2,936 research outputs found

    Spectral fluctuations of tridiagonal random matrices from the beta-Hermite ensemble

    Full text link
    A time series delta(n), the fluctuation of the nth unfolded eigenvalue was recently characterized for the classical Gaussian ensembles of NxN random matrices (GOE, GUE, GSE). It is investigated here for the beta-Hermite ensemble as a function of beta (zero or positive) by Monte Carlo simulations. The fluctuation of delta(n) and the autocorrelation function vary logarithmically with n for any beta>0 (1<<n<<N). The simple logarithmic behavior reported for the higher-order moments of delta(n) for the GOE (beta=1) and the GUE (beta=2) is valid for any positive beta and is accounted for by Gaussian distributions whose variances depend linearly on ln(n). The 1/f noise previously demonstrated for delta(n) series of the three Gaussian ensembles, is characterized by wavelet analysis both as a function of beta and of N. When beta decreases from 1 to 0, for a given and large enough N, the evolution from a 1/f noise at beta=1 to a 1/f^2 noise at beta=0 is heterogeneous with a ~1/f^2 noise at the finest scales and a ~1/f noise at the coarsest ones. The range of scales in which a ~1/f^2 noise predominates grows progressively when beta decreases. Asymptotically, a 1/f^2 noise is found for beta=0 while a 1/f noise is the rule for beta positive.Comment: 35 pages, 10 figures, corresponding author: G. Le Cae

    Bayesian models for the determination of resonant frequencies in a DI diesel engine

    Get PDF
    A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information

    The estimation of geoacoustic properties from broadband acoustic data, focusing on instantaneous frequency techniques

    Get PDF
    The compressional wave velocity and attenuation of marine sediments are fundamental to marine science. In order to obtain reliable estimates of these parameters it is necessary to examine in situ acoustic data, which is generally broadband. A variety of techniques for estimating the compressional wave velocity and attenuation from broadband acoustic data are reviewed. The application of Instantaneous Frequency (IF) techniques to data collected from a normal-incidence chirp profiler is examined. For the datasets examined the best estimates of IF are obtained by dividing the chirp profile into a series of sections, estimating the IF of each trace in the section using the first moments of the Wigner Ville distribution, and stacking the resulting IF to obtain a composite IF for the section. As the datasets examined cover both gassy and saturated sediments, this is likely to be the optimum technique for chirp datasets collected from all sediment environments

    Modeling the pulse signal by wave-shape function and analyzing by synchrosqueezing transform

    Full text link
    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, {and} based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features

    Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wigner-Ville distribution

    Get PDF
    The acoustic signal from an overflying aircraft, as heard by a stationary observer, is used to estimate an aircraft’s constant height, ground speed, range, and acoustic frequency. Central to the success of this flight parameter estimation scheme is the need for an accurate estimate of the instantaneous frequency of the observed acoustic signal. In this paper, the polynomial Wigner–Ville distribution is used in this application as the instantaneous frequency estimator. Its performance and the issue of the optimal time domain window length are addressed

    An investigation into current and vibration signatures of three phase induction motors

    Get PDF
    This research aimed at investigating the relationship between three phase induction motors vibration (MVS) and current signatures (MCS). This is essential due to the cost of vibration measuring equipment and in cases where vibration of interest point is not accessible; such as electrical submersible pumps (ESP) used in oil industry. A mathematical model was developed to understand the effects of two types of induction motors common faults; rotor bar imperfections and phase imbalance on the motor vibration and current signatures. An automated test facility was developed in which 1.1 kW three phase motor could be tested under varying shaft rotation speeds and loads for validating the developed model. Time and frequency domains statistical parameters of the measured signals were calculated for fault detection and assessing its severity. The measured signals were also processed using the short time Fourier transform (STFT), the Wigner-Ville distribution (WVD), the continuous wavelet transform (CWT) and discrete wavelet transform (DWT) and wavelet multi-resolution analysis (MRA). The non-stationary components, representing faults within induction motor measured vibration and current signals, were successfully detected using wavelet decomposition technique. An effective alternative to direct vibration measurement scheme, based on radial basis function networks, was developed to the reconstruction of motor vibration using measurements of one phase of the motor current. It was found that this method captured the features of induction motor faults with reasonable degrees of accuracy. Another method was also developed for the early detection and diagnosis of faults using an enhanced power factor method. Experimental results confirmed that the power factor can be used successfully for induction motor fault diagnosis and is also promising in assessing fault severity. The suggested two methods offer inexpensive, reliable and non-intrusive condition monitoring tools that suits real-time applications. Directions for further work were also outlined
    • …
    corecore