Mco−1 · · ·ΓT

1 ]T , (3.2e)

ȧco(θk) =
∂aco(θk)

∂θk
. (3.2f)

Proof. See Appendix A.
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Theorem 3.1 can be reinforced by Proposition 3.1. βk 6= 0 ensures that γ−1
k exists and (3.1)

is well-defined, while ξk 6= 0 ensures that (3.1) depends on ∆r and cannot be trivially zero.

Proposition 3.1. βk, ξk 6= 0 for k = 1, 2, . . . , K.

Proof. We first show that βk 6= 0 by contradiction. Assume βk = 0. Then Π⊥Aco
Daco(θk) =

0, where D = diag(0, 1, . . . ,Mco − 1). This implies that Daco(θk) lies in the column space

of Aco. Let h = exp[−j(2πd0 sin θk)/λ]Daco(θk). We immediately obtain that [Aco h] is not

full column rank. We now add Mco−K − 1 distinct DOAs in (−π/2, π/2) that are different

from θ1, . . . , θK , denoted by θK+1, θK+2, . . . , θMco−1. Then we can construct an extended

steering matrix Āco of these Mco − 1 distinct DOAs. Let B = [Āco h]. It follows that B is

also not full column rank. BecauseB is a square matrix, it is also not full row rank. Therefore

there exists some non-zero c ∈ CM
co such that cHB = 0. Let tl = exp[j(2πd0 sin θl)/λ] for

l = 1, 2, . . . ,Mco − 1. We can express B as



1 1 · · · 1 0

t1 t2 · · · tMco−1 1

t21 t22 · · · t2Mco−1 2tk
...

...
. . .

...
...

tMco−1
1 tMco−1

2 · · · tMco−1
Mco−1 (Mco − 1)tMco−2

k


.

We define the complex polynomial f(x) =
∑Mco

d=1 cdx
d−1. It can be observed that cTB = 0

is equivalent to f(tl) = 0 for l = 1, 2, . . . ,Mco − 1, and f ′(tk) = 0. By construction, θl are

distinct, so tl are Mco− 1 different roots of f(x). Because c 6= 0, f(x) is not a constant-zero

polynomial, and has at most Mco − 1 roots. Therefore each root tl has a multiplicity of

at most one. However, f ′(tk) = 0 implies that tk has a multiplicity of at least two, which

contradicts the previous conclusion and completes the proof of βk 6= 0.
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We now show that ξk 6= 0. By the definition of F in Definition 2.5, each row of F has

at least one non-zero element, and each column of F has at most one non-zero element.

Hence F Tx = 0 for some x ∈ C2Mco−1 if and only of x = 0. It suffices to show that

ΓT (βk ⊗αk) 6= 0. By the definition of Γ, we can rewrite ΓT (βk ⊗αk) as B̃kαk, where

B̃k =



βkMco 0 · · · 0

βk(Mco−1) βkMco · · · 0

...
...

. . .
...

βk1 βk2 · · · βkMco

0 βk1 · · · βk(Mco−1)

...
...

. . .
...

0 0 · · · βk1



,

and βkl is the l-th element of βk. Because βk 6= 0 and K < Mco, B̃k is full column rank.

By the definition of pseudo inverse, we know that αk 6= 0. Therefore B̃kαk 6= 0, which

completes the proof of ξk 6= 0.

One important implication of Theorem 3.1 is that DA-MUSIC and SS-MUSIC share the

same first-order error expression, despite the fact that Rv1 is constructed from the second-

order statistics, while Rv2 is constructed from the fourth-order statistics. Theorem 3.1

enables a unified analysis of the MSEs of DA-MUSIC and SS-MUSIC, which we present in

Theorem 3.2.

Theorem 3.2. Under the same assumptions as in Theorem 3.1, the asymptotic second-order

statistics of the DOA estimation errors by DA-MUSIC and SS-MUSIC share the same form:

E[(θ̂k1 − θk1)(θ̂k2 − θk2)]
.
=
<[ξHk1(R⊗R

T )ξk2 ]

Npk1pk2γk1γk2
. (3.3)
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Proof. See Appendix B.

By Theorem 3.2, it is straightforward to write the unified asymptotic MSE expression as

ε(θk) =
ξHk (R⊗RT )ξk

Np2
kγ

2
k

. (3.4)

For brevity, when we use the acronym “MSE” in the following discussion in this chapter,

we refer to the asymptotic MSE, ε(θk), unless explicitly stated. We observe that the MSE

depends on both the physical array geometry and the coarray geometry. The physical array

geometry is captured by A, which appears in R ⊗RT . The coarray geometry is captured

by Aco, which appears in ξk and γk. Therefore, even if two arrays share the same coarray

geometry, they may not share the same MSE because their physical array geometry may be

different.

It can be easily observed from (3.4) that ε(θk)→ 0 as N →∞. However, because pk appears

in both the denominator and numerator in (3.4), it is not obvious how the MSE varies with

respect to the source power pk and noise power σ2. Let p̄k = pk/σ
2 denote the signal-to-noise

ratio of the k-th source. Let P̄ = diag(p̄1, p̄2, . . . , p̄K), and R̄ = AP̄AH + I. We can then

rewrite ε(θk) as

ε(θk) =
ξHk (R̄⊗ R̄T )ξk

Np̄2
kγ

2
k

. (3.5)

Hence the MSE depends on the SNRs instead of the absolute values of pk or σ2. To provide

an intuitive understanding how SNR affects the MSE, we consider the case when all sources

have the same power. In this case, we show in Corollary 3.1 that the MSE asymptotically

decreases as the SNR increases.
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Corollary 3.1. Assume all sources have the same power p. Let p̄ = p/σ2 denote the common

SNR. Given sufficiently large N , the MSE ε(θk) decreases monotonically as p̄ increases, and

lim
p̄→∞

ε(θk) =
1

Nγ2
k

‖ξHk (A⊗A∗)‖2
2. (3.6)

Proof. The limiting expression can be derived straightforwardly from (3.5). For monotonic-

ity, without loss of generality, let p = 1, so p̄ = 1/σ2. Because f(x) = 1/x is monotonically

decreasing on (0,∞), it suffices to show that ε(θk) increases monotonically as σ2 increases.

Assume 0 < s1 < s2, and we have

ε(θk)|σ2=s2
− ε(θk)|σ2=s1

=
1

Nγ2
k

ξHk Qξk,

where Q = (s2 − s1)[(AAH) ⊗ I + I ⊗ (AAH)T + (s2 + s1)I]. Because AAH is positive

semidefinite, both (AAH) ⊗ I and I ⊗ (AAH)T are positive semidefinite. Combined with

our assumption that 0 < s1 < s2, we conclude that Q is positive definite. By Proposition 3.1

we know that ξk 6= 0. Therefore ξHk Qξk is strictly greater than zero, which implies the MSE

monotonically increases as σ2 increases.

Because both DA-MUSIC and SS-MUSIC work also in cases when the number of sources

exceeds the number of sensors, we are particularly interested in their limiting performance

in such cases. As shown in Corollary 3.2, when K ≥ M , the corresponding MSE is strictly

greater than zero, even though the SNR approaches infinity. This corollary explains the

“saturation” behavior of SS-MUSIC in the high SNR region as observed in [45] and [38].

Another interesting implication of Corollary 3.2 is that when 2 ≤ K < M , the limiting MSE

is not necessarily zero. Recall that in [61], it was shown that the MSE of the traditional

27



MUSIC algorithm will converge to zero as SNR approaches infinity. We know that both DA-

MUSIC and SS-MUSIC will be outperformed by traditional MUSIC in high SNR regions

when 2 ≤ K < M . Therefore, we suggest using DA-MUSIC or SS-MUSIC only when

K ≥M .

Corollary 3.2. Following the same assumptions in Corollary 3.1,

1. When K = 1, limp̄→∞ ε(θk) = 0;

2. When 2 ≤ K < M , limp̄→∞ ε(θk) ≥ 0;

3. When K ≥M , limp̄→∞ ε(θk) > 0.

Proof. The right-hand side of (3.6) can be expanded into

1

Nγ2
k

K∑
m=1

K∑
n=1

‖ξHk [a(θm)⊗ a∗(θn)]‖2
2.

By the definition of F , F [a(θm)⊗ a∗(θm)] becomes

[ej(Mco−1)ωm , ej(Mco−2)ωm , . . . , e−j(Mco−1)ωm ].

Hence ΓF [a(θm)⊗ a∗(θm)] = aco(θm)⊗ a∗co(θm). Observe that

ξHk [a(θm)⊗ a∗(θm)] =(βk ⊗αk)H(aco(θm)⊗ a∗co(θm))

=(βHk aco(θm))(αHk a
∗
co(θm))

=(ȧHco(θk)Π
⊥
Aco
aco(θm))(αHk a

∗
co(θm))

=0.
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We can reduce the right-hand side of (3.6) into

1

Nγ2
k

∑
1≤m,n≤K
m 6=n

‖ξHk [a(θm)⊗ a∗(θn)]‖2
2.

Therefore when K = 1, the limiting expression is exactly zero. When 2 ≤ K < M , the

limiting expression is not necessary zero because when m 6= n, ξHk [a(θm) ⊗ a∗(θn)] is not

necessarily zero.

When K ≥ M , A is full row rank. Hence A⊗A∗ is also full row rank. By Proposition 3.1

we know that ξk 6= 0, which implies that ε(θk) is strictly greater than zero.

3.2 CRB for sparse linear arrays

In this section, we provide detailed analyses of the CRB for sparse linear arrays. The

CRB gives the lower bound on the variance of any unbiased estimators under regularity

conditions. Investigating the CRB for sparse linear arrays enables us to better understand

the performance limits of these arrays, which will aid us in identifying optimal designs of

sparse linear arrays.

3.2.1 Derivation

The CRB for the stochastic model (2.3) has been well studied in [52], but only when the

number of sources is less than the number of sensors and no prior knowledge of P is given.

For the coarray model, the number of sources can exceed the number of sensors, and P

is assumed to be diagonal. Therefore, the CRB derived in [52] cannot be directly applied.
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Based on [68, Appendix 15C], we provide an alternative CRB based on the signal model

(2.3), under assumptions A1–A4.

For the signal model (2.3), the vector of unknown parameters is defined by

η = [θ1, . . . , θK , p1, . . . , pk, σ
2]T , (3.7)

and the (m,n)-th element of the Fisher information matrix (FIM) is given by [52,68]

FIMmn = N tr

[
∂R

∂ηm
R−1 ∂R

∂ηn
R−1

]
. (3.8)

Observing that tr(AB) = vec(AT )T vec(B), and that vec(AXB) = (BT ⊗A) vec(X), we

can rewrite (3.8) as

FIMmn = N

[
∂r

∂ηm

]H
(RT ⊗R)−1 ∂r

∂ηn
.

Denote the derivatives of r with respect to η as

∂r

∂η
=

[
∂r

∂θ1

· · · ∂r
∂θK

∂r

∂p1

· · · ∂r
∂pK

∂r

∂σ2

]
. (3.9)

The FIM can be compactly expressed by

FIM =

[
∂r

∂η

]H
(RT ⊗R)−1 ∂r

∂η
. (3.10)

According to (2.6), we can compute the derivatives in (3.9) and obtain

∂r

∂η
=

[
ȦdP Ad i

]
, (3.11)
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where Ȧd = Ȧ∗ �A+A∗ � Ȧ, Ad and i follow the same definitions as in (2.6), and

Ȧ =

[
∂a(θ1)

∂θ1

∂a(θ2)

∂θ2

· · · ∂a(θK)

∂θK

]
.

Note that (3.11) can be partitioned into two parts, specifically, the part corresponding to

DOAs and the part corresponding to the source and noise powers. We can also partition the

FIM. Because R is positive definite, (RT ⊗R)−1 is also positive definite, and its square root

(RT ⊗R)−1/2 also exists. Let

Mθ = (RT ⊗R)−1/2ȦdP ,

Ms = (RT ⊗R)−1/2
[
Ad i

]
.

We can write the partitioned FIM as

FIM = N

MH
θ Mθ MH

θ Ms

MH
s Mθ MH

s Ms

 .
The CRB matrix for the DOAs is then obtained by block-wise inversion:

B(sto-uc)(θ) =
1

N
(MH

θ Π⊥Ms
Mθ)

−1, (3.12)

where Π⊥Ms
= I −Ms(M

H
s Ms)

−1MH
s .

From (3.11), we observe that the invertibility of the FIM depends on the coarray structure.

In the noisy case, (RT⊗R)−1 is always full rank, so the FIM is invertible if and only if ∂r/∂η

is full column rank. By (3.11) we know that the rank of ∂r/∂η is closely related to Ad,

which encodes the coarray structure. Therefore, unlike the classical stochastic CRB for the

stochastic model introduced in [52, Remark 1], B(sto-uc)(θ) is applicable even if the number
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of sources exceeds the number of sensors. However, B(sto-uc)(θ) is not valid for an arbitrary

number of sources, because Ad may not be full column rank when too many sources are

present. A more detailed identifiability analysis can be found in [69].

3.2.2 Behavior in high SNR regions

In Section 3.1, we showed that the asymptotic MSE of DA-MUSIC and SS-MUSIC depends

on the SNRs instead of the absolute values of pk or σ2. We now show that B(sto-uc) exhibits

a similar behavior. Let p̄k = pk/σ
2, and P̄ = diag(p̄1, p̄2, . . . , p̄K). We have

Mθ = (R̄T ⊗ R̄)−1/2ȦdP̄ , (3.13)

Ms = σ−2(R̄T ⊗ R̄)−1/2
[
Ad i

]
. (3.14)

Substituting (3.13) and (3.14) into (3.12), the term σ2 gets canceled, and the resulting

B(sto-uc)(θ) depends on the ratios p̄k instead of absolute values of pk or σ2.

We now analyze the behavior of B(sto-uc) in high SNR regions. The results are summarized

in the following proposition.

Proposition 3.2. Assume all sources have the same power p, and ∂r/∂η is full column

rank. Let p̄ = p/σ2.

(1) If K < M , and limp̄→∞B(sto-uc)(θ) exists, it is zero under mild conditions.

(2) If K ≥M , and limp̄→∞B(sto-uc)(θ) exists, it is positive definite.

Proof. See Appendix C.

32



While infinite SNR is unachievable from a practical standpoint, Proposition 3.2 gives some

useful theoretical implications. When K < M , the limiting MSE (13) in Corollary 3.1 is not

necessarily zero. However, Proposition 3.2 reveals that the CRB generally approaches zero

when SNR goes to infinity. This observation implies that both DA-MUSIC and SS-MUSIC

may have poor statistical efficiency in high SNR regions. When K ≥ M , Proposition 3.2

implies that the CRB of each DOA will converge to a positive constant as the SNR ap-

proaches infinity. This unusual behavior puts a strictly positive lower bound on unbiased

DOA estimators in the underdetermined case. It is also consistent with the behavior of the

asymptotic MSE described in Corollary 3.2.

3.2.3 Connection to the classical stochastic CRB

In this section, we establish the connection between B(sto-uc) and the classical stochastic

CRB derived in [52]. In this section and the next section, to avoid complications in the

derivatives, we use ω instead of θ to represent the DOAs. Recall that in Section 2.2.1, we

showed that there exists a one-to-one mapping between ω and θ.

The classical stochastic CRB, which we denote as B(sto), is derived without prior knowledge

that the sources are uncorrelated. The unknown parameters consist of the DOAs, ω, the

real and imaginary parts of P , and the noise variance σ2. Because P is Hermitian, there are

K2 +K + 1 unknown parameters. In this case, we have [52,56]:

B(sto)(ω) =
σ2

2N

{
<[(ȦHΠ⊥AȦ) ◦ (PAHR−1AP )T ]

}−1
, (3.15)
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where

Ȧ =

[
∂a(ω1)
∂ω1

∂a(ω1)
∂ω2

· · · ∂a(ω1)
∂ωK

]
.

Our CRB B(sto-uc) is derived with the prior knowledge that P is a diagonal matrix. Recall

that it can be compactly expressed as

B(sto-uc)(ω) =
1

N
(MH

ω Π⊥Ms
Mω)−1, (3.16)

where

Mω = (RT ⊗R)−1/2ȦdP , (3.17)

Ms = (RT ⊗R)−1/2[Ad i], (3.18)

Ȧd = Ȧ∗ �A+A∗ � Ȧ, (3.19)

Ad = A∗ �A. (3.20)

While the compact form (3.16) of B(sto-uc) provides great convenience when analyzing the

maximum number of resolvable sources [69], it is not well-suited for our asymptotic analysis

in the following discussion. Therefore, we provide a brief review of its more traditional form,

obtained by block-wise computation of the FIM. Under the assumption that the sources are

uncorrelated, the FIM of the stochastic model is given by [3]

J(sto-uc) = N


Jωω Jωp Jωσ2

Jpω Jpp Jpσ2

Jσ2ω Jσ2p Jσ2σ2

 , (3.21)
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where

Jωω =2<[(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP ) + (ȦHR−1A)∗ ◦ (PAHR−1ȦP )],

Jpp =(AHR−1A)∗ ◦ (AHR−1A),

Jσ2σ2 = tr(R−2),

Jωp =2<[(ȦHR−1A)∗ ◦ (PAHR−1A)],

Jωσ2 =2<[diag(PȦHR−2A)],

Jpσ2 = diag(AHR−2A),

and Jpω = JHωp, Jσ2ω = JHωσ2 , Jσ2p = JHpσ2 .

By inverting J(sto-uc), we obtain the alternative expression of B(sto-uc). While this expression

seems much more complicated than the one in (3.16), it can be shown that they are equivalent

via Lemma 3.1 listed below. In the following derivations, we make extensive use of (3.21)

instead of (3.16).

Lemma 3.1. Let A, B, C, D, E, and F be compatible matrices. Then

(A�B)H(C ⊗D)(E � F ) = (AHCE) ◦ (BHDF ). (3.22)

Proof. The left-hand side of (3.22) can be expanded as


aH1 ⊗ bH1

...

aHM ⊗ bHM

 (C ⊗D)

[
e1 ⊗ f1 · · · eN ⊗ fN

]
, (3.23)

35



whose (i, j)-th element is given by

(aHi ⊗ bHi )(C ⊗D)(ej ⊗ fj) = (aHi Cej)(b
H
i Dfj).

Observing that aHi Cej is the (i, j)-th element of AHCE, and that bHi Dfj is the (i, j)-th

element of BHDF , we immediately conclude that the left-hand side is equal to the right-

hand side in (3.22).

When P is diagonal, there is a subtle distinction betweenB(sto) andB(sto-uc). B(sto) gives the

CRB when the sources are uncorrelated and this knowledge is not known a priori. B(sto-uc)

gives the CRB when the sources are uncorrelated and this knowledge is known a priori. This

subtle distinction implies that B(sto) and B(sto-uc) are not equal. In fact, it is straightforward

to show that B(sto-uc) � B(sto), implying that incorporating the prior knowledge reduces

uncertainties in estimating the DOAs. If we compare (3.15) with (3.21), we can observe

that the term PAHR−1AP appears in both expressions, suggesting a potential connection

between B(sto) and B(sto-uc). To establish such a connection, we first introduce the following

three lemmas.

Lemma 3.2 (Woodbury matrix inversion lemma [70]).

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Lemma 3.3. Let A be nonsingular and B have a sufficiently small norm. Then

(A+B)−1 ≈ A−1 −A−1BA−1. (3.24)
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Proof. For B with a sufficiently small norm, the spectral radius of A−1B will be less than

one, and the Taylor series expansion of (A+B)−1 converges [70, P. 421]. Therefore, (3.24)

is just the first-order Taylor approximation.

Lemma 3.4. For sufficiently small σ2, σ2R−1 = Π⊥A + O(σ2), where O(σ2) denotes terms

with the same order of σ2.

Proof. By Lemma 3.2, we have

σ2R−1 = I −A(σ2P−1 +AHA)−1AH . (3.25)

Because AHA is full rank, by Lemma 3.3, (σ2P−1 +AHA)−1 = (AHA)−1 +O(σ2).

We now reveal this connection in Theorem 3.3.

Theorem 3.3. Assume that the sources are uncorrelated. If we fix the diagonal matrix

P � 0, B(sto)
.
= B(sto-uc) as σ2 → 0, where

.
= denotes that the equality is up to the first order

with respect to σ2.

Proof. Without loss of generality, we assume that N = 1. We already know that when P is

diagonal, the following inequalities hold:

J−1
ωω � B(sto-uc) � B(sto). (3.26)

It suffices to show that J−1
ωω

.
= B(sto). Using the above Lemma 3.4, we observe that

σ2<[(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP )] =<[(ȦH(σ2R−1)Ȧ)∗ ◦ (PAHR−1AP )]

=<[(ȦHΠ⊥AȦ)∗ ◦ (PAHR−1AP ) +O(σ2)].
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Because that Π⊥AA = 0, we have

σ2<[(ȦHR−1A)∗ ◦ (PAHR−1ȦP )] = <[(ȦH(σ2R−1)A)∗ ◦ (PAHR−1ȦP )] = O(σ2).

Combined with the fact that <(X) = <(X∗), we have

J−1
ωω =

σ2

2

{
σ2<[(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP )]

+ σ2<[(ȦHR−1A)∗ ◦ (PAHR−1ȦP )]
}−1

=
σ2

2

{
<[(ȦHΠ⊥AȦ)∗ ◦ (PAHR−1AP ) +O(σ2)]

}−1

=
σ2

2

{
<[(ȦHΠ⊥AȦ) ◦ (PAHR−1AP )T ] + <[O(σ2)]

}−1
.

By Lemma 3.3, we obtain that J−1
ωω

.
= B(sto), which immediately leads to B(sto)

.
= B(sto-uc).

Theorem 3.3 shows that when the sources are uncorrelated and the number of sources is less

than the number of sensors, B(sto) and B(sto-uc) are approximately equal when the SNR is

large. This result is in agreement with our intuition. When the SNR is larger, we can clearly

identify the signals, and incorporating the prior knowledge will not give much improvement

in estimation performance. When the SNR is low, the signals cannot be clearly distinguished

from the noise, and we are more uncertain about whether the sources are correlated. In this

case, incorporating the prior knowledge will help improve the estimation performance.
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3.2.4 Analysis for co-prime and nested arrays with large number

of sensors

In this section, we analyze the behavior of B(sto-uc) for co-prime and nested arrays with large

numbers of sensors. We will focus on co-prime and nested arrays, whose array configurations

have closed-form solutions. It is possible to extend our analysis to other variants, such as

generalized co-prime arrays [45]. While numerical simulations show that MRAs share behav-

iors similar to co-prime and nested arrays [71, 72], we cannot not obtain similar analytical

results because MRA configurations do not have closed-form solutions.

For reference, we will provide the results for the ULA case first. In [61], the authors showed

that for an M -sensor ULA, the CRB of the deterministic signal model decreases at a rate

of O(M−3) for large M . In the following proposition, we show that B(sto-uc) has the same

behavior.

Proposition 3.3. Assume that SNR−1
i := σ2/pi � M for all i = 1, 2, . . . , K and that

K < M . Then for ULAs, as M →∞,

B(sto-uc)(ω) ≈ 6

M3N
σ2P−1. (3.27)

Proof. See Appendix D.

Unlike ULAs, the physical array geometries of sparse linear arrays can be drastically dif-

ferent, even if they share the same number of sensors4. To avoid complications, we will

consider nearly optimal configurations in the following discussion. For co-prime arrays, we

4For example, the nested arrays generated by (8, 2) and (5, 5) both have 10 sensors. However, the latter
can achieve 30 degrees of freedom, while the former can achieve only 18 degrees of freedom.
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will consider configurations generated by co-prime pairs (Q,Q+1). For nested arrays, we will

consider the configurations generated by (Q,Q). Co-prime and nested arrays generated by

these configurations are nearly optimal in terms of maximum achievable degrees of freedom.

Because co-prime and nested arrays are non-uniform and B(sto-uc) is used instead of B(sto),

the overall derivation is much more involved than for the ULA case. We will start from the

one source case.

Theorem 3.4 (One source case). Let K = 1 and assume that SNR−1 := σ2/p � Q. Then

as Q→∞,

1. For a co-prime array generated with the co-prime pair (Q,Q+ 1),

B(sto-uc)(ω) ≈ 6

11

1

N

1

Q5

1

SNR
. (3.28)

2. For a nested array generated with the parameter pair (Q,Q),

B(sto-uc)(ω) ≈ 12

5

1

N

1

Q5

1

SNR
. (3.29)

Proof. See Appendix E.

We observe that, similar to the ULA case, the CRB is inversely proportional to the number

of samples, N , and the SNR. The interesting term here is 1/Q5. According to Definition 2.2,

a co-prime array generated with the co-prime pair (Q,Q + 1) consists of M = 3Q sensors.

Similarly, a nested array generated with the parameter pair (Q,Q) consists of M = 2Q

sensors. Theorem 3.4 shows that, in the one source case, B(sto-uc) of co-prime and nested

arrays can indeed decrease at a rate of O(M−5). This finding implies that the resolution
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limit of such co-prime and nested arrays is inversely proportional to M5, as opposed to M3 in

the ULA case. In other words, such co-prime and nested arrays have much better resolution

than ULAs with the same number of sensors. This behavior can be explained by the fact

that they have much larger apertures than ULAs with the same number of sensors.

Remark. The constant term for the co-prime arrays in (3.28) is smaller than that of the

nested arrays because for a fixed Q, the co-prime array generated by the co-prime pair

(Q,Q + 1) has a larger aperture than that of the nested array generated by the parameter

pair (Q,Q).

Next, we generalize the results in Theorem 3.4 to the multiple source case. Unlike ULAs,

this generalization is not straightforward because both co-prime and nested arrays contain

subarrays with inter-element spacing greater than d0. Such subarrays have grating lobes in

their beam patterns [73]. Therefore, one of the two subarrays of a co-prime (or nested) array

will not be able to identify certain source placements, leading to degenerated estimation

performance. We call such source placements degenerative placements. To illustrate this

behavior, we plotted B(sto-uc) for a co-prime array and a ULA for the two-source case in

Fig. 3.1. We can observe that, unlike the ULA, there are multiple off-diagonal black bands,

implying that the values ofB(sto-uc) can be significantly larger for certain placements of ω1, ω2.

While such a degenerative behavior is interesting, we want to focus on approximating the

fastest rate B(sto-uc) can decrease with respect to the number of sensors, M , in the following

discussion. Therefore, we need to exclude such degenerative source placements from our

analysis. Hence, we introduce the following definition:

Definition 3.1. Let L be a positive integer and 0 < δ < 1. Define the set Ωδ
L as follows:

Ωδ
L = {ω|ωL/2 ∈ [kπ + arcsin δ, (k + 1)π − arcsin δ], k ∈ Z},
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Figure 3.1: B(sto-uc)(ω1, ω2) computed from difference combinations of (ω1, ω2) for (a) a co-
prime array generated by the co-prime pair (4, 5) and (b) a 12-element ULA.

where Z denote the set of integers.

The intuition behind this definition is explained in Appendix F. Using Definition 3.1, the

result for the multiple source case is summarized in Theorem 3.5:

Theorem 3.5 (Multiple source case). Let K < Q and assume that SNR−1
i := σ2/pi � Q.

Choose δ = 0.5. Then for large values of Q,

1. For a co-prime array generated with co-prime pair (Q,Q+1), if ωm−ωn ∈ Ωδ
Q∩Ωδ

Q+1,

∀m 6= n, m,n ∈ {1, 2, . . . , K}, then

B(sto-uc)(ω) ≈ 6

11

1

N

1

Q5
σ2P−1. (3.30)

2. For a nested array generated with the parameter pair (Q,Q), if ωm − ωn ∈ Ωδ
Q+1,

∀m 6= n, m,n ∈ {1, 2, . . . , K}, then

B(sto-uc)(ω) ≈ 12

5

1

N

1

Q5
σ2P−1. (3.31)
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Proof. See Appendix F.

Theorem 3.4 and Theorem 3.5 lead to the following two important implications:

1. Given the same number of sensors, co-prime and nested arrays can achieve a much

better estimation performance than ULAs.

2. Given the same aperture, co-prime and nested arrays need many more snapshots to

achieve the same estimation performance.

The first implication, which comes directly from Theorem 3.4 and Theorem 3.5, shows a great

advantage of co-prime and nested arrays, in addition to their attractive ability to identify

more uncorrelated sources than the number of sensors.

To understand the second implication, we consider a ULA with M2 sensors. From Propo-

sition 3.3, we know that the CRB of this ULA is O(M−6). To achieve the same aperture,

we need a co-prime (or nested) array with only O(M) sensors. However, according Theo-

rem 3.4 and Theorem 3.5, the resulting CRB of this co-prime (or nested) array will be only

O(M−5). Therefore, we need O(M) times more snapshots to achieve the same estimation

performance as the ULA. By thinning a ULA into a co-prime (or nested) array, we can reduce

the number of sensors from O(M2) to O(M), while keeping the array’s ability to identify up

to O(M2) uncorrelated sources. However, this thinning operation indeed comes with a cost:

the variance of the estimated DOAs can be M times larger. The second implication shows

the trade-off between the number of spatial samples and the number of temporal samples.

Remark. In the above analysis, the number of sources, K, is assumed to be smaller than the

number of sensors, M . Because co-prime and nested arrays can identify more sources than
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the number of sensors, it would be interesting to conduct a similar analysis for the K ≥ M

case. However, when M is very large and K ≥M holds, the sources become densely located

within (−π/2, π/2). In this case, ωi−ωj is close to zero for any two different sources i and j,

rendering the approximations in Appendix F invalid. Therefore, the results in Theorem 3.5

cannot be directly extended to the cases when K ≥M .

3.3 Numerical results

In this section, we use numerical experiments to demonstrate our analytical results. We first

verify the MSE expression (3.3) introduced in Theorem 3.2 through Monte Carlo simulations.

We then examine the application of (3.1) in predicting the resolvability of two closely placed

sources, and analyze the asymptotic efficiency of both estimators from various aspects. Fi-

nally, we numerically verify our analytical results on the CRB in Theorem 3.3–3.5. In all

experiments, we define the signal-to-noise ratio (SNR) as

SNR = 10 log10

mink=1,2,...,K pk
σ2

,

where K is the number of sources.

Throughout Section 3.3.1, 3.3.2 and 3.3.3, we consider the following three different types of

linear arrays with the following sensor configurations:

• Co-prime Array [39]: [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]λ/2

• Nested Array [38]: [1, 2, 3, 4, 5, 10, 15, 20, 25, 30]λ/2

• MRA [37]: [0, 1, 4, 10, 16, 22, 28, 30, 33, 35]λ/2
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All three arrays share the same number of sensors, but difference apertures.

3.3.1 Numerical verification of Theorem 3.2

We first verify (3.4) via numerical simulations. We consider 11 sources with equal power,

evenly placed between −67.50◦ and 56.25◦, which is more than the number of sensors. We

compare the difference between the analytical MSE and the empirical MSE under different

combinations of SNR and snapshot numbers. The analytical MSE is defined by

MSEan =
1

K

K∑
k=1

ε(θk),

and the empirical MSE is defined by

MSEem =
1

KL

L∑
l=1

K∑
k=1

(
θ̂

(l)
k − θ

(l)
k

)2
,

where θ
(l)
k is the k-th DOA in the l-th trial, and θ̂

(l)
k is the corresponding estimate.

Fig. 3.2 illustrates the relative errors between MSEan and MSEem obtained from 10,000 trials

under various scenarios. It can be observed that MSEem and MSEan agree very well given

enough snapshots and a sufficiently high SNR. It should be noted that at 0 dB SNR, (3.1) is

quite accurate when 250 snapshots are available. In addition. there is no significant difference

between the relative errors obtained from DA-MUSIC and those from SS-MUSIC. These

observations are consistent with our assumptions, and verify Theorem 3.1 and Theorem 3.2.
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Figure 3.2: |MSEan −MSEem|/MSEem for different types of arrays under different numbers
of snapshots and different SNRs.

We observe that in some of the low SNR regions, |MSEan −MSEem|/MSEem appears to be

smaller even if the number of snapshots is limited. In such regions, MSEem actually “satu-

rates”, and MSEan happens to be close to the saturated value. Therefore, this observation

does not imply that (3.4) is valid in such regions.
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3.3.2 Prediction of resolvability

One direct application of Theorem 3.2 is predicting the resolvability of two closely located

sources. We consider two sources with equal power, located at θ1 = 30◦ − ∆θ/2, and

θ2 = 30◦ + ∆θ/2, where ∆θ varies from 0.3◦ to 3.0◦. We say the two sources are correctly

resolved if the MUSIC algorithm is able to identify two sources, and the two estimated DOAs

satisfy |θ̂i − θi| < ∆θ/2, for i ∈ {1, 2}. The probability of resolution is computed from 500

trials. For all trials, the number of snapshots is fixed at 500, the SNR is set to 0 dB, and

SS-MUSIC is used.

For illustration purpose, we analytically predict the resolvability of the two sources via the

following simple criterion:

ε(θ1) + ε(θ2)
Unresovalble

R
Resolvable

∆θ. (3.32)

Readers are directed to [74] for a more comprehensive criterion.

Fig. 3.3 illustrates the resolution performance of the three arrays under different ∆θ, as well

as the thresholds predicted by (3.32). The MRA shows best resolution performance of the

three arrays, which can be explained by the fact that the MRA has the largest aperture. The

co-prime array, with the smallest aperture, shows the worst resolution performance. Despite

the differences in resolution performance, the probability of resolution of each array drops

to nearly zero at the predicted thresholds. This confirms that (3.4) provides a convenient

way of predicting the resolvability of two close sources.
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Figure 3.3: Probability of resolution vs. source separation, obtained from 500 trials. The
number of snapshots is fixed at 500, and the SNR is set to 0 dB.

3.3.3 Asymptotic efficiency study

In this section, we utilize (3.4) and (3.12) to study the asymptotic statistical efficiency of

DA-MUSIC and SS-MUSIC under different array geometries and parameter settings. We

define their average efficiency as

κ =
trB(sto-uc)(θ)∑K

k=1 ε(θk)
. (3.33)

For efficient estimators we expect κ = 1, while for inefficient estimators we expect 0 ≤ κ < 1.

We first compare the κ value under different SNRs for the three different arrays. We

consider three cases: K = 1, K = 6, and K = 12. The K sources are located at

{−60◦ + [120(k − 1)/(K − 1)]◦|k = 1, 2, . . . , K}, and all sources have the same power. As

shown in Fig. 3.4(a), when only one source is present, κ increases as the SNR increases for all

three arrays. However, none of the arrays leads to efficient DOA estimation. Interestingly,

despite being the least efficient geometry in the low SNR region, the co-prime array achieves

higher efficiency than the nested array in the high SNR region. When K = 6, we can observe

48



in Fig. 3.4(b) that κ decreases to zero as SNR increases. This rather surprising behavior

suggests that both DA-MUSIC and SS-MUSIC are not statistically efficient methods for

DOA estimation when the number of sources is greater than one and less than the number

of sensors. It is consistent with the implication of Proposition 3.2 when K < M . When

K = 12, the number of sources exceeds the number of sensors. We can observe in Fig. 3.4(c)

that κ also decreases as SNR increases. However, unlike the case when K = 6, κ converges

to a positive value instead of zero. The above observations imply that DA-MUSIC and

SS-MUSIC achieve higher degrees of freedom at the cost of decreased statistical efficiency.

When statistical efficiency is concerned and the number of sources is less than the number

of sensors, one might consider applying MUSIC directly to the original sample covariance R

defined in (2.4) [75].

Next, we then analyze how κ is affected by angular separation. Two sources located at −∆θ

and ∆θ are considered. We compute the κ values under different choices of ∆θ for all three

arrays. For reference, we also include the empirical results obtained from 1000 trials. To

satisfy the asymptotic assumption, the number of snapshots is fixed at 1000 for each trial.

As shown in Fig. 3.5(a)–(c), the overall statistical efficiency decreases as the SNR increases

from 0 dB to 10 dB for all three arrays, which is consistent with our previous observation in

Fig. 3.4(b). We can also observe that the relationship between κ and the normalized angular

separation ∆θ/π is rather complex, as opposed to the traditional MUSIC algorithm (c.f.

[61]). The statistical efficiency of DA-MUSIC and SS-MUSIC is highly dependent on array

geometry and angular separation.
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Figure 3.4: Average efficiency vs. SNR: (a) K = 1, (b) K = 6, (c) K = 12.
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Figure 3.5: Average efficiency vs. angular separation for the co-prime array: (a) MRA,
(b) nested array, (c) co-prime array. The solid lines and dashed lines are analytical values
obtained from (3.33). The circles and crosses are empirical results averaged from 1000 trials.
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3.3.4 Classical stochastic CRB vs. our CRB

In this section, we demonstrate Theorem 3.3 using numerical experiments. We consider the

following four different sparse linear arrays:

• Co-prime (3,5): [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d0;

• MRA 10[37]: [0, 1, 4, 10, 16, 22, 28, 30, 33, 35]d0;

• Nested (4,6): [0, 1, 2, 3, 4, 9, 14, 19, 24, 29]d0;

• Nested (5,5): [0, 1, 2, 3, 4, 5, 11, 17, 23, 29]d0.

We consider six sources with equal power, whose the DOAs, θk, are given by θk = −π/3 +

2(k − 1)/15π, k = 1, 2, . . . , 6. We vary the SNR from -20 dB to 20 dB and plot the rela-

tive difference between B(sto) and B(sto-uc) in Fig. 3.6. It can be observed that when the

SNR is above 0 dB, the relative difference between B(sto) and B(sto-uc) for all four sparse

linear arrays drastically decreases to zero as SNR increases. When the SNR is below 0 dB,

B(sto-uc) becomes more optimistic and deviates from B(sto). These observations agree with

our theoretical results in Theorem 3.3.

3.3.5 CRB vs. number of sensors

We next verify Theorem 3.4 and Theorem 3.5 via numerical experiments. We consider co-

prime arrays generated by the co-prime pair (Q,Q+ 1), and nested arrays generated by the

parameter pair (Q,Q), where we vary Q between 3 and 20. We consider four different SNR

settings: -20 dB, -10 dB, 0 dB, and 10 dB.

52



The results for the one source case are plotted in Fig. 3.7, where the only source is placed

at the the origin. We can observe that, give large enough Q values and sufficient SNR, the

simple approximation given in Theorem 3.4 is very close to the accurate value of B(sto-uc)

for both co-prime and nested arrays. When the SNR is low, the noise variance term can no

longer be neglected and our approximation deviates from the true values. When the value

of Q is small, the contribution of the terms with lower degrees with respect to Q is no longer

negligible, and our approximation is no longer accurate.

The results for the multiple sources case are plotted in Fig. 3.8, where we consider five sources

with equal power, whose DOAs, ωk, are give by ωk = −π/3 + (k − 1)/6π, k = 1, 2, . . . , 5.

Similar to the results in Fig. 3.7, the CRBs of both the co-prime array and the nested arrays

follow the trend predicted by Theorem 3.5 as Q increases. However, unlike the one-source

case, the CRBs do not monotonically decrease. At some particular Q values, the CRBs

deviate from the prediction by Theorem 3.5, regardless of the SNR. This is because we fix

the source placement for all experiments. For some particular Q values, this placement may

be close to a degenerative placement of the array generated by parameter Q, leading to larger

CRB values than our approximations.
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Figure 3.7: B(sto-uc) vs. Q for (a) co-prime arrays; (b) nested arrays. One source case. The
solid lines represent accurate values computed using (3.16), while the dashed lines represent
approximations given by Theorem 3.4.
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Figure 3.8: B(sto-uc) vs. Q for (a) co-prime arrays; (b) nested arrays. Multiple source case
(K = 5). The solid lines represent accurate values computed using (3.16), while the dashed
lines represent approximations given by Theorem 3.4.

In the previous experiments, we assume that the sources have equal power. However, Theo-

rem 3.5 does not require all sources share the same power. Therefore, we conduct addition
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Figure 3.9: B(sto-uc) of individual sources vs. Q for (a) co-prime arrays and (b) nested ar-
rays. Four sources with different powers are considered. The solid lines represent accurate
values computed using (3.16), while the dashed lines represent approximations given by
Theorem 3.4.
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Figure 3.10: B(sto-uc) and the approximation given by (3.30) versus the number of sources.
The co-prime array has 60 sensors. The solid lines represent accurate values computed using
(3.16), while the dashed lines represent approximations given by (3.30).
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experiments for the multiple source case when the source powers are not equal. We con-

sider four sources with p = [2, 10, 30, 50]σ2. The results are plotted in Fig. 3.9. We observe

that the actual CRBs closely follow the approximations given by Theorem 3.5 for all four

sources. Because there is more than one source, we observe that the actual CRBs do not

monotonically decrease as Q increase, similar to our observations in Fig. 3.8.

We close this section by addressing the comments in the last remark in Section 3.2.4 by

using numerical experiments. We consider a co-prime array generated by the co-prime pair

(Q,Q + 1) where Q = 20 is fixed. The resulting co-prime array has 60 sensors. We evenly

place the DOAs, ωk, at ωk = −π/3 + 2(k − 1)/(3K − 3)π, k = 1, 2, . . . , K. We vary the

number of sources, K, from 2 to 61. We plot the actual CRB, B(sto-uc), together with

the approximation given by (3.30) in Fig. 3.10. The real CRB values are denoted by solid

lines, and the approximations given by (3.30) are denoted by dashed lines. We can observe

that, when the number of sources is small, the actual CRB values are very close to our

approximations, despite some fluctuations. However, as the number of sources increases, the

actual CRB values begin to deviate from our approximations. In such cases, these sources

become very close to each other, and the assumption that ωm − ωn ∈ Ωδ
Q ∩ Ωδ

Q+1, ∀m 6= n,

m,n ∈ {1, 2, . . . , K} becomes difficult to satisfy. Consequently, our approximation (3.30) is

no longer accurate and the actual CRB values start to deviate from our approximation.

3.4 Chapter summary

In this chapter, we presented our key results from statistical performance analyses of sparse

linear arrays. We theoretically proved that DA-MUSIC and SS-MUSIC share the same

asymptotic MSE error expression, and then we derived this analytical MSE expression,
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which can be applied to various types of sparse linear arrays. Our expression successfully

explained the “saturation” behavior of SS-MUSIC observed in previous work. We derived

and analyzed the CRB of sparse linear arrays under the assumption that the sources are

uncorrelated, denoted by B(sto-uc). We showed that, when the SNR is high, B(sto-uc) coincides

with the classical stochastic CRB, B(sto). We analyzed the behavior of B(sto-uc) for co-prime

and nested arrays with a large number of sensors. We showed that, given a fixed number

of sensors, M , B(sto-uc) for co-prime and nested arrays can decrease at a rate of O(M−5),

while B(sto-uc) for an M -sensor ULA decreases at a rate of only O(M−3). We also showed

that, when the aperture is fixed, co-prime and nested arrays need many more snapshots to

achieve the same performance as ULAs, demonstrating the trade-off between the number of

spatial samples and the number of temporal samples. Our results show both the pros and

cons of sparse linear arrays, and will aid in choosing between sparse linear arrays and ULAs

in practical problems.
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Chapter 4

Perturbation Analysis of the Coarray

Model

In the previous chapters, we assume that the arrays are perfectly calibrated5. However, this

assumption may not hold in real-world applications. Various array imperfections exist, such

as mutual coupling [76,77], gain and phase errors [78,79], and sensor location errors [80–82].

These array imperfections will generally degrade the DOA estimation performance [67, 83].

Various works consider the sensitivity of direction finding algorithms and the achievable

bounds in the presence of array imperfections. In [80], the authors derived a hybrid Cramér-

Rao bound on calibration and source localization for two-dimensional arrays in the presence

of sensor location errors. Based on the derived CRB, the authors showed the conditions

under which the CRB goes to zero as the SNR approaches infinity. In [67] and [84], the

authors conducted a thorough performance analysis of subspace-based DOA estimators in

the presence of model errors. In [85], the authors analyzed the resolution probability of the

MUSIC algorithm, while taking into account model errors. However, the aforementioned

5This chapter is based on M. Wang, Z. Zhang, and A. Nehorai, “Performance analysis of coarray-based
MUSIC in the presence of sensor location errors,” IEEE Trans. Signal Process., vol. 66, pp. 3074-3085, June
2018
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analyses are based on the physical array model, and the number of sources is usually fewer

than the number of sensors. The performance of direction finding algorithms based on the

difference coarray model in the presence of array imperfections has not been widely analyzed.

Recently, in [86], the authors conducted a performance analysis of uniform and nonuniform

samplers based on the CRB of a grid-based model in the presence of model errors. These

results can be applied to grid-based direction finding algorithms based on the difference

coarray model. However, their analysis assumes one-dimensional perturbations along the

array and that the DOAs lie on a predefined grid. Here, we neither restrict our analysis to

one-dimensional perturbations, nor we assume a grid-based model.

In this chapter, we analyze the effect of sensor location errors on the difference coarray model.

Unlike gain and phase errors, perturbed array manifolds are nonlinear with respect to sensor

location errors [87]. This nonlinearity makes it more challenging to analyze the impact of

sensor location errors. We first introduce a signal model for deterministic sensor location

errors. We consider the commonly used SS-MUSIC [38] algorithm and derive a closed-form

expression of its asymptotic MSE in the presence of small sensor location errors. Next, we

present an brief extension of our analysis to incorporate stochastic (or time-variant) sensor

location errors. We also derive the CRB on joint estimation of the DOAs and sensor location

errors. Our CRB is applicable even if the number of sources exceeds the number of sensors.

Finally, we use extensive numerical experiments to demonstration our analytical results.

While our analyses are focused on sensor location errors, they can be readily extended to

incorporate other array imperfections.
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4.1 The deterministic error model

In this section, we consider the deterministic error model, where the sensor location errors are

assumed deterministic and unknown. We derive the closed-form asymptotic MSE expression

for SS-MUSIC under the deterministic error model, as well as the CRB for joint estimation

of DOA parameters and sensor location errors.

4.1.1 Asymptotic MSE of SS-MUSIC

To obtain a more general perturbation model, we consider sensor location errors along both

the x-axis and the y-axis6. We use u = [u1, u2, . . . , uM ]T to denote the sensor locations

errors along the x-axis, and v = [v1, v2, . . . , vM ]T to denote the sensor location errors along

the y-axis. The perturbed sensor locations are then given by D̃ = {(d1 + u1, v1), (d2 +

u2, v2), . . . , (dM + uM , vM)}. When the sensor location errors are large, the linear array

structure will be completely destroyed, resulting large DOA estimation errors that are diffi-

cult to characterize. Therefore, our performance analysis will focus on cases when the sensor

location errors are small. In this chapter, in addition to assumptions A1–A4, we make the

following additional assumption:

A5 The sensor location errors are small compared with d0.

6We do not need to consider the perturbations along the z-axis under the far-field and co-planar assump-
tion of the source signals.
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Let δ = [uT vT ]T denote the collection of sensor location error parameters. Under assump-

tion A1–A5, the N snapshots received by the perturbed array can be expressed as

ỹ(t) = Ã(θ, δ)x(t) + n(t), t = 1, 2, . . . , N, (4.1)

where Ã(θ, δ) denotes the perturbed steering matrix, and

Ãik(θ, δ) = exp

[
j

2π

λ
(di sin θk + ui sin θk + vi cos θk)

]
.

The perturbed covariance matrix is then given by

R̃ = Ã(θ, δ)PÃH(θ, δ) + σ2I. (4.2)

The corresponding observation model of the difference coarray is then given by

r̃ = (Ã∗ � Ã)p+ σ2 vec(I). (4.3)

Here we drop the explicit dependencies on θ, δ for notational simplicity. The matrix (Ã∗�Ã)

now resembles a steering matrix of the perturbed difference coarray, whose sensor locations

are given by D̃co = {(dm − dn + um − un, vm − vn)|m,n = 1, 2, . . . ,M}. As illustrated in

Fig. 4.1, the perturbed difference coarray no longer embeds a ULA, and can no longer be

divided into multiple overlapping subarrays of the same shape. Consequently, applying SS-

MUSIC to the perturbed difference coarray model without error compensations will lead to

degraded DOA estimation performance.
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Figure 4.1: Illustration of a perturbed difference coarray: (a) a co-prime array and its
difference coarray; (b) a perturbed co-prime array and its perturbed difference coarray.

To establish the link between the coarray perturbation and the DOA estimation errors, we

start with the perturbed steering matrix Ã. Because Ã is analytic in the neighborhood

of δ = 0, we can linearize Ã around δ = 0 via the first-order Taylor expansion under

assumption A5:

Ã = A+UÃu + V Ãv + o(δ), (4.4)

where

U = diag(u1, u2, . . . , uM), (4.5a)

V = diag(v1, v2, . . . , vM), (4.5b)

Ãu = j
2π

λ
ADs, (4.5c)

Ãv = j
2π

λ
ADc, (4.5d)

Ds = diag(sin θ1, sin θ2, . . . , sin θK), (4.5e)

Dc = diag(cos θ1, cos θ2, . . . , cos θK), (4.5f)

and o(δ) denotes the higher order terms with respect to δ. The perturbed covariance matrix

R̃ can then be approximated as

R̃ = R+UÃuPA
H +APÃH

u U + V ÃvPA
H +APÃH

v V + o(δ). (4.6)
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In practice, the true covariance matrix is unknown, and we obtain only the estimate of R̃

with R̂ = 1
N

∑N
t=1 y(t)y(t)H . Hence, the discrepancy between the estimate, R̂, and nominal

covariance matrix, R, can be decomposed into two parts:

∆R = R̂−R = (R̂− R̃)︸ ︷︷ ︸
E

+ (R̃−R)︸ ︷︷ ︸
G

, (4.7)

where E denotes the estimation errors resulting from finite snapshots, and G denotes the

estimation errors resulting from sensor location errors. To derive the asymptotic MSE ex-

pression of SS-MUSIC in the presence of sensor location errors, we make use of Theorem 3.1.

It is straightforward to verify that R̂ is still Hermitian in the presence of sensor location

errors. Combining (4.7) and Theorem 3.1 and neglecting all the high order terms, we obtain

∆θk
.
= −(γkpk)

−1<[ξTk (e+ g)], (4.8)

where
.
= denotes equality up to the first order, e = vec(E), and g = vec(G). Hence, for a

large number of snapshots, the asymptotic MSE can be evaluated as

E[∆θ2
k]
.
=

E{[<(ξTk (e+ g))]2}
γ2
kp

2
k

. (4.9)

Using the fact that <(AB) = <(A)<(B) − =(A)=(B), we can expand the numerator in

(4.9) as follows:

E{[<(ξTk (e+ g))]2}

=<(ξk)
TE[<(e+ g)<(e+ g)T ]<(ξk) + =(ξk)

TE[=(e+ g)=(e+ g)T ]=(ξk)

− 2<(ξk)
TE[<(e+ g)=(e+ g)T ]=(ξk).

(4.10)
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Because E[e] = 0, we have

E[<(e+ g)<(e+ g)T ] = E[<(e)<(e)T ] + <(g)<(g)T ,

E[=(e+ g)=(e+ g)T ] = E[=(e)=(e)T ] + =(g)=(g)T ,

E[<(e+ g)=(e+ g)T ] = E[<(e)=(e)T ] + <(g)=(g)T .

Hence we can expand (4.10) as

E{[<(ξTk (e+ g))]2} =<(ξk)
TE[<(e)<(e)T ]<(ξk) + =(ξk)

TE[=(e)=(e)T ]=(ξk)

− 2<(ξk)
TE[<(e)=(e)T ]=(ξk) + <(ξk)

T<(g)<(g)T<(ξk)

+ =(ξk)
T=(g)=(g)T=(ξk)− 2<(ξk)

T<(g)=(g)T=(ξk)

=<[ξHk (R̃⊗ R̃T )ξk]/N + <(gTξk)
T<(gTξk).

(4.11)

The first three terms evaluate into <[ξHk (R̃ ⊗ R̃T )ξk]/N . The derivation follows the same

idea as in [71, Appendix C], but with R replaced with R̃. The second three terms can

be combined into <(gTξk)
T<(gTξk). To obtain the final MSE expression, we still need to

expand g in terms of δ, which requires Lemma 4.1 below.

Lemma 4.1. Let D = diag(d) be a diagonal matrix. Then vec(DX) = (XT � I)d and

vec(XD) = (I �X)d for any matrix X with a proper shape.

Proof. The two equalities follow immediately from the following fact [70]: for any diagonal

matrix X and any two matrices A, B with proper shapes,

vec(AXB) = (BT �A) diag(X). (4.12)
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Using Lemma 4.1 and (4.6), we can rewrite g as Bδ + o(δ), where B = [Bu Bv] and

Bu = I � (APÃH
u ) + (APÃH

u )∗ � I, (4.13a)

Bv = I � (APÃH
v ) + (APÃH

v )∗ � I. (4.13b)

Substituting the expression for g back into (4.11), we obtain the following result.

Corollary 4.1. Under the deterministic error model, the asymptotic MSE of SS-MUSIC for

the k-th DOA in the presence of small sensor location errors is given by

1

p2
kγ

2
k

{
1

N
<[ξHk (R̃⊗ R̃T )ξk] + [δT<(BTξk)]

2

}
, (4.14)

where ξk and B follow the same definition in Theorem 3.1 and (4.13a)–(4.13b).

The asymptotic MSE (4.14) consists of two terms. The first term results from the estimation

errors of the covariance matrix, which will vanish as the number of snapshots goes to infinity.

It should be also noted that this term is also affected by the sensor location errors, because R̃

depends on δ. However, given a sufficient number of snapshots N , such an effect is negligible

after being divided by N . The second term is the result from sensor location errors, which

will not vanish as the number of snapshots goes to infinity, leading to a constant bias among

the DOA estimates.

Corollary 4.1 gives the asymptotic MSE for a particular realization of the sensor locations

errors, δ. We are also interested in the ensemble behavior of (4.14) under different real-

izations of sensor location errors. Following the idea of the hybrid CRB, we assume that

the sensor location errors δ follows a Gaussian prior N (0,C) [3], and evaluate the average

asymptotic MSE under this Gaussian prior. The results are summarized in Corollary 4.2.
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Corollary 4.2. Let δ ∼ N (0,C), where ‖C‖ is sufficiently small such that the high order

moments of δ/d0 are o(‖C‖). Then then the average asymptotic MSE (AAMSE) of SS-

MUSIC in the presence of sensor location errors is given by

1

p2
kγ

2
k

{
1

N
<[ξHk (R⊗RT )ξk] + <(BTξk)

TC<(BTξk)

}
, (4.15)

Proof. Let ∆ = UÃuPA
H +APÃH

u U + V ÃvPA
H +APÃH

v V . Using (4.6), we have

R̃⊗ R̃T = R⊗RT +R⊗∆T + ∆⊗RT + o(‖C‖).

Because Eδ[∆] = 0, using the assumption that the high order moments of δ/d0 are o(‖C‖),

we obtain Eδ[R̃⊗ R̃T ]
.
= R⊗RT . This leads to the first term in (4.15). The second term in

(4.15) is due to the fact that Eδ[δδT ] = C. The remaining high order terms are still o(‖C‖)

under the assumption that that the high order moments of δ/d0 are o(‖C‖).

Because the second error term in (4.15) is linear in C, we can use <(BTξk)
T<(BTξk) as a

sensitivity metric of the robustness of SS-MUSIC against the sensor location errors for the

k-th DOA. It can be observed that this term is affected by both the physical array geometry

and the coarray geometry. The physical array geometry is encoded in the matrix B, which

depends on the nominal physical array steering matrix A. The coarray geometry is encoded

in the vector ξk, which depends on the coarray steering matrix Aco as well as the transform

matrix F . This observation implies that even if two sparse linear arrays share the same

coarray structure, their sensitivities against model errors may not be the same.
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Corollary 4.3. Assume all sources share the same power p. Let ε(θk) denote the AAMSE

of the k-th DOA in Corollary 4.2. Fixing σ2, we have

lim
p→∞

ε(θk) =
1

γ2
k

{
1

N
‖ξHk (A⊗A∗)‖2

2 + <(B̄Tξk)
TC<(B̄Tξk)

}
, (4.16)

where B̄ = [B̄u B̄v], and

B̄u = I � (AÃH
u ) + (AÃH

u )∗ � I,

B̄v = I � (AÃH
v ) + (AÃH

v )∗ � I.

Proof. The result follows directly from Corollary 4.2 and [71, Corollary 1].

The first term in (4.16) is the limiting expression of the asymptotic MSE of SS-MUSIC in the

absence of sensor location errors as the SNR approaches infinity, which is generally non-zero

when multiple sources are present [71]. The second term in (4.16) is the result from sensor

location errors. Because B̄ is independent of the source power p, we conclude that the DOA

estimation bias of SS-MUSIC introduced by the sensor location errors cannot be mitigated

by increasing the SNR alone.

4.1.2 CRB for joint estimation of DOA and location error param-

eters

In this section, we derive the CRB for general sparse linear arrays under the deterministic

error model. In addition to the DOAs, source powers, and noise power, we also treat sensor

location errors as unknown parameters. To obtain a more general expression of the FIM, we

assume that the precise sensor locations are partially known. This assumption includes the
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case when sensor location errors among all the sensors are unknown. Let {i1, i2, . . . , iM1} ⊆

{1, 2, . . . ,M} denote the indices of sensors with unknown location errors along the x-axis, and

{l1, l2, . . . , lM2} ⊆ {1, 2, . . . ,M} denote the indices of sensors with unknown location errors

along the y-axis. The collection of unknown parameters is given by the (2K+M1+M2+1)×1

real vector:

η = [θT ,pT , ui1 , · · · , uiM1
, vl1 , · · · , vlM2

, σ2]T . (4.17)

The FIM is then given by:

Proposition 4.1. Under assumptions A1–A3, the FIM of the deterministic error model is

give by

J = NMH(R̃T ⊗ R̃)−1M . (4.18)

Here,

M =

[
∂r̃

∂θ

∂r̃

∂p

∂r̃

∂u

∂r̃

∂v

∂r̃

∂σ2

]
, (4.19)

where

∂r̃

∂θ
= (Ã∗θ � Ã+ Ã∗ � Ãθ)P , (4.20a)

∂r̃

∂p
= Ã∗ � Ã, (4.20b)

∂r̃

∂u
= [(ÃP ÃH

u )∗L1]�L1 +L1 � (ÃP ÃH
u L1), (4.20c)

∂r̃

∂v
= [(ÃP ÃH

v )∗L2]�L2 +L2 � (ÃP ÃH
v L2), (4.20d)

∂r̃

∂σ2
= vec(IM), (4.20e)
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and

L1 = [e
(i1)
M e

(i2)
M · · · e(iM1

)

M ],

L2 = [e
(l1)
M e

(l2)
M · · · e(lM2

)

M ],

Ãθ =

[
∂ã(θ1)

∂θ1

∂ã(θ2)

∂θ2

· · · ∂ã(θK)

∂θK

]
.

Proof. The (m,n)-th element of the single snapshot FIM for the observation model (4.1) is

given by [52,68]

Jmn = tr

[
∂R̃

∂ηm
R̃−1 ∂R̃

∂ηn
R̃−1

]
.

Using the properties that tr(AB) = vec(AT )T vec(B), and that vec(AXB) = (BT ⊗

A) vec(X) [70], we can express the FIM as (4.18).

To obtain the FIM, we need to evaluate the partial derivatives in (4.19). The partial deriva-

tives of r̃ with respect to θ, p, and σ2 have been derived in [69, 71, 88]. We will focus on

deriving the partial derivatives of r̃ with respect to the sensor location errors, making use

of the following lemma:

Lemma 4.2. Let A,B ∈ CM×K, e ∈ CM , and p ∈ CK. Then

(A� eeTB)p = (APBTe)⊗ e,

(eeTB �A)p = e⊗ (APBTe),

where P = diag(p).

Proof. For brevity, we show only the proof of the first equality. The proof of the second

equality follows the same idea. By the definition of the Khatri-Rao product and the fact
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that a⊗ b = vec(baT ), the left hand side can be expressed as

∑
i

pi(ai ⊗ eeTbi) =
∑
i

pi vec(eeTbia
T
i ). (4.21)

Because the Kronecker product follows the distributive rule, the right hand side is given by

(∑
i

piaib
T
i e
)
⊗ e =

∑
i

pi(aib
T
i e⊗ e) =

∑
i

pi vec(eeTbia
T
i ), (4.22)

which is equal to the left hand side.

Because the partial derivative of Khatri-Rao products follows the Leibniz rule, we have

∂r̃

∂ui
=

∂

∂ui
[(Ã∗ � Ã)p+ σ2 vec(IM)]

=

(
∂Ã∗

∂ui
� Ã+ Ã∗ � ∂Ã

∂ui

)
p

=
{

[e
(i)
M (e

(i)
M )T Ã∗u]� Ã+ Ã∗ � [e

(i)
M (e

(i)
M )T Ãu]

}
p

(4.23)

By Lemma 4.2, we immediately obtain that

∂r̃

∂ui
= (Ã∗PÃT

ue
(i)
M )⊗ e(i)

M + e
(i)
M ⊗ (ÃP ÃH

u e
(i)
M ). (4.24)

Combining (4.24) with the definition of the Khatri-Rao product leads to (4.20c). The deriva-

tion of (4.20d) follows the same idea.

If the FIM is nonsingular, the CRB for the DOAs can be readily obtained by inverting the

FIM. However, this CRB does not always exist, due to the potential ambiguities introduced

by sensor location errors. In the presence of sensor location errors, it is possible that certain
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combinations of DOAs, θ, and sensor location errors, δ, lead to the same perturbed steering

matrix and same observations. Consequently, it is impossible to distinguished between these

combinations from the observations. For a perturbed steering matrix, we formally define the

local ambiguity as follows:

Definition 4.1. An perturbed steering matrix A(θ, δ) is called locally ambiguous if for any

(θ, δ) ∈ Θ × ∆, there exists a non-empty neighborhood U ⊂ Θ × ∆, such that for any

(θ̃, δ̃) ∈ U , A(θ̃, δ̃) = A(θ, δ).

In practice, the first sensor is usually chosen as the reference sensor, whose location is

assumed known. However, this is not sufficient to eliminate the local ambiguity, because

the perturbed steering matrix remains the same if we rotate the array by a small angle and

shift all the DOAs by the same amount. Even if we restrict the perturbation along the

x-axis only, the local ambiguity still exists because we can obtain the same steering matrix

by expanding or shrinking the whole array along the x-axis by a small amount and adjusting

the DOAs accordingly. When such local ambiguities exist, the set of unknown parameters

will be locally unidentifiable, leading to a singular FIM [89]. In the following discussion, we

assume that the FIM is nonsingular.

Unlike the CRB derived in [3, Ch. 8], our CRB utilizes the assumption that the sources

are uncorrelated. Observing that (R̃T ⊗ R̃)−1 is always full rank in the noisy case, the

FIM is non-singular if and only if M is full rank. Because M is a matrix of dimension

M2× (2K+M1 +M2 + 1), the FIM (4.18) can remain nonsingular for up to O(M2) sources.

Therefore our CRB can work in the underdetermined case when K > M , while the CRB in

[3] cannot. Our derivation is also different from that in [87]. In [87], the FIM is evaluated

partition by partition under the assumption that both the source powers and the noise power

are known. In our derivation, the FIM is derived in a “factorized” form, which is more concise
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than that in [87]. In addition, using our derivation, we conclude that the FIM can remain

nonsingular for up to O(M2) sources. This conclusion is not easily seen from the derivation

in [87].

Because the FIM (4.18) shares a form similar to the location error free FIM in [71], it

is straightforward to show that the corresponding CRB depends on the SNRs instead of

absolute values of pk or σ2. For sparse linear arrays, we are particularly interested in the

underdetermined case when K ≥ M . In [71], we have shown that the location error free

CRB remains positive definite even if the SNR approaches infinity. This unusual behavior

still exists in the presence of sensor location errors. If both Ã and M are full rank, R̃T ⊗ R̃

remains full rank as σ2 approaches 0, and the resulting FIM remains positive definite. Hence

the Schur complement corresponding to the DOAs is also positive definite, leading to a

positive definite CRB matrix. This behavior puts a strictly positive lower bound on the

MSE of all unbiased estimators when K ≥M .

4.2 The stochastic error model

One extension to the deterministic error model is the stochastic error model, where the

sensor location errors are time-dependent. Such a model is applicable when the array is

mounted on a non-stationary surface (e.g. [44, 90]), and the sensor location errors cannot

be assumed constant during the N snapshots. By replacing u, v and δ with their time-

dependent counterparts, we can express the N snapshots received by the perturbed array

as

ỹ(t) = Ã(θ, δ(t))x(t) + n(t), t = 1, 2, . . . , N. (4.25)
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in which δ(t) follows some stochastic model. To avoid complications and obtain a general

idea of the impact of stochastic sensor location errors, we make the following additional

assumption:

A6 The sensor location errors δ(t) are i.i.d. and are uncorrelated from both the source

signals s(t) and the additive noise n(t).

Because Ã(δ(t)) is nonlinear in the random variable δ(t), ỹ no longer follows the com-

plex circularly-symmetric Gaussian distribution as in the deterministic error model. Conse-

quently, it is rather difficult to derive the distribution of R̂ for the stochastic error model in

the case of a finite number of snapshots. On the other hand, as implied by (4.7), the effect

of sensor location errors dominates only when the number of snapshots is sufficiently large.

Hence for the stochastic error model, we will analyze how the sensor location errors affect

the estimation performance when an infinite number of snapshots is available.

Under assumption A1–A5, the perturbed covariance matrix can be evaluated as

R̃ =E[y(t)yH(t)]

=E[Ã(δ(t))s(t)sH(t)ÃH(δ(t))] + E[Ã(δ(t))s(t)nH(t)]

+ E[n(t)sH(t)ÃH(δ(t))] + E[n(t)nH(t)].

=E[Ã(δ(t))s(t)sH(t)ÃH(δ(t))]︸ ︷︷ ︸
S

+σ2I,

where the cross terms vanish, because the sources and the additive noise have zero means

and are uncorrelated. The first term S can be expressed as

S =
K∑
i=1

K∑
l=1

E[ã(θi, δ(t))si(t)s
∗
l (t)ã

H(θl, δ(t))],
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whose (m,n)-th element is given by

Smn =
K∑
i=1

K∑
l=1

E[ãm(θi, δ(t))ã∗n(θl, δ(t))si(t)s
∗
l (t)]. (4.26)

Using assumption A6, we can decouple the expectation evaluations with respect to δ(t) and

s(t). Noting that E[si(t)s
∗
l (t)] = pl only if i = l, and is otherwise 0, we need to consider only

the terms where i = l. We can then rewrite (4.26) as

Smn =
K∑
k=1

piE[ãm(θk, δ(t))ã∗n(θk, δ(t))]

=
K∑
k=1

piam(θk)a
∗
n(θk)E

{
ej(tk,m−tk,n)T δ

}
=

K∑
k=1

piam(θk)a
∗
n(θk)φδ(tk,m − tk,n),

(4.27)

where φδ(t) is the characteristic function of δ(t), tk,n = 2π
λ

[
e
(n)
M sin θk

e
(n)
M cos θk

]
, and e

(n)
M is an M -

dimensional vector with only the n-th element being one and other elements being zero. Let

Φk be an M ×M matrix whose (m,n)-th element is given by φδ(tk,m − tk,n). We can then

express R̃ as

R̃ =
K∑
k=1

pk[a(θk)a
H(θk)] ◦Φk + σ2I. (4.28)

Here, the effect of the sensor location errors is encoded in matrices Φk. Because tk,m depends

on the k-th DOA, the effect of sensor location errors is generally DOA dependent and cannot

be treated as colored Gaussian noise.

Vectorizing the (4.28) leads to

r̃ = [(A∗ �A) ◦Φ]p+ σ2 vec(I), (4.29)
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where Φ = [vec(Φ1) vec(Φ2) · · · vec(ΦK)]. Comparing (4.29) with (2.6), we observe that,

under the stochastic error model, the coarray steering matrix (A∗ �A) is modulated by Φ.

Because characteristic functions usually do not evaluate to one outside the origin, Φ will not

be a matrix of ones and the corresponding difference coarray model will be perturbed.

To give a better idea of (4.28) and (4.29), we consider the case when δ(t) follows a zero-

mean Gaussian distribution with the covariance matrix denoted by C. We partition C as[
Cuu Cuv
Cvu Cvv

]
, where Cuu and Cvv are the covariance of the location errors along the x-axis and

y-axis, respectively, and Cuv denotes the corresponding cross covariance. The corresponding

characteristic function of δ(t) is then given by φδ(t) = exp(−1/2tTCt). Substituting tk,n

into φδ(t) and expanding the terms in the exponent, we obtain that in the Gaussian case

Φk(m,n) = exp
{
− 2π2

λ2
[µ1(m,n) sin2 θk+µ2(m,n) cos2 θk+2µ3(m,n) sin θk cos θk]

}
, (4.30)

where

µ1(m,n) = Cuu(m,m) + Cuu(n, n)− 2Cuu(m,n),

µ2(m,n) = Cvv(m,m) + Cvv(n, n)− 2Cvv(m,n),

µ3(m,n) = Cuv(m,m) + Cuv(n, n)− Cuv(m,n)− Cuv(n,m).

We also observe that Φk(m,n) is still dependent on the k-th DOA. Hence for a general

covariance matrix, the effect of the random sensor location errors is still DOA dependent.

However, as shown in the following proposition, for certain covariance matrices, Φk(m,n) is

independent of k.

Proposition 4.2. Let δ(t) ∼ N (0,C). Then Φk (k = 1, 2, . . . , K) are independent of

the DOAs if and only if µ1(m,n) = µ2(m,n) and µ3(m,n) = 0 holds for every m,n =

1, 2, . . . ,M .
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Proof. Let a, b, c ∈ C. Define f(θ) = a sin2 θ + b cos2 θ + c sin θ cos θ. It suffices to show that

f(θ) is a constant for all θ ∈ (−π/2, π/2) if and only if a = b and c = 0.

The sufficiency is trivial and we need to show only necessity. Suppose f(θ) = d,∀θ ∈

(−π/2, π/2). Choose θ = π/4 and we obtain a + b + c = 2d. Choose θ = −π/4 and we

obtain a + b − c = 2d. Therefore c must be 0. Choose θ = 0 and we obtain b = d, which

implies that (a− b) sin2 θ = 0 must hold for every θ ∈ (−π/2, π/2). Therefore we must have

a = b.

One special case that satisfies the conditions given in Proposition 4.2 is when C = σ2
pI,

which leads to the following corollary.

Corollary 4.4. Let δt ∼ N (0, σ2
pI). Then

R̃ = C1

{
APAH +

1

C1

[
σ2 + (1− C1)

K∑
k=1

pk

]
I
}
, (4.31)

where C1 = exp(−4π2σ2
p/λ

2).

Proof. The expression (4.31) can be obtained by substituting C = σ2
pI into (4.30) and

simplifying the resulting R̃ according to (4.28).

We observe that if the sensor location perturbations are i.i.d. zero-mean Gaussian with the

same variance, the effect of the sensor location errors can be indeed modeled as additive white

noise as the number of snapshots goes to infinity. The signal subspace remains unchanged.

However, the effective SNR is decreased because 0 < C1 < 1. In this special case, we

can approximate the asymptotic MSE of SS-MUSIC for the k-th DOA with <[ξHk (R ⊗

RT )ξk]/(Nγ
2
kp

2
k), but with the original noise variance σ2 replaced with the “effective noise
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variance”

1

C1

[
σ2 + (1− C1)

K∑
k=1

pk

]
.

4.3 Numerical results

In this section, we use numerical simulations to demonstrate how sensor location errors affect

the DOA estimation performance for sparse linear arrays. We consider both the deterministic

error model and the stochastic error model. Unlike ULAs, sparse linear arrays sharing the

same number of sensors can have different structures. For a comprehensive comparison, we

consider two sets of sparse linear arrays throughout the simulations. The first set consists

of four different sparse linear arrays sharing the same number of sensors:

• Co-prime (3,5): [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d0;

• MRA 10[37]: [0, 1, 4, 10, 16, 22, 28, 30, 33, 35]d0;

• Nested (4,6): [0, 1, 2, 3, 4, 9, 14, 19, 24, 29]d0;

• Nested (5,5): [0, 1, 2, 3, 4, 5, 11, 17, 23, 29]d0.

The second set consists of four different sparse linear arrays sharing the same aperture:

• Co-prime (2,3): [0, 2, 3, 4, 6, 9]d0;

• MRA 5[37]: [0, 1, 2, 6, 9]d0;

• Nested (1,5): [0, 1, 3, 5, 7, 9]d0;

• Nested (4,2): [0, 1, 2, 3, 4, 9]d0.
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Throughout all experiments, we define the SNR as follows:

SNR = 10 log10

mink=1,2,...,K pk
σ2

.

Given the results from L trials, we compute the empirical MSE with

MSEem =
1

KL

L∑
l=1

K∑
k=1

(
θ̂

(l)
k − θ

(l)
k

)2
,

where θ
(l)
k is the k-th DOA in the l-th trial, and θ̂

(l)
k is the estimate of θ

(l)
k .

4.3.1 Numerical analysis of the deterministic error model

We begin by verifying our closed-form asymptotic MSE expression (4.15) for the deterministic

error model via numerical simulations. We consider 11 sources, which is more than the

number of sensors, uniformly distributed between −π/3 and π/3 with equal power. We

set the SNR to 0 dB. We generate the sensor location errors from a zero-mean Gaussian

distribution with covariance matrix σ2
pI. The magnitude of sensor location errors can then

be tuned with σ2
p. We consider the first set of sparse linear arrays. We compute the difference

between the AAMSE given by (4.15) and the empirical MSE under different combinations of

snapshot numbers and magnitudes of perturbations. The results are summarized in Fig. 4.2.

It can be observed that the empirical results agree very well with our analytical results

when the number of snapshots is above 200 and the perturbation level is below 0.05. When

the number of snapshots is small, the asymptotic assumption no longer holds, and the

discrepancy between our analytical results and the empirical results becomes evident. When

the magnitude of the sensor location errors is large, the high order terms with respect to the
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Figure 4.2: |MSEan −MSEem|/MSEem for different types of arrays under different numbers
of snapshots and different magnitudes of perturbations. The results are averaged from 3000
trials.

sensor location errors are no longer negligible, leading to discrepancies between our analytical

results and the empirical results.

We next demonstrate how the DOA estimation errors vary with respect to sensor location

errors for different types of sparse linear arrays. The results are plotted in Fig. 4.3 and

Fig. 4.4. In Fig. 4.3, we plot the RMSE vs. σp/d0 for four different sparse linear arrays

with the same number of sensors. We observe that the MRA achieves the lowest RMSE,

the co-prime array achieves the highest RMSE, and the two nested arrays sit in the middle.
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Figure 4.3: RMSE vs. perturbation level for four different sparse linear arrays with the same
number of sensors. The empirical results are averaged from 1000 trials.
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Figure 4.4: RMSE vs. perturbation level for four different sparse linear arrays with the same
aperture. The empirical results are averaged from 1000 trials.

This observation reflects the fact that the MRA has the largest aperture among the four

arrays, while the co-prime array has the smallest. In Fig. 4.4, we plot the RMSE vs. σp/d0
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for four different sparse linear arrays with the same aperture. We observe that while all four

arrays show similar performance, MRA 5 is least sensitive to sensor location errors. Another

interesting observation is that, Nested (1,5), Nested (4,2), and MRA 5, despite sharing the

same central ULA part in their difference coarrays, show different sensitivities with respect

the sensor location errors. This observation agrees with our analysis of (4.15).
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Figure 4.5: RMSE vs. SNR for Co-prime (2,3) under different perturbation levels. The
empirical results are averaged from 1000 trials.

Finally, we show how the variance of sensor location errors, σp, affects the MSE of SS-

MUSIC in high SNR regions. We consider 6 sources evenly placed between −π/3 and π/3,

and fix the number of snapshots to 5000. Fig. 4.5 plots the results for Co-prime (3,5). We

observe that the empirical MSEs well agree with our theoretical results. In the absence of

sensor location errors, the MSE of SS-MUSIC converges to a positive constant as the SNR

approaches infinity, which agrees with our analysis of Corollary 4.3. As the variance of sensor

location errors increase, this positive constant also increases, because the bias resulting from

sensor location errors grows larger. Additionally, we observe that the gap between the MSE
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values when the sensor location errors are present and when they are not present does not

decrease as the SNR increases. This observation confirms our analysis of (4.15) that the bias

cannot be mitigated by increasing only the SNR.

4.3.2 Numerical analysis of the stochastic error model
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Figure 4.6: Empirical RMSEs vs. analytical approximations under different numbers of snap-
shots for four different sparse linear arrays with the same number of sensors, based on the
stochastic error model. The empirical results are averaged from 5000 trials.

In this subsection, we verify our derivations in Section 4.2 via numerical simulations. For

the first set of sparse linear arrays, we consider 11 sources evenly distributed between −π/3

and π/3. For the second set of sparse linear arrays, we consider 6 sources evenly distributed

between −π/3 and π/3. For both sets of sparse linear arrays, the number of sources is

chosen to be larger than or equal to the number of sensors. We sample the sensor location

errors δ(t) from a zero-mean Gaussian distribution with covariance matrix σ2
pI, and the

standard deviation of sensor location errors, σp, is fixed to 0.1d0. Because the sensor location

errors are i.i.d. zero-mean Gaussian, we approximate the analytical MSE by evaluating the
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Figure 4.7: Empirical RMSEs vs. analytical approximations under different numbers of snap-
shots for four different sparse linear arrays with the same aperture, based on the stochastic
error model. The empirical results are averaged from 5000 trials.

location error free asymptotic MSE of SS-MUSIC [71] with the noise power replaced with

the “effective noise power” given by Corollary 4.4. We fix the SNR to 0 dB and vary the

number of snapshots.

The results are plotted in Fig. 4.6 and Fig. 4.7. We observe that, when the number of

snapshots is small, the empirical MSE deviates from the analytical MSE. As the number of

snapshots increases, the empirical MSE approaches the our analytical approximation. This

is because our analytical approximation is based on the assumption of infinite number of

snapshots. In Fig. 4.6, we observe that the MRA, which has the largest aperture, achieves

the lowest MSE. The co-prime array, which has the smallest aperture, has higher MSE than

the MRA and two nested arrays. In Fig. 4.7, we observe that the MSE of the co-prime array

is significantly higher than the other three arrays. This is because the co-prime array is the

only array among the four arrays whose difference coarray is not a full ULA. Consequently,
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the central ULA part of the co-prime array is the smallest among the four, resulting a

significantly higher MSE.

4.3.3 Numerical results of the CRB

We close this section with numerical results of the CRB we derived in Section 4.1.2. We

demonstrate that the CRB obtained from Proposition 4.1 is indeed achievable in cases when

the number of sources is greater than the number of sensors. We consider 11 sources evenly

distributed between −π/3 and π/3 and fix the number of snapshots to 5000. We consider

the first set of sparse linear arrays with the same number of sensors. We compare the CRB

and the empirical MSE obtained by solving the following stochastic maximum likelihood

problem using the optimization toolbox in MATLAB:

min
θ,p,σ2,δ

log det(R̃(θ,p, σ2, δ)) + tr(R̃−1(θ,p, σ2, δ)R̂),

where R̃(θ,p, σ2, δ) follows the definition in (4.2).

The results are plotted in Fig. 4.8. For comparison, we also include the CRB without

considering sensor location errors[71,72]. We first notice that the CRB converges to a positive

constant as SNR increases, which agrees with our analysis of the CRB in the underdetermined

case in Section 4.1.2. We then observe that, given sufficient SNR, the MSE of the MLE indeed

achieves the CRB for all four arrays. Additionally, there is a significant gap between the

values of the CRB when the sensor location errors are considered and when they are not.

This gap shows that unknown sensor location errors have a drastic impact on the achievable

DOA estimation performance of sparse linear arrays.
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Figure 4.8: CRB versus the empirical MSE of the maximum likelihood estimator for four
different sparse linear arrays under different SNRs. The empirical MSEs are averaged from
500 trials.

4.4 Chapter summary

In this chapter, we analyzed the performance of sparse linear arrays in the presence of sensor

location errors. We derived a closed-form asymptotic MSE expression for SS-MUSIC in the

presence of small sensor location errors. Under the deterministic error model, the sensor

location errors introduce a constant bias that cannot be mitigated by only increasing the

SNR. To extend our analysis, we introduced the stochastic error model and discussed the
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Gaussian case. Our results will benefit future research on the development of robust DOA

estimators using sparse linear arrays and the optimal design of sparse linear arrays.
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Chapter 5

Robust Direction Finding in Cases of

Missing Data

In the previous chapters, we focused on statistically analyzing the performance of sparse

linear arrays. In this chapter, we introduce robust DOA estimators that handle missing data

for sparse linear arrays7. Missing data problems arise when one or more sensors malfunction

and fail to provide correct data during the measurement period. Because sparse linear

arrays depend on their difference coarray model to resolve more sources than the number of

sensors, they are more susceptible to sensor failures. If the measurements from one or more

sensors are missing, the coarray structure will be partially destroyed, leading to performance

degradation and loss of degrees of freedom.

Many previous works have addressed the problem of direction finding in cases of missing

data. In [91], Larsson et al. proposed a Cholesky parameterization based maximum like-

lihood estimator and analyzed its asymptotic performance. However, their model is based

on ULAs, and requires a sequential failure pattern. In practice, any sensor may fail, so

7This chapter is based on M. Wang, Z. Zhang, and A. Nehorai, “Direction finding using sparse linear
arrays with missing data,” Proc. 42nd IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), New
Orleans, LA, Mar. 5–9, 2017.
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the sequential assumption may not be true. Recent advances in matrix completion [92, 93]

and atomic norm minimization [34, 94] also bring new methods to tackle the missing data

problem. By exploiting the low-rank property of the signal subspace, it is possible to extrap-

olate the missing data via semidefinite programming (SDP). However, when the number of

measurements is large, the resulting SDP will be computationally expensive to solve.

In this chapter, we consider the direction finding problem with general sparse linear arrays

and incomplete measurements, but without assuming a sequential failure pattern. Base

on the maximum-likelihood approach, we focus on deriving algorithms that utilizes the

information in both complete measurements and incomplete measurements. We first estimate

the augmented covariance matrix of the difference coarray model by exploiting its Toeplitz

structure, and then apply the MUSIC algorithm [9] to obtain the DOA estimates. We derive

the CRB and confirm the efficacy of our algorithms via numerical examples.

5.1 Measurement model

Recall that in Section 2.2, we knew that an M -sensor sparse linear array could be viewed as

a thinned ULA of M0 = d̄M + 1 sensors. For example, a co-prime array whose sensors are

located at [0, 2, 3, 4, 6, 9]d0 can be viewed as a 10-sensor ULA with the 2nd, 6th, 8th, and

9th sensors removed. Therefore, we can rewrite (2.3) as

y(t) = SAULA(θ)x(t) + n(t), t = 1, 2, . . . , N, (5.1)
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where AULA(θ) = [aULA(θ1),aULA(θ2), . . . ,aULA(θK)] is the steering matrix of a M0-sensor

ULA [52]. S is a M ×M0 selection matrix, where Smn is one if and only if the m-th sensor

in the sparse linear array corresponds to the n-th sensor in the ULA, and otherwise zero.

We can then rewrite the covariance matrix R as

R = SRULAS
T , (5.2)

where RULA = AULAPA
H
ULA +σ2I. Therefore the covariance matrix of a sparse linear array

is a compressed version of the covariance matrix of a ULA.

By vectorizing R, we obtain

r = (S ⊗ S)(A∗ULA �AULA)p+ σ2i, (5.3)

where r = vec(R), p = [p1, p2, · · · , pK ]T , and i = vec(I). As discussed in Section 2.2.2,

model (5.3) resembles a measurement model with deterministic sources and noise, and (S⊗

S)(A∗ULA � AULA) embeds a steering matrix of a virtual array with enhanced degrees of

freedom, whose sensor locations are given by D̄co = {(d̄m − d̄n)|d̄m, d̄n ∈ D̄}. If D̄co consists

of consecutive integers from −M0 + 1 to M0 − 1, we call the sparse linear array complete. If

a sparse linear array is complete (e.g., minimum redundancy arrays and nested arrays), it

is possible to estimate the elements in RULA using rank enhanced spatial smoothing [38] or

more sophisticated methods [54]. We are then able to identify more sources than the number

of sensors through RULA. On the other hand, if a sparse linear array is incomplete (e.g.,

co-prime arrays), we define M̃0 as the largest M such that {−M+1, . . . , 0, . . . ,M−1} ⊂ D̄co.

In this case, we can recover only a M̃0 × M̃0 submatrix of RULA using similar methods. If

M̃0 > M , we again are able to identify more sources than the number of sensors.
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We now consider the signal model with missing data. Without loss of generality, we consider

L sampling periods. During the first period, we assume all the sensors are functioning

normally. This assumption is reasonable because if some sensors fail from the beginning, we

can simply remove them and form a new sparse linear array whose sensors are all functional

during the first period. During the l-th (2 ≤ l ≤ L) period, some sensors fail and the

measurement data from these sensors are missing. Let Ml be the number of working sensors

during the l-th period. Let Tl be a selection matrix of size Ml ×M such that the (i, j)-

th element Tl is one if and only if the j-th sensor in the sparse linear array is the i-th

working sensor during the l-th period, and otherwise zero. For notational simplicity, we

define T1 = IM . After discarding the measurements from the malfunctioning sensors, the

snapshots taken during the l-th period are given by

yl(t) = Tl[SAULA(θ)x(t) + n(t)], (5.4)

for t = N1 + · · · + Nl−1 + 1, . . . , N1 + · · · + Nl−1 + Nl, where Nl is the number of snap-

shots collected during the l-th period. The total number of snapshots is denoted by N =∑L
l=1Nl. Correspondingly, we can collect L different sample covariance matrices R̂l =

1/Nl

∑N1+···+Nl−1+Nl

t=N1+···+Nl−1+1 yl(t)y
H
l (t), l = 1, 2, . . . , L. We also define their expectations as

Rl = E[R̂l] = TlSRULAS
TT T

l + σ2I, (5.5)

whose vectorized versions are given by

rl = vec(Rl) = (TlS ⊗ TlS)(A∗ULA �AULA)p+ σ2i. (5.6)
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Because of the missing data, (TlS⊗TlS)(A∗ULA�AULA) no longer embeds a desired virtual

array steering matrix and existing methods cannot be directly applied. If we use only R̂1 for

estimation, we lose much information provided in R̂l (2 ≤ l ≤ L). Therefore an estimator

that utilizes all the information in R̂l (1 ≤ l ≤ L) is desired.

5.2 Estimation in the presence of missing data

In this section, by exploiting the Toeplitz structure of RULA, we introduce three DOA esti-

mators that utilize all the information from R̂1, R̂2, . . . , R̂L.

5.2.1 Ad-hoc estimator

The ad-hoc estimator for our signal model is inspired by redundancy averaging [57,63], and

is an extension of the ad-hoc estimator in [91]. Let Vk = {(m,n)|d̄m − d̄n = k, d̄m, d̄n ∈ D̄}.

Let Am,n denote the set of snapshot indices when both the m-th and the n-th sensor are

working. We define

uk =

∑
(m,n)∈Vk

∑
t∈Am,n

ym(t)y∗n(t)∑
(m,n)∈Vk |Am,n|

, (5.7)

where y(t) = [y1(t), · · · , yM(t)] is the full measurement vector before discarding invalid data,

ym(t) is the output of the m-th sensor, and |A| denotes the cardinality of A. For complete

arrays, we can obtain uk for k = −M0 + 1,−M0 + 2, . . . ,M0− 1, and the ad-hoc estimate of
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RULA is given by

R̂
(ad−hoc)
U =



u0 u−1 · · · u−M0+1

u1 u0 · · · u−M0+2

...
...

. . .
...

uM0 uM0−1 · · · u0


. (5.8)

We can then apply MUSIC or other DOA estimation methods to R̂
(ad−hoc)
U to obtain the

DOA estimates.

For incomplete arrays, we can use a similar construction to obtain a M̃0 × M̃0 matrix from

uk, k = −M̃0 + 1, M̃0 + 2, . . . , M̃0 − 1, which is the estimate of a submatrix of RULA.

It should be noted that while (5.7) and (5.8) are computationally efficient to evaluate, the

resulting R̂
(ad−hoc)
U is not guaranteed to be positive definite, which may be undesired in some

applications.

5.2.2 Maximum-likelihood based estimators

Based on the results in [3], the negative log-likelihood function of our model is given by

L(R1, . . . ,RL) =
L∑
l=1

Nl[log |Rl|+ tr(R−1
l R̂l)], (5.9)

where we have omitted the constants.

Observe thatRULA is Hermitian Toeplitz. It is possible to reparameterizeRULA by exploiting

the Toeplitz structure, and the estimation ofRULA becomes a structure covariance estimation

problem. In the following discussion, we consider only complete arrays. Extension to non-

restricted arrays will be discussed in the remarks.
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Following the idea in [95], we construct the structured matrices as follows. Let I
(i)
M de-

notes the M ×M matrix whose elements are zero except for the i-th upper diagonal (i.e.,

I
(i)
M (m,n) = δ(n −m − i), where δ(n) is the Kronecker delta). For a given positive integer

M , we define the matrices {Q(i)
M }

2M−1
i=1 as

Q
(i)
M =


IM , i = 1,

I
(i−1)
M + (I

(i−1)
M )T , 2 ≤ i ≤M,

−jI(i−M)
M + j(I

(i−M)
M )T , M + 1 ≤ i ≤ 2M − 1.

(5.10)

Then we are able to express RULA as

RULA =

2M0−1∑
i=1

ciQ
(i)
M0
, (5.11)

where c = [c1, c2, · · · , c2M0−1]T ∈ R2M0−1 is the Hermitian Toeplitz parameterization of

RULA. After obtaining its estimate, we can reconstruct RULA from (5.11) and then perform

DOA estimation. Substituting (5.11) into (5.9) and taking the derivative with respect to ci,

we obtain

∂L(c)

∂ci
=

L∑
l=1

Nl tr
[
TlSQ

(i)
M0
STT T

l R
−1
l (Rl − R̂l)R

−1
l

]
for i = 1, 2, . . . , 2M0−1. Because vec(AXB) = (BT⊗A) vec(X), and because (A⊗B)−1 =

A−1 ⊗B−1 for nonsingular A, B [70], we have

vec(TlSQ
(i)
M0
STT T

l ) = Φlq
(i)
M0
, (5.12)
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where q
(i)
M0

= vec(Q
(i)
M0

), and Φl = TlS ⊗ TlS. We also have

vec(R−1
l (Rl − R̂l)R

−1
l ) = W−1

l (ΦlQM0c− r̂l), (5.13)

where Wl = RT
l ⊗Rl, QM0 = [q

(1)
M0
, q

(2)
M0
, · · · , q(2M0−1)

M0
], and r̂l = vec(R̂l). Let all the partial

derivatives with respect to ci be zero. Then, we utilize (5.12) and (5.13) to obtain

( L∑
l=1

NlGl

)
c =

L∑
l=1

Nlhl (5.14)

where Gl = QT
M0

ΦT
l W

−1
l ΦlQM0 , and hl = QT

M0
ΦT
l W

−1
l r̂l. Note that if we have sufficient

snapshots in each period, R̂l will be very close toRl, and we can replaceWl with its estimate

Ŵl = R̂T
l ⊗ R̂l. In this case the only unknown in (5.14) will be c, whose estimate can be

readily given by

ĉWLS =
[ L∑
l=1

NlĜl

]−1[ L∑
l=1

Nlĥl

]
. (5.15)

where Ĝl denotes Gl with Wl replaced by Ŵl, and ĥl denotes hl with Wl replaced by Ŵl.

Lemma 5.2 ensures that (5.15) produces real results.

Lemma 5.1. Let A,B,C be Hermitian symmetric. Then tr(ABAC) is real.

Proof. This can be shown by the fact that

tr(ABAC)∗ = tr[(ABAC)H ] = tr(CABA) = tr(ABAC).

Lemma 5.2. Both Ĝl and ĥl are real.
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Proof. Through algebraic manipulations, the (m,n)-th element of Ĝl can be rewritten as

tr[R̂−1
l TlSQ

(m)
M0
STT T

l R̂
−1
l TlSQ

(n)
M0
STT T

l ].

By the definition of Q
(m)
M0

in (5.10), we know that TlSQ
(m)
M0
STT T

l is Hermitian symmetric.

Because R̂−1 is also Hermitian symmetric, we know that each element of Ĝl is real by

Lemma 5.2. The proof for the second claim follows the same idea.

We call (5.15) the “weighted least squares” (WLS) estimate, because (5.15) is the solution

to the weighted least squares problem: minc
∑L

l=1 Nl‖ΦlQM0c − r̂l‖2
Ŵ−1

l

, where ‖x‖W =
√
xHWx.

We can also observe that (5.14) leads to the following fixed-point type iteration:

ĉ
(k)
FP =

[ L∑
l=1

NlGl

(
ĉ

(k−1)
FP

)]−1[ L∑
l=1

Nlhl
(
ĉ

(k−1)
FP

)]
, (5.16)

where Gl

(
ĉ

(k−1)
FP

)
and hl

(
ĉ

(k−1)
FP

)
are constructed from ĉ

(k−1)
FP .

Remark. In practice, the computation of Ĝl and ĥl can be efficiently implemented by ex-

ploiting the properties of Kronecker product and the fact that Φl are Kronecker products

of simple selection matrices. In our experiments, by setting the initial value as ĉWLS, {ĉ(k)
FP}

showed good convergence in a few iterations.

Remark. When the signal-to-noise ratio (SNR) is very high, the conditional number of RULA

will be large, and the reconstructed RULAhat becomes indefinite. In this case, we project

RULAhat onto the intersection of the positive semidefinite cone PSD and the Toeplitz sub-

space T. This can be achieved via the alternating projections method. Because both PSD

and T are convex and their PSD∩T 6= ∅, the alternating projections method converges [96].
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Remark. For incomplete arrays, not all elements inRULA are present inRl. ThereforeQT
M0

Φl

is no longer full rank, and we cannot perform the matrix inversion in (5.15) or (5.16). In this

case, we first delete the elements we cannot estimate from c and their corresponding basis

matrices from {Qi
M0
}2M0−1
i=1 to form c̃ and Q̃M0 . We then estimate c̃ using (5.15) or (5.16),

with QM0 replaced by Q̃M0 . Finally, we construct a submatrix of RULA from the estimated

c̃.

5.3 Performance bounds

Because the measurements are assumed independent, the (m,n)-th element of the FIM for

our signal model is given by [3, 68]:

FIMmn =
L∑
L=1

Nl tr

[
∂Rl

∂ηm
R−1
l

∂Rl

∂ηn
R−1
l

]
.

Using the properties of the Kronecker product, we can express the FIM as

FIMmn =
L∑
L=1

Nl

[
∂rU

∂ηm

]H
ΦH
l (RT

l ⊗Rl)
−1Φl

∂rU

∂ηn
,

where rU = vec(RU). Therefore, for complete arrays, the FIM for the Toeplitz parametriza-

tion is given by

FIMc =
L∑
l=1

NlQ
H
M0

ΦH
l (RT

l ⊗Rl)
−1ΦlQM0 . (5.17)

For incomplete arrays, as stated in Remark 5.2.2, not all elements in c is estimable. To

compute the FIM of the estimable elements in c, we need to replace QM0 by Q̃M0 in a

similar fashion.
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For parameters η = [θ,p, σ2]T , the FIM is given by

FIMη =
L∑
l=1

NlD
HΦH

l (RT
l ⊗Rl)

−1ΦlD, (5.18)

where D = [ȦdP Ad i], and Ȧd = Ȧ∗U � AULA + A∗ULA � ȦU, Ad = A∗ULA � AULA,

i = vec(IM0), and

ȦU =

[
∂aULA(θ1)

∂θ1
· · · ∂aULA(θK)

∂θK

]
. (5.19)

The corresponding CRBs can be obtained by inverting the FIMs in (5.17) and (5.18).

5.4 Numerical examples

We consider the following two sparse linear array configurations in the numerical examples:

• Nested array: [0, 1, 2, 3, 7, 11, 15, 19]d0;

• Coprime array: [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d0.

In all the experiments, we consider 12 sources uniformly distributed between −π/3 and π/3.

The number of sources is more than the number of sensors of either array. We set L to be 3.

When L = 2 the last sensor of each array fails, and when L = 3, the last two sensors of each

array fail. We set N1 = 50µ, N2 = 100µ, and N3 = 150µ, where µ is a tunable parameter.

Hence we have more snapshots with missing data than those with complete data. When

making comparisons under different numbers of snapshots, we fixed SNR = 0dB and varied

µ from 1 to 20. When making comparisons under different SNRs, we fixed µ = 1 and varied

SNR from -20 dB to 20 dB. The root-mean-square errors (RMSEs) were obtained from 500

trials, and the DOAs were estimated by MUSIC.
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Figure 5.1: Performance of different algorithms for the nested array configuration.
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Figure 5.2: Performance of different algorithms for the co-prime array configuration.
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In all the figures, “First” denotes the results obtained using only R̂1, while Ad-hoc, TML-

WLS, and TML-FP denote the results obtained from (5.8), (5.15), and (5.16), respectively.

We also include the CRB obtained from (5.18) for comparison.

Fig. 5.1 illustrates the performance of different algorithms for the nested array configuration.

We observe that TML-FP achieves the best performance, and is very close to the CRB,

while “First” results in the worst performance because it cannot utilize the information in

R̂l (l ≥ 2). We observe similar results for the co-prime configuration in Fig. 5.2. However,

a gap exists between the RMSE of TML-FP and the CRB, which may be attributed to the

fact that the co-prime array is incomplete.

5.5 Chapter summary

In this chapter, we addressed the problem of direction finding using sparse linear arrays

with incomplete measurements. By exploiting the difference coarray of a sparse linear array,

we proposed to first reconstruct an augmented covariance matrix with enhanced degrees of

freedom using the Toeplitz parameterization, and then to apply MUSIC to obtain the DOAs.

Specifically, we showed that, by applying our method to co-prime and nested arrays, we can

resolve more sources than the number of sensors, even in the missing data case. Through nu-

merical experiments, we demonstrated that our methods achieve better estimation accuracy

than the traditional method that uses only the complete measurements.
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Chapter 6

Conclusions and Future Work

6.1 Summary and conclusions

In this dissertation, we focused on analyzing the the performance of sparse linear arrays, with

and without sensor location errors. We also introduced robust DOA estimation algorithms

to tackle the missing data problem caused by sensor failures.

We began by revisiting the background of direction finding using sparse linear arrays. We

introduced a mathematical formulation of the difference coarray model, and reviewed two

commonly used coarray-based MUSIC algorithms, DA-MUSIC and SS-MUSIC. We proved

that, although they are based on different augmented covariance matrices, DA-MUSIC and

SS-MUSIC share the same asymptotic estimator error. With this finding, we derived a closed-

form asymptotic MSE expression for both DA-MUSIC and SS-MUSIC. We showed that

this expression is strictly non-zero in the underdetermined case even if the SNR approaches

infinity. This finding analytically explained the “saturation” behavior of SS-MUSIC observed

in various numerical simulations in previous studies.

100



We next derived and analyzed the CRB for general sparse linear arrays. First, we observed

that, unlike the classical stochastic CRB, our CRB is applicable even if the number of sources

is greater than the number of sensors. Combining our CRB with our closed-form MSE

expression of DA-MUSIC and SS-MUSIC, we studied their statistical efficiency. DA-MUSIC

and SS-MUSIC excel in the underdetermined case, while the classical MUSIC algorithm is

preferred when the number of sources is less than the number of sensors. We investigated the

behavior of our CRB in high SNR regions, and showed that, in the underdetermined case, the

CRB remains positive definite even if the SNR approaches infinity. Then we established the

connection between our CRB and the classical stochastic CRB for uncorrelated sources, and

showed that they are asymptotically equal in high SNR regions. Next, we further analyzed

the behavior of our CRB for co-prime and nested arrays with large numbers of sensors. We

showed that the CRB can decrease at a rate of O(M−5) for co-prime and nested arrays

with M sensors. This rate is much faster than that of an M -sensor ULA, which is only

O(M−3). On the other hand, for a fixed aperture, co-prime and nested array require many

more snapshots to attain the same performance as a ULA. This finding demonstrates the

trade-off between the number of spatial samples and the number of temporal samples.

We next investigated the impact of sensor location errors on the difference coarray model,

considering two error models: the deterministic error model and the stochastic error model.

For the deterministic error model, we derived a closed-form asymptotic MSE expression for

SS-MUSIC, which can be utilized to analyze the sensitivity of SS-MUSIC against the sensor

location errors. We showed that the sensor location errors lead to a constant bias in the

DOA estimates, which cannot be eliminated by only increasing the SNR. We also derived

the CRB for joint estimation of DOA parameters and sensor location errors., and showed

that this CRB is indeed applicable, even if the number of sources exceeds the number of

sensors. For the stochastic error model, we considered the case when the sensor location
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errors follow a Gaussian distribution. When the number of snapshots is large and the sensor

locations errors follow a white Gaussian distribution, the effect of the sensor location errors

can be indeed modeled as additive white noise. Numerical experiments verified our analytical

expressions.

Finally, we proposed new DOA estimators for sparse linear arrays in cases of missing data,

considering a more general sensor failure model that does not assume a sequential failure

pattern. By exploiting the difference coarray structure, we introduced three algorithms to

construct an augmented covariance matrix with enhanced degrees of freedom by combining

all the information from the snapshots. Then, we applied MUSIC to this augmented covari-

ance matrix to estimate the DOAs. We also computed the corresponding CRB in the missing

data case, and used numerical experiments to demonstrate the efficacy of our algorithms.

6.2 Future directions

In the future, we can potentially extend our research to the following directions:

Partially correlated sources: Throughout this dissertation, we assumed that the sources

are uncorrelated. In practice, this assumption may not hold in every environment, due to

multi-path effects [97, 98]. Consequently, the sources will be partially correlated. Recently,

using sparse linear arrays, new algorithms have been proposed to resolve more correlated

sources than the number of sensors [99, 100]. It would be interesting to extend our analysis

in Chapter 3 to cases of partially correlated sources and to analyze the maximum number

of identifiable partially correlated sources.
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Optimal sparse linear array design: In this dissertation, we derived the closed-form

asymptotic MSE expression of DA-MUSIC and SS-MUSIC, as well as the CRB. We also

analyzed the performance of sparse linear arrays in the presence of sensor location errors.

These results enabled us to formulate optimal array design problems. Instead of using pre-

configured array geometries, it would be interesting to be able to set constraints on metrics

such as the MSE and sensitivity to model errors, and to obtain the optimal array geometries

for specific application scenarios by solving the resulting optimization problems.

Extension of the stochastic error model: In our analysis of the stochastic error model,

we simply assumed that the time-variant sensor location errors are i.i.d. This assumption,

while convenient in statistical analysis, may not hold in practice. In the future, our analysis

of the stochastic error model could be extended by introducing motion models for the sensor

location errors. Then robust DOA estimation algorithms could be developed based on such

models.
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Appendix A

Proof of Theorem 3.1

We first derive the first-order expression of DA-MUSIC. Denote the eigendecomposition of

Rv1 by

Rv1 = EsΛs1E
H
s +EnΛn1E

H
n ,

where Es and En are eigenvectors of the signal subspace and noise subspace, respectively,

and Λs1,Λn1 are the corresponding eigenvalues. Specifically, we have Λn1 = σ2I.

Let R̃v1 = Rv1 +∆Rv1, Ẽn1 = En +∆En1, and Λ̃n1 = Λn1 +∆Λn1 be the perturbed versions

of Rv1, En, and Λn1. The following equality holds:

(Rv1 + ∆Rv1)(En + ∆En1) = (En + ∆En1)(Λn1 + ∆Λn1).

If the perturbation is small and the SNR is high, we can omit high-order terms and obtain [53,

64,67]

AH
co∆En1

.
= −P−1A†co∆Rv1En. (A.1)
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Because P is diagonal, for a specific θk, we have

aH(θk)∆En1
.
= −p−1

k e
T
kA

†
co∆Rv1En, (A.2)

where ek is the k-th column of the identity matrix IK×K . Based on the conclusion in

Appendix B of [61], under sufficiently small perturbations, the error expression of DA-MUSIC

for the k-th DOA is given by

θ̂
(1)
k − θk

.
= −<[aHco(θk)∆En1E

H
n ȧco(θk))]

ȧHco(θk)EnEH
n ȧco(θk)

, (A.3)

where ȧco(θk) = ∂aco(θk)/∂θk.

Substituting (A.2) into (A.3) gives

θ̂
(1)
k − θk

.
=
<[eTkA

†
co∆Rv1EnE

H
n ȧco(θk)]

pkȧHco(θk)EnEH
n ȧco(θk)

. (A.4)

Because vec(AXB) = (BT ⊗ A) vec(X) and EnE
H
n = Π⊥Aco

, we can use the notations

introduced in (3.2b)–(3.2d) to express (A.4) as

θ̂
(1)
k − θk

.
= −(γkpk)

−1<[(βk ⊗αk)T∆rv1], (A.5)

where ∆rv1 = vec(∆Rv1).

Note that R̃v1 is constructed from R̃. It follows that ∆Rv1 actually depends on ∆R, which

is the perturbation part of the covariance matrix R. By the definition of Rv1,

∆rv1 = vec(

[
ΓMco∆z · · · Γ2∆z Γ1∆z

]
) = ΓF∆r,
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where Γ = [ΓT
Mco

ΓT
Mco−1 · · ·ΓT

1 ]T and ∆r = vec(∆R).

Let ξk = F TΓT (βk ⊗αk). We can now express (A.5) in terms of ∆r as

θ̂
(1)
k − θk

.
= −(γkpk)

−1<(ξTk ∆r), (A.6)

which completes the first part of the proof.

We next consider the first-order error expression of SS-MUSIC. From (2.17) we know that

Rv2 shares the same eigenvectors as Rv1. Hence the eigendecomposition of Rv2 can be

expressed by

Rv2 = EsΛs2E
H
s +EnΛn2E

H
n ,

where Λs2 and Λn2 are the eigenvalues of the signal subspace and noise subspace. Specifically,

we have Λn2 = σ4/McoI. Note that Rv2 = (AcoPA
H
co + σ2I)2/Mco. Following a similar

approach to the one we used to obtain (A.1), we get

AH
co∆En2

.
= −McoP

−1(PAH
coAco + 2σ2I)−1A†co∆Rv2En,

where ∆En2 is the perturbation of the noise eigenvectors produced by ∆Rv2. After omitting

high-order terms, ∆Rv2 is given by

∆Rv2
.
=

1

Mco

Mco∑
k=1

(zk∆z
H
k + ∆zkz

H
k ).

According to [38], each subarray observation vector zk can be expressed by

zk = AcoΨ
Mco−kp+ σ2iMco−k+1, (A.7)
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for k = 1, 2, . . . ,Mco, where il is a vector of length Mco whose elements are zero except for

the l-th element being one, and

Ψ = diag(e−jω1 , e−jω2 , . . . , e−jωK ).

Here ωk = (2πd0 sin θk)/λ. We can further obtain that

Mco∑
k=1

σ2iMco−k+1∆zHk = σ2∆RH
v1,

and that

Mco∑
k=1

AcoΨ
Mco−kp∆zHk

=AcoP



e−j(Mco−1)ω1 e−j(Mco−2)ω1 · · · 1

e−j(Mco−1)ω2 e−j(Mco−2)ω2 · · · 1

...
...

. . .
...

e−j(Mco−1)ωK e−j(Mco−2)ωK · · · 1





∆zH1

∆zH2
...

∆zHMco


=AcoP (TMcoAco)HTMco∆R

H
v1

=AcoPA
H
co∆RH

v1,

where TMco is a Mco ×Mco permutation matrix whose anti-diagonal elements are one, and

whose remaining elements are zero. Because ∆R = ∆RH , by Lemma 2.2 we know that ∆z

is conjugate symmetric. According to the definition of Rv1, it is straightforward to show

that ∆Rv1 = ∆RH
v1 also holds. Hence

∆Rv2
.
=

1

Mco

[(AcoPA
H
co + 2σ2I)∆Rv1 + ∆Rv1AcoPA

H
co].
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Substituting ∆Rv2 into the expression of AH
co∆En2, and utilizing the property that AH

coEn =

0, we can express AH
co∆En2 as

−P−1(PAH
coAco + 2σ2I)−1A†co(AcoPA

H
co + 2σ2I)∆Rv1En.

Observe that

A†co(AcoPA
H
co + 2σ2I) =(AH

coAco)−1AH
co(AcoPA

H
co + 2σ2I)

=[PAH
co + 2σ2(AH

coAco)−1AH
co]

=(PAH
coAco + 2σ2I)A†co.

Hence the term (PAH
coAco + 2σ2I) gets canceled and we obtain

AH
co∆En2

.
= −P−1A†co∆Rv1En, (A.8)

which coincides with the first-order error expression of AH
co∆En1.
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Appendix B

Proof of Theorem 3.2

Before proceeding to the main proof, we introduce the following definition.

Definition B.1. Let A = [a1 a2 . . .aN ] ∈ RN×N , and B = [b1 b2 . . . bN ] ∈ RN×N . The

structured matrix CAB ∈ RN2×N2
is defined as

CAB =



a1b
T
1 a2b

T
1 . . . aNb

T
1

a1b
T
2 a2b

T
2 . . . aNb

T
2

...
. . .

...
...

a1b
T
N a2b

T
N . . . aNb

T
N


.
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We now start deriving the explicit MSE expression. According to (A.6),

E[(θ̂k1 − θk1)(θ̂k2 − θk2)]
.
=(γk1pk1)

−1(γk2pk2)
−1E[<(ξTk1∆r)<(ξTk2∆r)]

=(γk1pk1)
−1(γk2pk2)

−1
{
<(ξk1)

TE[<(∆r)<(∆r)T ]<(ξk2)

+ =(ξk1)
TE[=(∆r)=(∆r)T ]=(ξk2)

−<(ξk1)
TE[<(∆r)=(∆r)T ]=(ξk2)

−<(ξk2)
TE[<(∆r)=(∆r)T ]=(ξk1)

}
,

(B.1)

where we used the property that <(AB) = <(A)<(B) − =(A)=(B) for two complex ma-

trices A and B with proper dimensions.

To obtain the closed-form expression for (B.1), we need to compute the four expectations.

It should be noted that in the case of finite snapshots, ∆r does not follow a circularly-

symmetric complex Gaussian distribution. Therefore we cannot directly use the properties

of the circularly-symmetric complex Gaussian distribution to evaluate the expectations. For

brevity, we demonstrate the computation of only the first expectation in (B.1). The compu-

tation of the remaining three expectations follows the same idea.

Let ri denote the i-th column of R in (2.4). Its estimate, r̂i, is given by
∑N

t=1 y(t)y∗i (t),

where yi(t) is the i-th element of y(t). Because E[r̂i] = ri,

E[<(∆ri)<(∆rl)
T ] = E[<(r̂i)<(r̂l)

T ]−<(ri)<(rl)
T . (B.2)
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The second term in (B.2) is deterministic, and the first term in (B.2) can be expanded into

1

N2
E

[
<
( N∑
s=1

y(s)y∗i (s)
)
<
( N∑
t=1

y(t)y∗l (t)
)T]

=
1

N2
E

[
N∑
s=1

N∑
t=1

<(y(s)y∗i (s))<(y(t)y∗l (t))
T

]

=
1

N2

N∑
s=1

N∑
t=1

E
{[
<(y(s))<(y∗i (s))−=(y(s))=(y∗i (s))

]
[
<(y(t))T<(y∗l (t))−=(y(t))T=(y∗l (t))

]}
=

1

N2

N∑
s=1

N∑
t=1

{
E[<(y(s))<(yi(s))<(y(t))T<(yl(t))]

+ E[<(y(s))<(yi(s))=(y(t))T=(yl(t))]

+ E[=(y(s))=(yi(s))<(y(t))T<(yl(t))]

+ E[=(y(s))=(yi(s))=(y(t))T=(yl(t))]
}
.

(B.3)

We first consider the partial sum of the cases when s 6= t. By A4, y(s) and y(t) are

uncorrelated Gaussians. Recall that for x ∼ CN (0,Σ),

E[<(x)<(x)T ] =
1

2
<(Σ), E[<(x)=(x)T ] = −1

2
=(Σ)

E[=(x)<(x)T ] =
1

2
=(Σ), E[=(x)=(x)T ] =

1

2
<(Σ).

We have

E[<(y(s))<(yi(s))<(y(t))T<(yl(t))] = E[<(y(s))<(yi(s))]E[<(y(t))T<(yl(t))] =
1

4
<(ri)<(rl)

T .
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Similarly, we can obtain that when s 6= t,

E[<(y(s))<(yi(s))=(y(t))T=(yl(t))] =
1

4
<(ri)<(rl)

T ,

E[=(y(s))=(yi(s))<(y(t))T<(yl(t))] =
1

4
<(ri)<(rl)

T ,

E[=(y(s))=(yi(s))=(y(t))T=(yl(t))] =
1

4
<(ri)<(rl)

T .

(B.4)

Therefore the partial sum of the cases when s 6= t is given by (1− 1/N)<(ri)<(rl)
T .

We now consider the partial sum of the cases when s = t. We first consider the first

expectation inside the double summation in (B.3).

Recall that for x ∼ N (0,Σ), E[xixlxpxq] = σilσpq + σipσlq + σiqσlp. We can express the

(m,n)-th element of the matrix E[<(y(t))<(yi(t))<(y(t))T<(yl(t))] as

E[<(ym(t))<(yi(t))<(yn(t))<(yl(t))]

=E[<(ym(t))<(yi(t))<(yl(t))<(yn(t))]

=E[<(ym(t))<(yi(t))]E[<(yl(t))<(yn(t))]

+ E[<(ym(t))<(yl(t))]E[<(yi(t))<(yn(t))]

+ E[<(ym(t))<(yn(t))]E[<(yi(t))<(yl(t))]

=
1

4
[<(Rmi)<(Rln) + <(Rml)<(Rin) + <(Rmn)<(Ril)].

Hence

E[<(y(t))<(yi(t))<(y(t))T<(yl(t))] =
1

4
[<(ri)<(rl)

T + <(rl)<(ri)
T + <(R)<(Ril)].
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Similarly, we obtain that

E[=(y(t))=(yi(t))=(y(t))T=(yl(t))] =
1

4
[<(ri)<(rl)

T + <(rl)<(ri)
T + <(R)<(Ril)],

E[<(y(t))<(yi(t))=(y(t))T=(yl(t))] =
1

4
[<(ri)<(rl)

T −=(rl)=(ri)
T + =(R)=(Ril)],

E[=(y(t))=(yi(t))<(y(t))T<(yl(t))] =
1

4
[<(ri)<(rl)

T −=(rl)=(ri)
T + =(R)=(Ril)].

Therefore the partial sum of the cases when s = t is given by

1

N
<(ri)<(rl)

T +
1

2N
[<(R)<(Ril) + =(R)=(Ril) + <(rl)<(ri)

T −=(rl)=(ri)
T ].

Combined with the previous partial sum of the cases when s 6= t, we obtain that

E[<(∆ri)<(∆rl)
T ] =

1

2N
[<(R)<(Ril) + =(R)=(Ril) + <(rl)<(ri)

T −=(rl)=(ri)
T ]. (B.5)

Therefore

E[<(∆r)<(∆r)T ] =
1

2N
[<(R)⊗<(R) + =(R)⊗=(R) +C<(R)<(R) −C=(R)=(R)], (B.6)

which completes the computation of first expectation in (B.1). Utilizing the same technique,

we obtain that

E[=(∆r)=(∆r)T ] =
1

2N
[<(R)⊗<(R) + =(R)⊗=(R) +C=(R)=(R) −C<(R)<(R)], (B.7)

and

E[<(∆r)=(∆r)T ] =
1

2N
[=(R)⊗<(R)−<(R)⊗=(R) +C<(R)=(R) +C=(R)<(R)]. (B.8)
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Substituting (B.6)–(B.8) into (B.1) gives a closed-form MSE expression. However, this

expression is too complicated for analytical study. In the following steps, we make use

of the properties of ξk to simply the MSE expression.

Lemma B.1. Let X,Y ,A,B ∈ RN×N satisfying XT = (−1)nxX, AT = (−1)naA, and

BT = (−1)nbB, where nx, na, nb ∈ {0, 1}. Then

vec(X)T (A⊗B) vec(Y ) = (−1)nx+nb vec(X)TCAB vec(Y ),

vec(X)T (B ⊗A) vec(Y ) = (−1)nx+na vec(X)TCBA vec(Y ).

Proof. By Definition B.1,

vec(X)TCAB vec(Y )

=
N∑
m=1

N∑
n=1

xTmanb
T
myn

=
N∑
m=1

N∑
n=1

( N∑
p=1

ApnXpm

)( N∑
p=1

BqmYqn

)
=

N∑
m=1

N∑
n=1

N∑
p=1

N∑
q=1

ApnXpmBqmYqn

=(−1)nx+nb

N∑
p=1

N∑
n=1

N∑
m=1

N∑
q=1

(XmpBmqYqn)Apn

=(−1)nx+nb

N∑
p=1

N∑
n=1

xTpApnByn

=(−1)nx+nb vec(X)T (A⊗B) vec(Y ).

The proof of the second equality follows the same idea.

Lemma B.2. TMcoΠ
⊥
Aco
TMco = (Π⊥Aco

)∗.
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Proof. Since Π⊥Aco
= I−Aco(AH

coAco)−1AH
co, it suffices to show that TMcoAco(AH

coAco)−1AH
coTMco =

(Aco(AH
coAco)−1AH

co)∗. Because Aco is the steering matrix of a ULA with Mco sensors, it is

straightforward to show that TMcoAco = (AcoΦ)∗, where

Φ = diag(e−j(Mco−1)ω1 , e−j(Mco−1)ω2 , . . . , e−j(Mco−1)ωK ).

Because TMcoTMco = I,TH
Mco

= TMco ,

TMcoAco(AH
coAco)−1AH

coTMco

=TMcoAco(AH
coT

H
Mco
TMcoAco)−1AH

coT
H
Mco

=(AcoΦ)∗((AcoΦ)T (AcoΦ)∗)−1(AcoΦ)T

=(Aco(AH
coAco)−1AH

co)∗.

Lemma B.3. Let Ξk = matM,M(ξk). Then ΞH
k = Ξk for k = 1, 2, . . . , K.

Proof. Note that ξk = F TΓT (βk⊗αk). We first prove that βk⊗αk is conjugate symmetric,

or that (TMco ⊗TMco)(βk⊗αk) = (βk⊗αk)∗. Similar to the proof of Lemma B.2, we utilize

the properties that TMcoAco = (AcoΦ)∗ and that TMcoaco(θk) = (aco(θk)e
−j(Mco−1)ωk)∗ to

show that

TMco(A
†
co)Heka

H
co(θk)TMco = [(A†co)Heka

H
co(θk)]

∗. (B.9)
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Observe that ȧco(θk) = jω̇kDaco(θk), where ω̇k = (2πd0 cos θk)/λ andD = diag(0, 1, . . . ,Mco−

1). We have

(TMco ⊗ TMco)(βk ⊗αk) = (βk ⊗αk)∗

⇐⇒ TMcoαkβ
T
k TMco = (αkβ

T
k )∗

⇐⇒ TMco [(A
†
co)Heka

H
co(θk)DΠ⊥Aco

]∗TMco = −(A†co)Heka
H
co(θk)DΠ⊥Aco

.

Since D = TMcoTMcoDTMcoTMco , combining with Lemma B.2 and (B.9), it suffices to show

that

(A†co)Heka
H
co(θk)TMcoDTMcoΠ

⊥
Aco

= −(A†co)Heka
H
co(θk)DΠ⊥Aco

. (B.10)

Observe that TMcoDTMco +D = (Mco − 1)I. We have

Π⊥Aco
(TMcoDTMco +D)aco(θk) = 0,

or equivalently

aHco(θk)TMcoDTMcoΠ
⊥
Aco

= −aHco(θk)DΠ⊥Aco
. (B.11)

Pre-multiplying both sides of (B.11) with (A†co)Hek leads to (B.10), which completes the

proof that βk ⊗ αk is conjugate symmetric. According to the definition of Γ in (3.2e), it

is straightforward to show that ΓT (βk ⊗ αk) is also conjugate symmetric. Combined with

Property 2.3, we conclude that matM,M(F TΓT (βk ⊗ αk)) is Hermitian symmetric, or that

Ξk = ΞH
k .

Given Lemma B.1–B.3, we are able continue the simplification. We first consider the term

<(ξk1)
TE[<(∆r)<(∆r)T ]<(ξk2) in (B.1). Let Ξk1 = matM,M(ξk1), and Ξk2 = matM,M(ξk2).

By Lemma B.3, we have Ξk1 = ΞH
k1

, and Ξk2 = ΞH
k2

. Observe that <(R)T = <(R), and that
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=(R)T = =(R). By Lemma B.1 we immediately obtain the following equalities:

<(ξk1)
T (<(R)⊗<(R))<(ξk2) = <(ξk1)

TC<(R)<(R)<(ξk2),

<(ξk1)
T (=(R)⊗=(R))<(ξk2) = −<(ξk1)

TC=(R)=(R)<(ξk2).

Therefore <(ξk1)
TE[<(∆r)<(∆r)T ]<(ξk2) can be compactly expressed as

<(ξk1)
TE[<(∆r)<(∆r)T ]<(ξk2)

=
1

N
<(ξk1)

T [<(R)⊗<(R) + =(R)⊗=(R)]<(ξk2)

=
1

N
<(ξk1)

T<(RT ⊗R)<(ξk2),

(B.12)

where we make use of the properties that RT = R∗, and <(R∗ ⊗ R) = <(R) ⊗ <(R) +

=(R)⊗=(R). Similarly, we can obtain that

=(ξk1)
TE[=(∆r)=(∆r)T ]=(ξk2) =

1

N
=(ξk1)

T<(RT ⊗R)=(ξk2), (B.13)

<(ξk1)
TE[<(∆r)=(∆r)T ]=(ξk2) = − 1

N
<(ξk1)

T=(RT ⊗R)=(ξk2), (B.14)

<(ξk2)
TE[<(∆r)=(∆r)T ]=(ξk1) = − 1

N
<(ξk2)

T=(RT ⊗R)=(ξk1). (B.15)

Substituting (B.12)–(B.15) into (B.1) completes the proof.
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Appendix C

Proof of Proposition 3.2

Without loss of generality, let p = 1 and σ2 → 0. For brevity, we denote RT ⊗ R by

W . We first consider the case when K < M . Denote the eigendecomposition of R−1 by

EsΛ
−1
s E

H
s + σ−2EnE

H
n . We have

W−1 = σ−4K1 + σ−2K2 +K3,

where

K1 = E∗nE
T
n ⊗EnE

H
n ,

K2 = E∗s Λ−1
s E

T
s ⊗EnE

H
n +E∗nE

T
n ⊗EsΛ

−1
s E

H
s ,

K3 = E∗s Λ−1
s E

T
s ⊗EsΛ

−1
s E

H
s .

Recall that AHEn = 0. We have

K1Ȧd = (E∗nE
T
n ⊗EnE

H
n )(Ȧ∗ �A+A∗ � Ȧ)

= E∗nE
T
n Ȧ

∗ �EnE
H
n A+E∗nE

T
nA

∗ �EnE
H
n Ȧ

= 0. (C.1)
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Therefore

MH
θ Mθ = ȦH

d W
−1Ȧd = σ−2ȦH

d (K2 + σ2K3)Ȧd. (C.2)

Similar to W−1, we denote W− 1
2 = σ−2K1 + σ−1K4 +K5, where

K4 = E∗s Λ
− 1

2
s ET

s ⊗EnE
H
n +E∗nE

T
n ⊗EsΛ

− 1
2

s EH
s ,

K5 = E∗s Λ
− 1

2
s ET

s ⊗EsΛ
− 1

2
s EH

s .

Therefore

MH
θ Π⊥Ms

Mθ = ȦH
d W

− 1
2 Π⊥Ms

W− 1
2 Ȧd = σ−2ȦH

d (σK5 +K4)Π⊥Ms
(σK5 +K4)Ȧd,

where Π⊥Ms
= MsM

†
s . We can then express the CRB as

CRBθ = σ2(Q1 + σQ2 + σ2Q3)−1, (C.3)

where

Q1 = ȦH
d (K2 −K4Π

⊥
Ms
K4)Ȧd,

Q2 = −ȦH
d (K4Π

⊥
Ms
K5 +K5Π

⊥
Ms
K4)Ȧd,

Q3 = ȦH
d (K3 −K5Π

⊥
Ms
K5)Ȧd.

When σ2 = 0, R reduces to AAH . Observe that the eigendecomposition of R always exists

for σ2 ≥ 0. We use K?
1–K?

5 to denote the corresponding K1–K5 when σ2 → 0.

Lemma C.1. Let K < M . Assume ∂r/∂η is full column rank. Then limσ2→0+ Π⊥Ms
exists.
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Proof. Because AHEn = 0,

K2Ad =(E∗s Λ−1
s E

T
s ⊗EnE

H
n )(A∗ �A) + (E∗nE

T
n ⊗EsΛ

−1
s E

H
s )(A∗ �A)

=E∗s Λ−1
s E

T
s A

∗ �EnE
H
n A+E∗nE

T
nA

∗ �EsΛ
−1
s E

H
s A

=0

Similarly, we can show that K4Ad = 0, iHK2i = iHK4i = 0, and iHK1i = rank(En) =

M −K. Hence

MH
s Ms =

AH
d K3Ad AH

d K3i

iHK3Ad iHW−1i

 .
Because ∂r/∂η is full column rank, MH

s Ms is full rank and positive definite. Therefore the

Schur complements exist, and we can inverse MH
s Ms block-wisely. Let V = AH

d K3Ad and

v = iHW−1i. After tedious but straightforward computation, we obtain

Π⊥Ms
=K5AdS

−1AH
d K5

− s−1K5AdV
−1AH

d K3ii
H(K5 + σ−2K1)

− v−1(K5 + σ−2K1)iiHK3AdS
−1AH

d K5

+ s−1(K5 + σ−2K1)iiH(K5 + σ−2K1),

where S and s are Schur complements given by

S = V − v−1AH
d K3ii

HK3Ad,

s = v − iHK3AdV
−1AH

d K5i.
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Observe that

v = iHW−1i = σ−4(M −K) + iHK3i.

We know that both v−1 and s−1 decrease at the rate of σ4. As σ2 → 0, we have

S → AH
d K

?
3Ad,

s−1(K5 + σ−2K1)→ 0,

v−1(K5 + σ−2K1)→ 0,

s−1(K5 + σ−2K1)iiH(K5 + σ−2K1)→ K?
1ii

HK?
1

M −K
.

We now show that AH
d K

?
3Ad is nonsingular. Denote the eigendecomposition of AAH by

E?
s Λ?

s (E?
s )H . Recall that for matrices with proper dimensions, (A�B)H(C�D) = (AHC)◦

(BHD), where ◦ denotes the Hadamard product. We can expand AH
d K

?
3Ad into

[AHE?
s (Λ?

s )−1(E?
s )HA]∗ ◦ [AHE?

s (Λ?
s )−1(E?

s )HA].

Note that AAHE?
s (Λ?

s )−1(E?
s )HA = E?

s (E?
s )HA = A, and that A is full column rank when

K < M . We thus have AHE?
s (Λ?

s )−1(E?
s )HA = I. Therefore AH

d K
?
3Ad = I, which is

nonsingular.

Combining the above results, we obtain that when σ2 → 0,

Π⊥Ms
→K?

5AdA
H
d K

?
5 +

K?
1ii

HK?
1

M −K
.
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For sufficiently small σ2 > 0, it is easy to show that K1–K5 are bounded in the sense of

Frobenius norm (i.e., ‖Ki‖F ≤ C for some C > 0, for i ∈ {1, 2, 3, 4, 5}). Because ∂r/∂η

is full rank, Ms is also full rank for any σ2 > 0, which implies that Π⊥Ms
is well-defined

for any σ2 > 0. Observe that Π⊥Ms
is positive semidefinite, and that tr(Π⊥Ms

) = rank(Ms).

We know that Π⊥Ms
is bounded for any σ2 > 0. Therefore Q2 and Q3 are also bounded for

sufficiently small σ2, which implies that σQ2 + σ2Q3 → 0 as σ2 → 0.

By Lemma C.1, we know that Q1 → Q?
1 as σ2 → 0, where

Q?
1 = ȦH

d (K?
2 −K?

4Π⊥Ms

?
K?

4)Ȧd,

and M ?
s = limσ2→0+ Π⊥Ms

as derived in Lemma C.1. Assume Q?
1 is nonsingular8. By (C.3)

we immediately obtain that CRBθ → 0 as σ2 → 0.

When K ≥ M , R is full rank regardless of the choice of σ2. Hence (RT ⊗R)−1 is always

full rank. Because ∂r/∂η is full column rank, the FIM is positive definite, which implies its

Schur complements are also positive definite. Therefore CRBθ is positive definite.

8The condition when Q?
1 is singular is difficult to obtain analytically. In numerical simulations, we have

verified that it remains nonsingular for various parameter settings.
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Appendix D

Proof of Proposition 3.3

Following [61, Appendix G], for ULAs with a large number of sensors, M , we have

1

M
AHA ≈ I, 1

M2
AHȦ ≈ j

2
I,

1

M3
ȦHȦ ≈ 1

3
I. (D.1)

Applying Lemma 3.2, the inverse of R can be rewritten as

R−1 = σ−2[I −A(σ2P−1 +AHA)−1AH ]. (D.2)

Combined with the assumption that SNR−1
i = σ2/pi �M , we have

AHR−1A =σ−2AHA[I − (σ2P−1 +AHA)−1AHA]

=σ−2AHA(σ2P−1 +AHA)−1[σ2P−1 +AHA−AHA]

=AHA(σ2P−1 +AHA)−1P−1

≈P−1,

(D.3)
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ȦHR−1A =σ−2[ȦHA− ȦHA(σ2P−1 +AHA)−1AHA]

=σ−2ȦHA(σ2P−1 +AHA)−1(σ2P−1 +AHA−AHA)

≈ȦHA(AHA)−1P−1

≈− jM
2
P−1,

(D.4)

and

ȦHR−1Ȧ = σ−2[ȦHȦ− ȦHA(σ2P−1 +AHA)−1AHȦ] ≈ M3

12
σ−2I. (D.5)

Substituting (D.3)–(D.5) into the expression of Jωω, we obtain

Jωω =
M3

6
σ−2P .

Using similar tricks, we can obtain the following:

tr(R−2) ≈ σ−4(M −K), (D.6)

AHR−2A = AHA[(σ2P−1 +AHA)P ]−2 ≈ 0, (D.7)

ȦHR−2A = ȦHA[(σ2P−1 +AHA)P ]−2 ≈ −j
2
P−2. (D.8)

The detailed derivation of (D.7) is summarized in (D.9) below. The derivation of (D.8)

follows the same idea.
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AHR−2A

=σ−4AHA(σ2P−1 +AHA)−1[σ2P−1 +AHA− 2AHA+AHA(σ2P−1 +AHA)−1AHA]

=σ−4AHA(σ2P−1 +AHA)−1[σ2P−1 −AHA(σ2P−1 +AHA)−1(σ2P−1 +AHA−AHA)]

=σ−4AHA(σ2P−1 +AHA)−1(σ2P−1 +AHA−AHA)(σ2P−1 +AHA)−1σ2P−1

=AHA(σ2P−1 +AHA)−1P−1(σ2P−1 +AHA)−1P−1.

(D.9)

By (D.3) and (D.6), we obtain that Jpp ≈ P−2 and that Jσ2σ2 ≈ σ−4(M − K), both of

which will not vanish as M grows. According to (D.4) and (D.8), in the expressions of Jωp

and Jωσ2 , the terms inside the <(·) operator will be almost imaginary. Therefore, both Jωp

and Jωσ2 will be approximately zeros for large values of M . Consequently, the FIM will be

block diagonal and we only need to evaluate J−1
ωω to obtain B(sto-uc), which leads to

B(sto-uc)(ω) ≈ 1

N
J−1
ωω =

6

M3N
σ2P−1.
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Appendix E

Proof of Theorem 3.4

We first prove the result for co-prime arrays. In the one source case, the steering matrix A

reduces to a vector a = [aT1 a
T
2 ]T ∈ C3Q×1, where

aT1 =

[
1 ejQω · · · ejQ

2ω

]
, (E.1)

aT2 =

[
ej(Q+1)ω ej2(Q+1)ω · · · ej(2Q−1)(Q+1)ω

]
. (E.2)

With respect to ω, the derivative vector ȧ is given by ȧ = jDa, where D = diag(D1,D2),

and

D1 = diag(0, Q, . . . , Q2),

D2 = diag(Q+ 1, 2(Q+ 1), . . . , (2Q− 1)(Q+ 1)).

(E.3)
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Therefore, we have

aHa = 3Q,

ȧHa = −j
[ Q∑
q=1

qQ+

2Q−1∑
q=1

q(Q+ 1)
]
≈ −j 5

2
Q3,

ȧHȧ =

Q∑
q=1

q2Q2 +

2Q−1∑
q=1

q2(Q+ 1)2 ≈ 3Q5,

where the approximations are obtained by removing terms that are one-order smaller than

the highest order terms. Following the proof of Lemma 3.4, we have

R−1 = σ−2[I − a(σ2p−1 + aHa)−1)−1aH ] = σ−2
(
I − aaH

σ2p−1 + 3Q

)
.

Therefore, when SNR−1 � Q,

aHR−1a = σ−2
(
aHa− aHaaHa

σ2p−1 + 3Q

)
=

3Qp−1

σ2p−1 + 3Q
≈ p−1.

Similarly, we can show that

ȧHR−1a = σ−2
(
ȧHa− ȧHaaHa

σ2p−1 + 3Q

)
≈ −j 5

6
Q2p−1,

and that

ȧHR−1ȧ = σ−2
(
ȧHȧ− ȧHaaHȧ

σ2p−1 + 3Q

)
≈ 11

12
Q5σ−2.
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Observing that ȧHR−1a is purely imaginary, we immediately know that Jωp and Jωσ2 are

exactly zero. Hence, the FIM takes the following form:

J = N


Jωω 0 0

0 ∗ ∗

0 ∗ ∗

 . (E.4)

Therefore, to obtain B(sto-uc)(ω), we need to evaluate only Jωω, which is given by

Jωω = 2<[(ȧHR−1ȧ)∗ ◦ (p2aHR−1a) + (ȧHR−1a)∗ ◦ (p2aHR−1ȧ)]

= 2<
[11

12
Q5pσ−2 +

25

36
Q4
]

≈ 11

6
Q5pσ−2.

We finally obtain that

B(sto-uc)(ω) =
1

N
J−1
ωω ≈

6

11

1

N

1

Q5

1

SNR
. (E.5)

Given a nested array configured with the parameter pair (Q,Q), its steering vector for the

one source case is given by a = [aT1 a
T
2 ]T , where

aT1 =

[
1 ejω · · · ej(Q−1)ω

]
,

aT2 =

[
ejQω ej[Q+(Q+1)]ω · · · ej[Q+(Q−1)(Q+1)]ω

]
.

137



With respect to ω, the derivative vector ȧ is given by ȧ = jDa, where D = diag(D1,D2),

and

D1 = diag(0, 1, . . . , Q− 1),

D2 = diag(Q,Q+ (Q+ 1), . . . , Q+ (Q− 1)(Q+ 1)).

(E.6)

Similar to the co-prime array case, we can calculate the following terms as

aHa = 2Q,

ȧHa = −j
Q−1∑
q=0

[q +Q+ q(Q+ 1)] ≈ −j 1

2
Q3,

ȧHȧ =

Q−1∑
q=0

[q2 + (Q+ q(Q+ 1))2] ≈ 1

3
Q5.

We can calculate the inverse of R as

R−1 = σ−2
[
I − aaH

σ2p−1 + 2Q

]
. (E.7)

Hence,

aHR−1a = σ−2
[
2Q− 4Q2

σ2p−1 + 2Q

]
≈ p−1.

ȧHR−1a ≈ −jσ−2
[1

2
Q3 − Q4

σ2p−1 + 2Q

]
≈ −j 1

4
Q2p−1.

ȧHR−1ȧ ≈ σ−2
[1

3
Q5 − 1

4

Q6

σ2p−1 + 2Q

]
≈ 5

24
Q5σ−2.

Similar to the co-prime case, the FIM is block diagonal, and we need to evaluate only Jωω.

Combining the above results, we obtain that

Jωω ≈
5

12
Q5pσ−2. (E.8)
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Therefore,

B(sto-uc)(ω) =
1

N
J−1
ωω ≈

12

5

1

N

1

Q5

1

SNR
. (E.9)
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Appendix F

Proof of Theorem 3.5

Lemma F.1. Sum of trigonometric series:

n−1∑
t=0

sin(φ+ tld) =
sin nld

2

sin ld
2

sin(φ+
n− 1

2
ld), (F.1)

n−1∑
t=0

cos(φ+ tld) =
sin nld

2

sin ld
2

cos(φ+
n− 1

2
ld). (F.2)

In the proof of Theorem 3.4, because the steering matrix reduces to a vector, the resulting

inner product is easy to compute. However, in the case of multiple sources, AHA will be a

full matrix whose off-diagonal elements are generated by the inner products between a(ωi)

and a(ωj), i 6= j. These elements are generally not zero. We can follow similar steps as

we did in the proof of Proposition 3.3 if we can show that these off-diagonal elements are

much smaller than the main diagonal elements under certain conditions and that AHA can

be expressed as

AHA = Pn(Q)I + o(Qn),

where Pn(Q) is a polynomial of Q with degree n.
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However, as will be shown later, the above approximation may not always be possible because

one of the subarrays in co-prime/nested arrays has an inter-element spacing that is greater

than d0. Degenerative cases occur under some specific DOA configurations. Nevertheless,

we shall show that the CRB can indeed decrease at a rate of O(Q−5).

For brevity, we only show the detailed derivations for the co-prime array case. The derivation

for the nested array case is actually simpler because the first subarray of a nested array is

a ULA with an inter-element spacing d0. In the multiple source case, the steering matrix

of the co-prime array generated with the co-prime pair (Q,Q + 1) can be expressed as

A = [AT
1 A

T
2 ]T , where

A1 =

[
a1(ω1) a1(ω2) · · · a1(ωK)

]
,

A2 =

[
a2(ω1) a2(ω2) · · · a2(ωK)

]
,

and a1, a2 follow the same definitions as those in (E.1), (E.2). We also have Ȧ = jDA,

where D follows the same definition as that in (E.3).

Therefore,

[
AHA

]
m,n

= [AH
1 A1]m,n + [AH

2 A2]m,n =

Q∑
q=0

ejqQ(ωm−ωn) +

2Q−1∑
q=1

ejq(Q+1)(ωm−ωn). (F.3)

Here [·]m,n denotes the (m,n)-th element.
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When m = n, the sum reduces to 3Q, as computed in Theorem 3.4. When m 6= n, by

Lemma F.1, we have

[AH
1 A1]m,n =

sin[(Q+ 1)Q(ωm − ωn)/2]

sin[Q(ωm − ωn)/2]
cos

[
1

2
Q2(ωm − ωn)

]
+ j

sin[(Q+ 1)Q(ωm − ωn)/2]

sin[Q(ωm − ωn)/2]
sin

[
1

2
Q2(ωm − ωn)

]
.

Note that the absolute values of the numerators are bounded above by one. [AH
1 A1]m,n will

become large when sin[Q(ωm−ωn)/2] is close to zero (the actual limit is Q+1 by L’Hospital’s

rule). Therefore, if we restrict the range of ωm − ωn, we can bound [AH
1 A1]m,n from above

by a constant that does not grow with Q. This the reason why we introduce Definition 3.1.

By Definition 3.1, we immediately know that | sin(ωL/2)|−1 is bounded above by δ−1, ∀ω ∈

Ωδ
L. For a fixed δ, if we restrict ωm − ωn within Ωδ

Q, ∀m 6= n, then |[AH
1 A1]m,n| ≤

√
2δ−1,

∀m 6= n, which leads to

1

Q+ 1
AH

1 A1 ≈ I. (F.4)

Similarly, we have

1

2Q− 1
AH

2 A2 ≈ I (F.5)

if we restrict ωm − ωn within Ωδ
Q+1, ∀m 6= n.

Lemma F.2. As long as δ is not very close to 1, Ωδ
Q ∩ Ωδ

Q+1 6= ∅ for Q ≥ 2.

Proof. Let φ = arcsin δ. Consider the interval 2
Q

[φ, π−φ] in Ωδ
Q and the interval 2

Q+1
[φ, π−φ]

in Ωδ
Q+1. The condition of overlapping is given by

2

Q
φ <

2

Q+ 1
(π − φ),

142



Figure F.1: |[AHA]m,n| v.s. ωm − ωn for Q = 8 and δ = 0.5. The shaded regions are defined
by Ωδ

Q ∩ Ωδ
Q+1. It can be observed that |[AHA]m,n| is very small in the shaded regions.

which is equivalent to

φ <
π

2 + 1/Q
.

When Q ≥ 2, we only need to choose φ < 2π/5 and the above condition will hold, which

corresponds to choosing δ < 0.95.

Therefore, for a reasonable choice of δ (e.g., 0.5), if ωm − ωn ∈ Ωδ
Q ∩ Ωδ

Q+1, ∀m 6= n,

then AHA/(3Q) ≈ I, which is very similar to the result we obtained in Theorem 3.4. To

demonstrate this, we plot |[AHA]m,n| as a function of ωm − ωn in Fig. F.1. We can observe

that for certain values of ωm−ωn, the summation of the trigonometric series is indeed large

and cannot be neglected. However, in the shaded areas defined by Ωδ
Q ∩ Ωδ

Q+1, |[AHA]m,n|

is negligibly small.
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Following the same reasoning as in Appendix D, we can obtain the following approximations:

1

Q
AHA ≈ 3I, (F.6)

1

Q3
ȦHA ≈ −j 5

2
I, (F.7)

1

Q5
ȦHȦ ≈ 3I. (F.8)

We can now substitute these terms back into the expression of B(sto-uc). Following the same

approach as in the proof of Proposition 3.3, we obtain

B(sto-uc)(ω) ≈ 6

11

1

N

1

Q5
σ2P−1, (F.9)

if ωm − ωn ∈ Ωδ
Q ∩ Ωδ

Q+1, ∀m 6= n, m,n ∈ {1, 2, . . . , K}, and some reasonable choice of δ.

Following the same idea, we can obtain a similar result for nested arrays generated by the

parameter pair (Q,Q):

B(sto-uc)(ω) ≈ 12

5

1

N

1

Q5
σ2P−1, (F.10)

if ωm − ωn ∈ Ωδ
Q+1, ∀m 6= n, m,n ∈ {1, 2, . . . , K}, and for a reasonable choice of δ.
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