377 research outputs found

    Virtual reality interface for the guidance of underwater robots

    Get PDF
    Treball final de Grau en Disseny i Desenvolupament de Videojocs. Codi: VJ1241. Curs acadèmic: 2018/2019The main motivation to establish this project was my interest in virtual reality, I am intrigued by the amount of possibilities it can offer and how it can evolve. I also wanted to make an interface that was useful once finished. Thanks to the professor P. J. Sanz, who was willing to guide a project of these characteristics and to his recommendations and help during all the development time we were able to make this project oriented to HRI in underwater interventions

    Flightmare: A Flexible Quadrotor Simulator

    Full text link
    Currently available quadrotor simulators have a rigid and highly-specialized structure: either are they really fast, physically accurate, or photo-realistic. In this work, we propose a paradigm-shift in the development of simulators: moving the trade-off between accuracy and speed from the developers to the end-users. We use this design idea to develop a novel modular quadrotor simulator: Flightmare. Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. This makes our simulator extremely fast: rendering achieves speeds of up to 230 Hz, while physics simulation of up to 200,000 Hz. In addition, Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. We demonstrate the flexibility of Flightmare by using it for two completely different robotic tasks: learning a sensorimotor control policy for a quadrotor and path-planning in a complex 3D environment

    Shybo. Design of a research artifact for human-robot interaction studies.

    Get PDF
    This article discusses the role of Design Research in the field of Human-Robot Interaction (HRI). Notably, the Research through Design (RtD) approach is proposed as a valuable method to develop HRI research artefacts due to the importance of having a physical artefact, a robot, that enables direct interaction. Moreover, there is a growing interest in HRI for design methodologies as methods for investigation. The article presents an example of a design process, focused on hands-on activities, namely sketching, 3D modelling, prototyping, and documenting. These making practices were applied to the development of Shybo, a small sound-reactive robot for children. Particular attention has been given to the five prototypes that led to the definition of the current solution. Morphological, behavioral, and interaction aspects were investigated throughout the whole process. Each phase of the design process was then documented with the intent of sharing potentially replicable practices and contributing to the understanding of the role that RtD can play in HRI

    Preliminary Work on a Virtual Reality Interface for the Guidance of Underwater Robots

    Get PDF
    The need for intervention in underwater environments has increased in recent years but there is still a long way to go before AUVs (Autonomous Underwater Vehicleswill be able to cope with really challenging missions. Nowadays, the solution adopted is mainly based on remote operated vehicle (ROV) technology. These ROVs are controlled from support vessels by using unnecessarily complex human–robot interfaces (HRI). Therefore, it is necessary to reduce the complexity of these systems to make them easier to use and to reduce the stress on the operator. In this paper, and as part of the TWIN roBOTs for the cooperative underwater intervention missions (TWINBOT) project, we present an HRI (Human-Robot Interface) module which includes virtual reality (VR) technology. In fact, this contribution is an improvement on a preliminary study in this field also carried out, by our laboratory. Hence, having made a concerted effort to improve usability, the HRI system designed for robot control tasks presented in this paper is substantially easier to use. In summary, reliability and feasibility of this HRI module have been demonstrated thanks to the usability tests, which include a very complete pilot study, and guarantee much more friendly and intuitive properties in the final HRI-developed module presented here

    Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators

    Get PDF
    This chapter covers the development of a virtual simulation platform for training a semiautonomous robotic vehicle (SARV) operator via an open-source game engine called Unity3D. The SARV such as remotely operated vehicles (ROVs) is becoming increasingly popular in the maritime industry for risky jobs in inhospitable environments. The primary element in carrying out underwater missions in a hostile environment lies within the skills and experience of an ROV pilot. Training for ROV pilots is essential to prevent damage to expensive field equipment during the real operations. The proposed simulator differs from the existing simulators in the market is the use of modern game engine software to develop a “serious game” for ROV pilot trainee at much lower cost and shorter time-to-market. The results revealed that proposed virtual simulator can develop a high-fidelity virtual reality training for the underwater operation guided by classification society
    • …
    corecore