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Abstract 

This research aimed at investigating the relationship between three phase induction 

motors vibration (MVS) and current signatures (MCS). This is essential due to the 

cost of vibration measuring equipment and in cases where vibration of interest point 

is not accessible; such as electrical submersible pumps (ESP) used in oil industry.  

A mathematical model was developed to understand the effects of two types of 

induction motors common faults; rotor bar imperfections and phase imbalance on the 

motor vibration and current signatures.  

An automated test facility was developed in which 1.1 kW three phase motor could 

be tested under varying shaft rotation speeds and loads for validating the developed 

model. Time and frequency domains statistical parameters of the measured signals 

were calculated for fault detection and assessing its severity. The measured signals 

were also processed using the short time Fourier transform (STFT), the Wigner-Ville 

distribution (WVD), the continuous wavelet transform (CWT) and discrete wavelet 

transform (DWT) and wavelet multi-resolution analysis (MRA).  

The non-stationary components, representing faults within induction motor measured 

vibration and current signals, were successfully detected using wavelet 

decomposition technique.  

An effective alternative to direct vibration measurement scheme, based on radial 

basis function networks, was developed to the reconstruction of motor vibration 

using measurements of one phase of the motor current. It was found that this method 

captured the features of induction motor faults with reasonable degrees of accuracy. 

Another method was also developed for the early detection and diagnosis of faults 

using an enhanced power factor method. Experimental results confirmed that the 

power factor can be used successfully for induction motor fault diagnosis and is also 

promising in assessing fault severity.  

The suggested two methods offer inexpensive, reliable and non-intrusive condition 

monitoring tools that suits real-time applications. Directions for further work were 

also outlined. 
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Var, Vbr,Vcr three-phase balanced symmetrical voltages applied to the rotor 

terminals 
   
 

   voltage between points r and n 

E unbalanced voltage drop 

M Mass 

M0 unbalanced eccentric mass 

R radial distance 

Ff centrifugal force 

fr1, fr2 Frequencies of rotation of motor shaft and loader shaft respectively. 

f0 is the frequency (Hz) of the current   

  the phase angle 

I0 RMS amplitude of the current (A) 

frn nth modulating frequency (Hz) 

mrn nth modulation index 

Bs amplitude of the modulating signal 

N n
th

 harmonic 

K number of rotating shafts 

 mr1 mr2 mr3 modulation indices 

Ft tangential transmitted force 
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CHAPTER 1  

INTRODUCTION 

 

 

 

This chapter describes the main purposes of maintenance strategies. It also 

introduces condition monitoring and describes the different types of condition 

monitoring systems and techniques. The basics of signal modulation and aspects of 

statistical processing are presented in this chapter. Finally, the research aims and 

objectives are given, as is a description of the thesis structure. 
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1.1 Background 

Machine condition monitoring (CM) plays a vital task in guaranteeing both the 

reliability and low-cost operation of industrial facilities [1]. CM permits detection of 

machine faults at an early stage and offers the opportunity for appropriate action to 

be taken before the fault causes secondary damage and, possibly, a disastrous 

accident. In addition, CM permits a machine to be controlled and monitored during 

its operation and repaired according to a planned schedule which will give 

economical operation and decrease possible production losses. As a result, many 

technologies and techniques have been studied and applied to improve the reliability, 

applicability, and accuracy of CM systems[1, 2] . 

These days, run-to-failure is an unwanted approach for most processes and 

manufacturing operations. Alternative CM systems that depend on the continuous 

collection and analysis of machine data have proved more acceptable and desirable 

because of their capability to offer early stage detection of machinery faults [2]. 

Selecting a suitable CM system is a significant part of guaranteeing increased 

machine availability, performance and life span, in addition to a reduction of spare 

parts stocks and break-down maintenance [3]. 

1.2 Maintenance Strategies and Condition Based Maintenance of Electrical 

Machines  

Companies search continuously to find the best methods to reduce maintenance costs 

mitigate possible injuries to personnel or damage to the local environment. However, 

the main objective of maintenance is to prevent machine and/or production failure 

and production losses. Maintenance strategies can be divided into three different 

categories: 
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 Breakdown maintenance: Machines are run until they fail, and are then 

repaired; a crude method of operation that can be very expensive in terms of 

lost output and machine damage, it may also lead to dangerous 

occurrences[4]. 

 Preventive maintenance: Also called time-based maintenance, machines are 

thoroughly inspected and tested at set intervals and any necessary 

maintenance carried out to remedy faults present within the system[5] . 

 Predictive maintenance: This strategy requires continuous monitoring of 

equipment to detect and diagnose defects. Only when a defect is detected, is 

maintenance work planned and executed [1]. 

The main objectives for maintenance can be summarised as follows [1] 

 To improve/maintain productivity. 

 To minimize the number of repairs and replacement routines. 

 To extend the life of the machine. 

 To ensure a high quality of products. 

For maintenance, the plant equipment can be classified into three categories [1]. 

1. Critical equipment: expensive to repair, or takes a long time to repair. 

2. Essential equipment: affects the next stage of the process. 

3. General equipment: is not critical to the process and does not affect plant 

operations when it is broken. 

Electrical machinery supports a vast range of economic activity in almost every 

industrial sector, with the majority of prime movers being electric motors. Electric 

motors as shown in Figure 1.1 are the most general drivers for industrial gearboxes, 

compressors, pumps, and machines. Many types of these motors are used in 
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commercial, industrial, and residential applications[6]. Nowadays, the leading motor 

technology is in induction motors, the majority of the installed motor capability 

world-wide, which consume between 40-50% of all the generated power in the world 

[7]. Moreover, the induction motor is simple device that consists of two basic 

electrical assemblies: the wound stator and the rotor assembly. The name of the 

induction motor is derived from the fact that currents do not directly flow in the 

secondary member (rotor), but are induced by the alternating currents flowing in the 

primary member (stator).  

 

Figure 1-1 typical small induction motor 

Despite the economic importance of electrical machines relatively few operators 

apply CM to their electrical machinery even though the consequential damage due to 

the failure of electric motors can be considerable, particularly in terms of lost 

production.  Electrical faults can be very simple and lead not only to inefficiencies 

but disastrous consequences, a loose electrical connection can cause overheating and 

a fire which can result in the destruction of an entire plant. 

Rotor Stator 
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Electrical faults commonly develop to failure very rapidly. Thus too high a current 

(over current) or current leakage to earth, for example, are protected against using a 

trip, which is a form of detection but one which allows the system to fail to prevent 

permanent damage. These very simple techniques and alternative measures which act 

to prevent failure through strategies which modify machine or system operation are 

discussed below. Then more advanced techniques which diagnose faults in motors 

and systems are considered.  

1.4 Induction Motor Failure Modes 

The squirrel-cage induction motor is the most common motor in use in industry. The 

smallest typical motor will be about 0.5 kW and the biggest will be about 30 kW, but 

much larger motors can be found.  

Amongst the factors that may lead to a fault are [8]: 

1. eccentricity in rotor motion of the rotor will result in a variation in the air gap 

separating the stator and rotor, with a consequent large proportional change in 

the magnetic flux,  

2. defects in the rotor cage due to poor assembly, cracks and/or gaps, variation in 

material properties, etc.,  

3. excessive currents during starting, 

4. excessive winding forces during starting, and  

5. bracing problems with the stator end winding.  

Additional faults which can be found in slip or wound motors are: 

 defects in the rotor windings, brush gear and/or slip rings, 

 motor resistances unbalanced, and  

 excessive stress on the overhangs of the rotor windings.  
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Adverse operating conditions can also generate failure. For example, the load might 

itself be subject to an external oscillating force or may not be aligned correctly. 

Repeated and frequent starting of the motor will lead to winding and/or bearing 

failure. Excessive stress whether of mechanical or electromagnetic origin can lead to 

premature bearing failure, possibly the most common cause of failure with induction 

motors. Fluctuations in one or more of the phases of the voltage supply can cause 

stalling or even insulation failure. Adverse environmental conditions (high humidity, 

high temperature, corrosive contamination) can also cause insulation breakdown. 

Motor faults are usually classified into electrical, thermal or mechanical, see table 1.1 

Table 1-1 Examples of motor failures[9] 

Mechanical  
Shock loads, Bearing failure, Misalignment 

,Mechanical unbalance, Loss of lubricant  

Thermal  
Overload, Stall, Single phasing, Loss of 

coolant/inadequate cooling ,Harmonic heating  

Electrical  

Insulation breakdown due to: Contamination, 

Vibration/mechanical damage, Thermal cycling, 

Overvoltage Broken rotor bars/rotor windings due to: 

Overspeed, Frequent starts, Harmonic heating, 

Lamination damage  

Commutator, slip rings 

and brush gear (DC 

motors) 

Overheating, Contamination, Excessive sparking  

 

1.5 Condition Monitoring (Static Techniques) 

Many simple CM techniques which do not require large expenditure or staff 

expertise are readily available. These include motor current measurement, 

temperature of the motor, electrical resistance of the winding, observation of the state 
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of the lubricating oil, all of which give useful information. These methods are 

described below [8]:  

1.5.1 Motor Current 

With an induction motor the stator coils produce a rotating magnetic field such that 

the torque, T, developed is proportional to the product of the motor current (I) and 

magnetic flux (ψ):  

I.                       (1.1) 

The current can be measured directly but will usually be used to compare the 

currents in the three phases, which will identify problems in a specific phase. This is 

more usually performed as a comparative test between identical machines. While it 

can give immediate results it is more common to find the current recorded at regular 

intervals to mark any trend towards failure. 

Normally the motor does not reduce its speed to less than about 95% of synchronous 

speed and for such a “constant speed” motor under constant load, a change in current 

may suggest the presence of a fault but is unlikely to indicate the cause of the fault. If 

the applied load is subject to change the signs of incipient failure will be lost in 

normal current variation.  

1.5.2 Temperature Monitoring  

Current flowing through the stator and rotor generates heat and many motors are 

cooled by a fan mounted on the drive shaft which blows ambient air across fins 

attached to the stator. Excess heat from the rotor is radiated and convected across the 

air gap to the stator, and conducted away through the motor housing and shaft. A 

significant reduction in motor speed will mean that heat is generated faster than it is 
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removed (the most extreme case is if the motor stalls) and the motor temperature 

rises rapidly activating temperature trips to avoid serious damage. 

The temperature monitoring is not a sensitive monitoring mechanism and suffers 

from three obvious drawbacks: the local temperature will change during the course 

of a day and in some regions of the world this can be by more than 20
0
C; if the motor 

is subject to changing load then a corresponding change in temperature would be 

expected as part of the normal operation of the motor; the temperature is likely to be 

monitored at or near the surface while the source of the excessive heat may well be 

deep within the motor. Once a fault has developed then the rate of increase in 

temperature is likely to be rapid so that the monitoring system must sample at low 

frequency intervals.  

In practice thermal imaging is the most widely used thermal monitoring system, 

though it is usually performed by a trained operative according to a set schedule 

rather than continuously. Thermal imaging has proved effective in diagnosing 

overheating due to many causes: loose connections, short circuits and bearing 

friction.  

Motor brush and holder temperature are related to the degree of sparking so that it is 

desirable to keep the number of brushes to a minimum. Monitoring the temperature 

will give an indication when sparking is a problem and when the brushes should be 

changed.  

1.5.3 Electrical Resistance   

Low winding resistance is an indication of a short circuit due to leakage currents 

which leads to local high temperatures. The higher the temperature, the greater the 

extent and rapidity of further degradation in the insulation, and failure soon follows. 
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The electrical resistances of the stator windings are simple to measure but the 

resistance of the rotor windings, or between rotor and earth, can only be measured if 

the rotor is wound and connected to slip rings. Maximum information will be 

obtained only if all six winding connections are available.  

During a direct start a motor will experience maximum current and this is why many 

if not most failures occur at start-up. Motors which are being started, especially in 

the morning, are likely to be significantly cooler than the surrounding air with the 

consequent likelihood of condensation. A combination of condensation and dirt from 

any source are the major cause of flashover. The flashover is the voltage at which an 

electric discharge occurs between two electrodes that are separated by an insulator; 

the value depends on whether the insulator surface is dry or wet, further enhanced if 

there is any terminal damage. Thus it is very sensible to test the motor prior to 

starting [8]. 

 1.5.4 Lubrication Inspection 

The bearings in an electric motor are designed to cope with the large loads they will 

experience, provided that adequate lubrication is supplied. Indeed, inadequate 

lubrication is a frequent cause of premature bearing failure. Most electric motors are 

not sufficiently large to have pressurised oil lubrication so spectrographic oil analysis 

and similar advanced techniques are not appropriate[8]. Instead shock pulse methods 

which monitor metal-to-metal impacts can be used to determine whether lubrication 

levels are sufficiently low as to need topping-up[8] 

The presence of contaminants can seriously adversely affect the performance of 

insulation materials, so regular and effective cleaning of electrical machines is 

important. Similarly bearing life will be reduced if abrasive particles have entered. 
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Cleaning on a regular basis combined with a general inspection is a quick, relatively 

cheap and cost effective method that can uncover such faults as:  

 Lubricant leakage (oil on floor), 

 Excessive noise and vibration, 

 Excessive temperatures (surfaces hot to the touch, smell of burning) 

 Ambient conditions too hot, too wet, etc., 

 Loose (rattling) bolts.  

 1.6 Condition Monitoring (Dynamic Techniques) 

Many techniques are available for the detection of faults in large electrical machines 

such as turbine generators.  

Two techniques are worth describing in some detail because they are used 

commercially and in research. Both are applicable to a wide range of machinery and 

use similar technology [8].   

1.6.1 Motor Vibration Signature  

Vibration monitoring is widely used for the detection and diagnosis of mechanical 

faults in rotating machinery. In electrical motors where main sources of vibration are: 

 The stator core response to the attractive force developed between rotor and 

stator; 

 The response of the stator end windings to electromagnetic force on the 

conductors;  

 The dynamic behaviour of the rotor;  

 The response of the shaft bearing to vibration transmitted from the rotor.  

Because bearing failures account for more than half of all motor failures this last 

point is important[9]. The forces between stator and rotor will impact on the bearings 
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so any problems in or between the stator and rotor which generates excessive forces 

will increase the likelihood of bearing failure and reduce its working life. Because of 

their position and function the bearings are where the system forces will impact and 

so this is the best place to position vibration transducers. Ideally the transducers 

should be sited on the bearing housing, but with small motors this may not be 

possible and placing them on the end caps should suffice. Usually time-domain 

signals (typically root mean square (RMS) value) are used for trending. The 

vibration transducer (usually an accelerometer) is best fixed by screwing the sensor 

to a screw-threaded brass stud attaching to the casing by drilling and tapping or 

suitable super glue. 

All machines vibrate so vibration itself is not a fault. However, excessive vibration 

can be a symptom of a developing fault and an early warning of machine failure. 

Bearings most often fail as a result of lengthy exposure to forces greater than those 

for which they were designed, or poor installation such as a mis-aligned drive shaft, 

or from inadequate lubrication. All these will generate excessive vibration which can 

be compared to a standard and taken as an indication of a developing problem.  

However, spectral analysis (based on the Fast Fourier Transform  - FFT) of the signal 

is necessary for a more precise diagnosis.  Table 1-2 shows characteristic fault 

features and associated symptomatic frequencies in the vibration spectra of rotating 

machines, where f1 is the electrical power supply frequency, Nr is rotational speed 

and s is the slip frequency in Hz [10]. 

Figure 1-2 shows time- and frequency-domain vibration signals obtained from an 

induction motor using an accelerometer 

 



12 

Table 1-2 Characteristic Fault Features in Vibration Spectra [10] 

Fault Condition 

Symptomatic 

Frequencies (in Hz) 

in Vibration 

Notes 

Stator Electrical 

Asymmetry 
2×f1 

Fault may be caused by a stator 

winding problem or weakness of 

stator winding support. 

Rotor Electrical 

Asymmetry 

1×Nr with 2×s 

sidebands 

Fault may be caused by cracked 

or broken rotor bars, or shorted 

rotor laminations. 

Mechanical 

Imbalance 
1×Nr 

The change in the frequency 

component is usually most 

dominant in the radial direction. 

Bent Shaft or 

Misalignment 

(Angular or Parallel) 

1×Nr  and  2×Nr 

A high 2×Nr component can be 

expected if the problem is severe 

and the system is sufficiently 

mobile. 

Mechanical 

Looseness 
1×Nr and 2×Nr 

Higher harmonics and also inter-

harmonics of 1×Nr may also be 

caused by signal truncation. 

Bearing Defects 

 

Impact Excitation 

Resonance (IER) 

 

Indication of the fault occurs in 

the high frequency range 

 

With electrical motors, information useful for the diagnosis of faults is found in the 

form of sidebands either side of the power supply frequency (f1 ± s) so the frequency 

analysis must be performed to a high degree of precision. Motors also generate 

vibrations at frequencies related to the rotor slot passing frequency and its harmonics, 

the number of poles and the slip frequency.  
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Figure 1-2 Time- and frequency-domain vibration signals from an induction motor 

using an accelerometer as transducer (a) time domain (b) frequency domain 

1.6.2 Motor Current Signature Analysis (MCSA) 

The current through the stator can be used to identify variations in the magnetic 

flux[8]. These variations in supply current are measurable at any suitable point, even 

some distance away from the motor, e.g. in a control cubicle, and this is the main 

advantage of MCSA.  Because MCSA can monitor the motor from a remote point 

then problems of access due to hazardous environments or where non-intrusive 

techniques are required, it has proved a very useful CM technique. MCSA is 

relatively inexpensive, can monitor the efficiency of motors and improve their 

reliability by providing on-line diagnostics for critical equipment. Spectral analysis 

can be an integral part of this method. Figure 1-3 shows time- and frequency-domain 

current signals obtained from an induction motor using MCSA. 

Advantages that can be gained from applying the MCSA analysis compared to other 

CM techniques have been summarized as [8]: 

 Economic, reliable and easy to use, 
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 Non-intrusive monitoring capability at a location remote from the equipment 

and, can be used in hostile environments, 

 Rapid measurement can be performed as frequently as desired by relatively 

unskilled personnel, 

 Motor current spectrum is not affected by current transducer or probe 

location, 

 Improved plant management and saving of money and staff time, 

 Can be used in places where conventional methods are inapplicable such as 

deep wells in the oil industry, 

 No risk involved in data collection, hence safety improved, 

 Increased machine availability, reduced down time, 

 Maintenance man-hours saved, and 

 Improved ability to manage and plan maintenance. 
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Figure 1-3 shows time- and frequency-domain current signals obtained from an 

induction motor using MCSA (a) time domain (b) frequency domain 

1.7 Data Processing 

1.7.1 Time-Domain 

Time-domain digital data records of transducer signals consist of individual values 

representing the energy content of the signal when the samples were taken. With 

more sophisticated digital systems the sampling rate will vary, increasing with 

increasing frequency content of the signal, but it is still more common today to 

sample at a fixed rate. With analogue measurement, time-domain signals are 

continuous. Statistical measures used in industry to represent the time-domain signal 

are usually the RMS value, and occasionally the maximum amplitude and mean 

value. Industry values simplicity and thus tends to use single-value assessments of 

the time-domain signal which can be easily compared with accepted standards. For 

vibration signals from electric motors the RMS vibration value is by far the most 

common such measure and is used for trending, with action being required when 

prescribed levels are reached [10].  However, the setting of trending criteria is not 
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simple since the differences between individual motors may exceed - in some cases - 

the difference between a healthy and a faulty motor.  

The time-domain signal data is often very sensitive to small changes in speed or load 

and valuable features such as transients will show up. However, in practice, analysis 

of the raw time-domain signal is less common than that of a corresponding frequency 

spectrum.  

1.7.2 Frequency-Domain 

The frequency content of vibration signals are always directly related to the mechanical 

condition of the machine components. The frequency-domain allows identification and 

tracking of individual frequency components, and identification of frequency and 

amplitude modulation, distortion and also noise levels. It therefore permits close 

correlation with physical machine characteristics.  

Fourier transformations are based on Fourier series analysis of continuous and 

infinite functions. With digital sampling the Discrete Fourier Transform (DFT) is 

used. The Fourier transform is particularly important for condition monitoring and 

therefore this section provides details on its practical application. 

1.7.2.1 Frequency Spectrum Amplitude Scales 

In Figures 1-2 and 1-3 the spectral plots were plotted on a logarithmic scale. 

However, it is more common in condition monitoring to create a power spectrum by 

multiplying the result of the FFT with its complex conjugate. Furthermore, this is 

often transformed to a logarithmic (ie decibel) scale which is made with respect to 

some reference value[11] . 

The power spectrum presents an indication of the energy in the signal [10] and the 

logarithmic scale has the effect of emphasising relatively low amplitude components. 
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Figure 1-4 presents different amplitude scales using the simulated time data. In real 

applications, the choice of the scale used will depend on the features of interest. 

 

 

 

 

 

 

 

 

 

 

Figure 1-4 Illustrations of different spectra amplitude scales for simulated signal (a) 

time domain- (b) power spectrum linear scale (c) power spectrum log scale 

 

1.7.2.2 Differentiation and Integration of Time-domain Signal: Effect on 

Frequency Spectra 

It is interesting to consider differentiation and integration of the time-domain signal 

and subsequent effects on the FFT. This is particularly relevant as vibration is the 

most popular measurement parameter for machinery condition monitoring that are 

linked by differentiation/integration – as shown in Figure 1-5. 
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 Signal parameter  

  

Displacement (m) 

Integration   Differentiation 

 Velocity (m/s)  

Integration   Differentiation 

 Acceleration (m/s
2
)  

Figure 1-5 Relation between vibration parameters 

A displacement signal was simulated by summation of sine-waves of frequencies 

50Hz, 97.2Hz, 800Hz and 1200Hz, and random noise and their amplitude are one 

(Figure 1-6(a)). The two lower frequency sinusoids predominate in the FFT of the 

displacement signal, and the two higher frequencies are not seen (Figure 1-6(b)). 

When the time signal is differentiated twice, first to obtain velocity and then 

acceleration, the higher frequency components increase in relative magnitude, see 

Figure 1-6(d) and 1-6(f). This is because for simple sine waves differentiation is the 

same as multiplying each component by its frequency, acceleration = ω x velocity = 

ω
2
 x displacement. 
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Figure 1-6 Differentiation of a simulated signal (a) displacement signal- (b) FFT of 

displacement signal - (c) Velocity signal –(d)  FFT of velocity signal –(e) 

Acceleration signal –(f) FFT of acceleration signal 

1.7.2.4 Signal Distortion and Modulation 

Two highly important factors in transformation from the time-domain to frequency-

domain are signal distortion and frequency modulation, features which are often met 

during fault diagnosis. As shown in Figure 1-7, a sine-wave of 50 Hz with an integer 

number of periods yields a single component in the frequency domain located at the 

frequency of the sine-wave. Figure 1-7 shows various types of distortion and the 

resulting effect in the frequency domain.  
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Figure 1-7 Sine-wave distortion and effect in the frequency-domain (a) sine wave- 

(b) FFT of sine wave (c) Sawtooth wave – (d) FFT of sawtooth wave- (e) Square 

wave – (f) FFT of square wave 

Truncated sine waves do not have the same spectrum as sine waves of infinite 

duration. It can be seen that when the 50 Hz sine wave is of finite duration a number 

of additional peaks appear in the spectrum. The frequencies of these peaks will be a 

function of the duration of the signal and the frequency of the truncated sine wave. 

The transforms of a square wave and a triangular wave are also shown in Figure 1-7. 

A signal may be modulated by amplitude, phase or both. The result of modulation in 

the frequency domain is the appearance of sidebands spaced either side of the 

fundamental frequency. The spacing of the sidebands is equal to that of the 

modulating frequency.  

Figure 1-8 (a) shows the time-domain signals of a 50Hz sine wave with and without 

amplitude modulation of ± 50%. Figure 1-8 (b) shows that even a relatively large 

amount of amplitude modulation leads to relatively low-level sidebands.  
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Figure 1-8(c) shows the time-domain signals of a 50 Hz sine wave with and without 

frequency modulation of 200 Hz. Figure 1-8 (d) shows that the effect is to produce 

significant sidebands.  

In both cases the amplitudes of the sidebands are symmetrical about the fundamental 

frequency (ie the carrier) and it is difficult to see more than the immediate sidebands 

using the linear ordinate scale in Figure 1-8. A real signal is likely to have both 

amplitude and frequency modulation and each modulating frequency will yield two 

sets of sideband families in the frequency domain. 

 

 

 

 

 

 

 

 

Figure 1-8 Sine-wave modulation and effect in the frequency-domain 

1.7.2.5 Averaging of Frequency Spectra 

Averaging is also an important process of data manipulation in the frequency-

domain. It is used to reduce the effect of random noise. Averaging is easier to 

achieve in this domain than for a raw time signal, as the latter requires a reference 

mark to align periodic data (usually a once per revolution marker). Figure 1-9 shows 

that for recorded induction motor vibration data even using only a small number of 
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no averaging

average of 5 runs

tests to obtain an average gives a significant improvement in signal quality. In 

comparison to Figure 1-9 in which no averaging was performed in blue one; and red 

one shows the result of averaging across 5 sequentially recorded data files. 

Alternatively, averaging could have been carried out with just one data file by 

splitting it (in the time-domain) into a number of segments and averaging the spectra 

from each segment. However, for the same file sizes as those used in Figure 1-6, this 

would have led to a reduction in the frequency resolution. 
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Frequency spectrum 

  

1.7.3 Time-Frequency Domain 

It is possible to view both time and frequency information simultaneously in a three 

or two-dimensional time-frequency plot. Here the changes in particular frequency 

components may be related to particular instances in time, allowing the possibility of 

improved fault location. 

There are many algorithms for achieving a time-frequency plot, such as: 

• Short Time Fourier Transform (STFT), 

• Wigner-Ville Distribution (WVD), and 
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• Wavelet Transform (WT).  

Each of these has its own advantages/disadvantages, but they all require the setting 

of a number of parameters such as window type (e.g. Hanning), length and overlap 

(to minimise loss of information the length of the windows is such that each window 

overlaps to a degree with its neighnor) and all lead to very similar time-frequency 

results. Examples of time-frequency plot is given in Figures 1-10, for which the 

MatLab WVD function was used on simulated time data containing predominantly 

frequencies  shaft frequency of 23.53 Hz, the power supply frequency at 50 Hz, twice 

power supply frequency 100 Hz, rotor oscillation frequency at 190.64 Hz with 

sidebands around the 1st shaft  frequency  

Figure 1-10 highlights an example of the problems which can occur with this type of 

representation – that is the interference between the two components 23Hz and 50Hz  

 

Figure 1-10 2-D Time-Frequency Plot 

1.8 Neural Networks (NN) 

Artificial neural networks (ANNs) are used for statistical processing of data and 

applied to fault detection and diagnosis. Generally these networks are divided into 
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two main types - supervised and unsupervised. The difference is the method used to 

train the network. 

In supervised learning a “teacher” is present during the learning process, the ANN 

has a given input and the error is the difference between ANN output and the target.  

The network weightings are adjusted using a back-propagation algorithm to reduce 

the difference between the actual and desired outputs. In this way the ANN is trained 

to learn specific behaviour and desired outputs for each input. It is the presence of 

the training pattern which makes this learning supervised.  

With unsupervised learning there is no target available to the ANN, only the input is 

present. This type of ANN learns by discovering and adapting to structural features 

in the input pattern. This is achieved by adapting to statistical regularities or 

clustering patterns in the training samples.   

In unsupervised training the input patterns are applied to the network but there is no 

specified output from the training process. Here the network organises itself to 

develop properties of the training data set that emerge as the process proceeds.  

ANNs are often supplied with input variables extracted from the raw data using more 

conventional signal processing techniques. Jacob  [11] report applications of ANNs 

to incipient fault detection in induction motors where the input variables were taken 

from the relative phases of the power supply current. Filippetti [12] has suggested 

that the ANN inputs could be the phase current and the induction motor slip. Paya et 

al[13] detected motor bearing faults using vibration data pre-processed by a wavelet 

transform as the input to the ANN.  
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1.9 Research Aim and Objectives 

1.9.1 Research Aims 

The aim of research is to investigate and recommend a condition monitoring (Motor 

current signature or Vibration signature) approach for three phase induction motors. 

Moreover, reconstruction vibrations signal from phase current signal.  

The specific aims are: 

Vibration measurement is widely used for diagnosing the condition of rotating 

machinery; but sometimes direct measurement can be difficult and expensive in 

remote or locations that are challenging to access, in harsh environments and where 

it is expensive to install sensors close to the machine. These conditions apply to 

electrical submersible pumps (ESPs) in deep-well oil and gas extraction, or deep 

within nuclear power stations. The current driving the pump has a signature which 

has been shown to provide information on the condition of the pump without 

requiring direct access to the pump itself 

The first aim of research is to investigate and recommend a condition monitoring 

(motor current signature (MCS) or motor vibration signature (MVS)) approach for 

three phase induction motors.    

The secondary purpose was to develop a technique for detecting and locating faults 

(assessing condition and performance) in inaccessible equipment using radial basis 

function (RBF) networks to reconstruct the vibration waveform from the measured 

power (one phase current) 

The third purpose was to present the new an innovative, non-intrusive, accurate and 

reliable method for the early detection and diagnosis of faults in an induction motor 

(IM) using an enhanced power parameter measurement technique. It is argued, and 
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initial results suggest that it is more effective to monitor the operating power factor 

(PF) of the IM using only measured current and supplied manufacturer’s data.  

1.9.2 Research objectives  

The objectives are as listed below:   

 Explore induction motors failure modes and understand condition monitoring 

techniques e.g. vibration and motor current signature analysis. 

 Develop a mathematical model for induction motor operations and effect of 

faults on the measured performance. 

 Design and construct a test rig with associated instrumentation for fault 

simulation namely phase imbalance and rotor bar broken, data collection and 

subsequent data analysis. 

 Investigate the use of conventional signal processing techniques such as time-

domain and frequency-domain for detection and diagnosing of the seeded 

faults.  

 Apply advanced signal processing methods such as time-frequency-domain 

using the short time Fourier transform (STFT), Wigner Ville distribution 

(WVD) ,continuous wavelet transform (CWT) and discrete wavelet transform 

(DWT)  for detecting and diagnosing quantified faults.  

 Compare the capabilities of the techniques investigated for fault detection and 

diagnosis.  

 Apply Radial Basis Function networks to the reconstruction of motor 

vibration using measurements of one phase of the motor current. 

 Apply a method of determining the operating PF of the IM using only the 

measured current and the manufacturer’s data available from the nameplate 
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and/or datasheet to detect, diagnose and assess the relative fault severity of 

the seeded faults 

1.10 Organisation of the Thesis 

This thesis is organised in the following way: the literature review is given in 

Chapter Two. Chapter Three provides a mathematical model for the induction motor. 

The test rig, transducers, data acquisition system and fault simulation are presented 

in Chapter Four.  

Chapter Five describes fundamental signal processing techniques and their use in 

collecting and processing data.  

Chapter Six compares the performance of the short time Fourier transform (STFT), 

the Wigner-Ville distribution (WVD), the continuous wavelet transform (CWT), the 

discrete wavelet transform (DWT) and wavelet multi-resolution analysis (MRA) 

using a simulated signal and measured data from an induction motor with seeded 

faults.  

Chapter seven investigates the relationship between phase current and vibration 

using coherence technique as a measure of the relationship and proposes a novel 

method of applying Radial Basis Function networks to the reconstruction of motor 

vibration using measurements of one phase of the motor current.  

Chapter Eight provides an innovative, non-intrusive, accurate and reliable method for 

the early detection and diagnosis of faults in an induction motor using a power factor 

measurement technique. 

Conclusions, contributions, and recommendations for future work are discussed in 

Chapter Nine. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 

 

This chapter begins by reviewing the current literature on fault finding and 

monitoring of, specifically, three phase induction motors with emphasis on modern 

techniques and methods.  

This chapter then summarises the investigations into the type of faults found in an 

induction motor and techniques for detecting and identifying them.    
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2.1 Introduction 

Induction motors are low cost, reasonably sized, and are powered by an easily 

available power supply. This results in them being widely used as critical 

components in many industries and a common component in much commercially 

available equipment. Often the induction motor will operate in hostile conditions and 

both the method of installation and the type of duty may seriously accelerate failure.  

Nandi et. al., [14, 15] have provided a useful classification of major failure modes in 

electrical machines: 

 “Stator faults resulting in the opening or shorting of one or more stator coils 

or phase windings, 

 Abnormal connection of the stator winding, 

 Broken rotor bars or cracked end rings, 

 Static and/or dynamic air-gap eccentricities, 

 Bent shaft, 

 Shorted rotor field winding, and 

 Bearing and gearbox failures.”   

In  [16] on the reliability of induction motors classifies faults in order of likelihood 

of occurrence: bearing failure (51%), external faults such as a hostile environment 

(16%) stator winding faults (16%), unknown 10%, broken or damaged rotor bars 

(5%) and damage to shafts and/or couplings (2%).  

The above faults produce one or more of the following symptoms: noise and 

vibration, excessive heating, unbalanced line currents and voltages, torque pulsations 

and flux leakage. Other symptoms are, of course, also possible. 
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It is the location that categorizes bearing faults, e.g., inner or outer race. Common 

causes of bearing faults are an inadequate supply of lubricant, foreign material 

contaminating the lubricant, over-loading and over-heating. If untreated these lead to 

seizure of the bearing or violent vibration and catastrophic failure.  

Failure of winding insulation is the most common cause of stator faults due to over-

heating, mechanical vibration, excessive voltages or possibly abrasion between the 

rotor and stator. The immediate result will tend to be turn-to-turn short circuits but 

these can build to a winding-to-ground short circuit.  

There are two common rotor faults. The first is related to air gap eccentricity which 

commonly arises from such mechanical problems as shaft misalignment or load 

unbalance. With shaft misalignment, the rotor can be displaced from its normal 

position because of an error in construction or a constant radial force. Load 

unbalance over a long period can cause bearing damage, which will adversely affect 

air gap symmetry.  

The second common faults are with the rotor itself, i.e. a bar defect or even breakage, 

usually due to thermal or fatigue stresses during start-up, especially in large motors. 

A broken bar changes torque significantly and is dangerous for the safe operation of 

the motor.  

2.2 Condition Monitoring Technologies 

To monitor the condition of a machine, Condition Based Maintenance (CBM), or 

Predictive Maintenance, uses a wide range of measurements including vibration, 

acoustic emission (AE), oil debris analysis, thermography  and phase current (motor 

current signature analysis - MCSA). For the CBM system to be effective and 

efficient the measured parameters must accurately reflect the condition of the 
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machine, must be obtained on a regular and frequent basis and the system should be 

cost-effective and practical. Today, vibration acceleration is widely used parameter 

for detection of faults in machines particularly with artificial intelligence and neural 

network (NN) based techniques  

To study static rotor eccentricity Toliyat, et. al. [17] considered the geometry and 

physical layout of the windings to develop a model of the induction motor which 

could simulate performance during transients as well as the steady state. The 

mechanical equations of the model allowed any arbitrary time function of load torque 

to be specified and the resulting stator current calculated. Simulations gave results 

which were in good agreement with the experimental results of previous studies.  

Henao, et. al. [18] developed an analytic expression for the equivalent internal 

circuit of a three-phase squirrel-cage induction motor and validated it experimentally. 

The proposed model allowed for simulation of induction motor state variables, both 

stator and rotor, under normal or faulty operation. It was found that the model was 

very good at predicting the effects of fault on the behaviour of the induction motor. 

A comparative study of the use of different physical parameters for condition 

monitoring (CM) using both measured and simulated data was undertaken by 

Negrea, et. al. [19]. They found the best indicators of faults to be axial flux and 

electromagnetic forces acting between rotor and stator. This work included a 

comprehensive study of electromagnetic flux patterns in the presence of faults and it 

was claimed that useful insights were obtained into the use of particular 

configurations of search coils.  

Legowski, et. al. [20] demonstrated that instantaneous electric power has significant 

advantages when used for signature analysis of induction motors because its 



32 

characteristic spectral component is at the frequency of the disturbance, independent 

of the motor speed. This is important for diagnostics because irrelevant components 

at multiples of the supply frequency are screened out. 

Ellison and Yang [21] used the airborne sound generated by air gap eccentricity in 

induction motors to detect the presence of this fault, and confirmed that harmonics 

found in the acoustic noise spectrum from an induction motor were generated by 

static eccentricity. However, it has long been known that noise measurements in 

industrial plant are rarely practical because of the high levels of background noise 

from nearby machines [22], [23].  

Nearly all motor faults generate harmonics in the torque which exists in the air gap, 

at specific frequencies but this is not a simple parameter to measure, for example, the 

instantaneous power is not a direct measure of the instantaneous torque. The 

mechanical load, the shaft and the rotor of a rotating machine combine to form a 

spring system with its own resonant frequencies, so the air gap torque transmitted via 

this spring system will be modified and will not be the same as that measured at the 

shaft [24],[25]. Nevertheless Hsu [24] has suggested a method using the air gap 

torque for the detection of stator unbalance and cracked rotor bars. 

Because the flux in the air gap of an induction motor is rich in harmonics it can be 

used to give reliable information concerning the electrical condition of the motor. 

Any change in a relevant parameter such as voltage and/or current will generate 

changes in the spectrum.  Xianghui, et. al. [26] studied the effect of static rotor 

eccentricity on air gap flux .Trutt, et. al. [27] measured air gap flux and motor 

vibration and concluded that both signals provided useful information for machine 

CM. But both [26] and [27] identified only parameters that were functions of 

eccentricity of the air gap, rather than useful for on-line diagnostics. 
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In practical terms the most interesting technique for CM was based on monitoring of 

vibration and electrical parameters because these are readily available for motor 

drive systems and in a form suitable for signal processing. 

2.2.1 Motor Vibration Signature.  

Rotating electrical machines generating mechanical power operate under variable or 

even dynamic loads and are thus vulnerable to forced vibrations leading to dynamic 

stresses should the mechanical condition of the machine change. 

Dorrell and Smith [28] produced an analytical model of an induction motor subject 

to static eccentricity. Their approach was to use air-gap permeance with rotor and 

stator magneto-motive forces producing unbalanced magnetic pull. The model was 

tested and confirmed by experiment and good agreement was found at low slip. They 

concluded that rotor skew effects and higher order winding harmonics can affect the 

magnitude of the unbalanced magnetic pull. 

Finley, et. al. [29] compiled a table of electrically and mechanically excited 

vibration patterns for induction motors and analysed the important electromagnetic 

force components between rotor and stator. These reached their peak when the 

magnetising current flowing in the stator is a maximum, so there are two force peaks 

during each power cycle and the vibration frequency will be twice the line frequency. 

This phenomenon is sensitive to (and hence a possible measure of) problems in 

eccentricity, and motor frame and base stiffness. 

Trutt, et. al. [30] made a theoretical study of the relationships between mechanical 

vibration and electrical winding deterioration in AC synchronous machine elements 

for different operating conditions. They found significant quantifiable correlation 
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between mechanical vibration and electrical deterioration which was thus a possible 

basis for the CM of AC synchronous machines. 

Müller and Landy  [31] made an experimental and theoretical study of broken rotor 

bars and their impact on axial forces. They developed a mathematical model of the 

interaction of inter-bar current with stator flux and the resultant force in the axial 

direction. The results were confirmed by experiment. The drawback of this research 

is that it is solely applicable to the condition where there are inter-bar currents, e.g. 

as in some copper cage rotors. 

An induction motor fed from a Pulse Width Modulation Inverter, was investigated by 

Villada, et. al. [32] and the measured vibration and current from healthy and faulty 

(stator faults) machines were compared. The vibration spectrum underwent 

measurable changes at a number of frequencies and these can be used as early 

indicators of stator winding faults. It was recommended that to obtain a full picture, 

the results should be part of a predictive program and the commencement of any 

change be established and initial cause identified. Trending was considered vital as 

attempting to establish motor condition from one set of data alone was considered 

undesirable and possibly unachievable. 

Vandevelde and Melkebeek [33] developed a finite element model (FEM) for 

numerical analysis and prediction of vibration and noise from induction motors based 

on electro-mechanical analysis of magnetic equivalent circuits. These researchers 

claimed their method overcame the drawbacks inherent in such analytical models but 

analysis was not made of lower-order forces and vibrations generated by electro-

mechanical faults. However, such effects might be studied using this approach. 
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Ishibashi, et. al. [34] were concerned to reduce the noise radiated from induction 

motors. Most electromagnetic noise occurs when the natural frequencies of the stator 

coincide with or are close to the frequencies of the magneto-motive forces and they 

used FEMs to assess electromagnetic force associated with the Maxwell stress tensor 

the stator’s natural frequencies assuming spring elements between stator frame and 

stacked core. Good accuracy was claimed between the calculated and experimental 

results.  

Jang and Park [35] simulated electro-mechanical faults (rotor eccentricities and 

broken bars) in a single-phase induction motor. Characteristic magnetic, mechanical 

and electrical equations were solved using finite element method to obtain the 

resulting characteristic frequencies of the magnetic forces and rotor vibrations. Faults 

were introduced into the model and the model showed that the faults could be clearly 

identified by the changes they made to the vibration spectrum. 

More and Ishiskawa [36] using a 2-D non-linear FEM to analyse the radial 

electromagnetic forces in an induction motor. They considered the coupling of the 

motion of the rotor with the voltage. Steady-state characteristics were analysed and 

the influence of stator winding and slip on the radial force at the teeth and slots was 

clarified. 

2.2.2 Motor Current Signature 

Electrical current monitoring includes current signature analysis, zero-sequence and 

negative-sequence current monitoring and Park’s vector. The Park’s vector 

transforms three quantities (direct axis, quadratic axis, and zero-sequence 

components) expressed in a two-axis reference frame back to phase quantities. It is 

used in power systems models and functions.  All these methods (and more) are used 
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to analyse stator current in order to detect machine and inverter faults. Usually with 

induction motors, monitoring of the stator current is already used to protect the 

machines from troublesome over-currents, ground leakage current, etc. Thus, current 

monitoring can be a sensor-less detection method, implemented without any extra 

hardware. 

Numerous applications of MCSA for CM of equipment have been published and in 

most of the applications, the stator current was monitored for detection and diagnosis 

of the faults. Schoen, et. al. [37] used MCSA to detect damage of induction motor 

rolling-element bearings. The investigation considered the relationship between 

motor current and induced vibration due to incipient bearing failure. The study 

reviewed and defined bearing characteristic frequencies and failure modes associated 

with the physical construction of the bearings. The effects on the stator current 

spectrum were derived for different bearing faults and experimental results verified 

the predicted relationship between the vibration and current frequencies. The test 

results confirmed that the stator current signature could be used to detect the 

presence of a bearing fault. 

Schoen and Habetler [38] presented an analysis of the effects on the current 

harmonic spectrum of oscillation of the flux density in the air gap due to position-

varying loads. When the load torque varies with rotor position, the current will 

possess spectral components with load induced harmonics and the induced rotor fault 

harmonics coinciding. Furthermore, since the effect of the load and fault on a single 

stator current harmonic component is spatially dependent, the fault induced portion 

cannot be separated from the load portion. Thus on-line detection systems which 

measure and analyse the spectrum of a single phase of the stator current must 
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monitor those spectral components which are not affected by the oscillation of the 

load. 

Benbouzid [39] investigated fault detection using MCSA (spectral analysis of the 

stator current). This study examined the impact of air-gap eccentricity, bearing 

damage and broken rotor bars on the stator current. Of particular interest were the 

sidebands in the current spectrum produced by the various faults. It was shown that 

the sidebands could coincide with others resulting different faults, for example, stator 

current harmonics follow due to torque oscillation could obscure those created by the 

induced fault condition. 

Thomson and W.T  [40] used MCSA for induction motor faults, particularly air-gap 

eccentricity, broken rotor bars and shorted turns The broken rotor bars caused current 

components, the so-called twice-slip frequency side bands, to be induced in the stator 

winding. These researchers pointed out that any successful diagnostic strategy must 

be able to account for at least the following: different rotor designs, different load 

conditions, varying mechanical load characteristics, a range of mechanical 

components and power ratings in the drive train. Thomson and Fenger reviewed four 

selected industrial case histories and showed MCSA could be a powerful mechanism 

to monitor the health of induction motors. 

Benbouzied, M.E.H  and Kliman [41] investigated motor current for fault detection 

in induction motors, in particular rotor fault detection (broken bars and bearing 

deterioration) with special emphasis on the signal processing techniques used. They 

pointed out that in many cases, conventional techniques are sufficient for the steady 

state situation, but for the most difficult cases (i.e., non-stationary), time-frequency 

and time-scale transformations, such as wavelets, are necessary for the detection and 

diagnosis of the rotors faults.  
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Dimitrov, et. al. [42] experimentally diagnosed a broken rotor bar fault using 

(MCSA). The experiment used a 0.5 kW induction motor where the rotor bar was 

damaged by having a hole drilled onto it. The spectra produced by the health and the 

faulty motors were compared. The presence of the faulty rotor bar produced 

sidebands in the stator current spectrum at certain frequencies. It was concluded that 

MCSA was a reliable technique for diagnosis of broken rotor bar faults. 

Frosini, and Bassi  [43] have recently proposed a new use for MCSA, combining it 

with and motor efficiency as an indicators of faults in rolling bearings. This study 

investigated experimentally four bearing defects: a crack in the outer race, a hole in 

the outer race, deformation of the seal, and corrosion. The use of decrease in 

efficiency of the induction motor as a warning of incipient fault was a novel feature 

of this study.  

Faiz, et. al.  [44] recognized that variation in the load quite apart from changes in 

static and dynamic eccentricities is a major factor affecting the changes in dynamic 

behaviour which are used for fault diagnosis. Without taking load variation into 

account faults are inaccurately diagnosed. For example load variation will have 

noticeable effects on side-bands that are used as fault detection indices. Faiz, et. al. 

therefore proposed a “unified framework” an approach that determines the degrees of 

static and dynamic eccentricities at different load levels. The researchers proposed a 

systematic relation with which to evaluate the impact of load-dependent indices on 

eccentricity detection and fault-severity estimation. Correlation techniques were used 

to assess the quality of the indices obtained for detection in terms of their relation to 

static and dynamic eccentricities, their degrees and dependency on the load of motor. 

It was claimed that the results obtained determined the type of eccentricity and 

degree exactly. 
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2.3 Signal Processing Techniques  

The condition of the induction motor can be estimated from the time domain signal 

using signal processing techniques which vary from the simple to the sophisticated. 

This section provides a brief summary of the common fault detection techniques; 

time domain analysis, frequency domain analysis, cepstrum analysis and time-

frequency analysis applied to measured signals obtained from induction motor.  

The most direct approach has been is to extract statistical properties from the time 

domain signals; the most common were RMS, standard deviation, Kurtosis, mean, 

skewness, crest factor and impulse factor.  

Benbouzid [39] when he reviewed MCSA as a mechanism for fault detection also 

reviewed advanced data processing techniques for monitoring of induction motors. 

Possibly the most powerful of the time-domain techniques uses characteristic values 

(such as RMS) and trends them to see how the condition of the motor changes with 

time. Spectrum analysis examines characteristic frequencies and this can allow 

discrimination between faults and even detection of incipient faults. Cepstrum 

analysis is a powerful method for detecting periodical components in the spectra and 

is sometimes used as an evaluation tool.  

Benbouzid also described some of the traditional stator current signature analysis 

methods: the Fast Fourier Transform (FFT), the Digital Transform (DFT), the 

instantaneous power spectrum, the bispectrum, high-resolution spectral analysis and 

wavelet analysis. He concluded that Fourier analysis is generally the most useful 

where the signals are stationary, but is not appropriate for signals with a transitory 

characteristic such as rapid drifts, abrupt changes in amplitude and/or frequency, or 

impulses. The Short Time FFT (STFT) was developed to overcome such problems 
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and can be considered as a compromise between time- and frequency-based analyses 

of a signal. However, Benbouzid recommends wavelet analysis for CM and fault 

diagnosis because it can cope with transients in the stator current. The Wavelet 

Transform (WT) analysis places a window over a portion of the signal and analyses 

the signal within that window, subject to certain mathematical conditions. The 

window moves along the signal and by continuously varying the duration of the 

window analyses the original signal in terms of time and frequency. Longer windows 

give more precise low-frequency information and shorter windows give more precise 

high-frequency information. 

Yi-Ching, et. al. [45] focused on developing a non-intrusive monitoring of power 

system signatures, using the WT and STFT. They found that the WT was superior to 

the STFT. The paper presented two case studies to demonstrate that choice of power 

signature can greatly influence the accuracy of load identifications. 

Eren and Devaney [46] used wavelet packet decomposition to analyze stator current 

and detect bearing defects. The advantage over the FFT for MCSA is the non-

stationary nature of the stator current, and the WT provides better analysis for 

varying load conditions. The WT also allows the frequency bands to be tailored to 

better cover the range of frequencies induced by the bearing-defect and rotor speed 

variations. 

Antonino-Daviu, et. al. [47] used the discrete wavelet transform (DWT) to diagnose 

rotor bar failure in induction motors based on stator current during start-up. With bar 

breakage, the higher level components of the DWT of the startup stator current 

showed a characteristic pattern. Experiments were carried out for different machine 

conditions (healthy machine and machine with different faults) and different 

operating conditions (zero load, full load, pulsating load and fluctuating voltage). In 
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each case, the results were compared with those obtained using the FFT. As might be 

expected if the startup time was not very short, the DWT and the FFT gave similar 

results for the diagnosis of a broken bar in the case of loaded motors. However, the 

DWT can detect a broken bar in the unloaded condition (rapid transient), and it 

provides a correct diagnosis in particular cases where FFT gave an incorrect 

diagnosis. 

Patel, et. al. [48] presented a method for identification of bearing defects of an 

induction motor at full load, making use of the advantage of the DWT and Hilbert 

Transform to extract the necessary features from the vibration signal of the bearing. 

The experimental results show this method can be successfully used for bearing fault 

detection and diagnosis. 

Obaid, et. al. [49] have demonstrated that detecting the characteristic frequencies of 

a bearing fault using the motor current was especially difficult for inner race faults, 

even when the fault frequencies were prominent in the motor vibration signal. To 

overcome this problem they suggested that a wider frequency range be used for 

current-based fault detection. It was shown that disassembling and remounting the 

bearings can significantly alter the vibration characteristics and conceal some fault 

signatures. 

Gritli, et. al. [50], improved the performance of the DWT in detecting a broken rotor 

bar by simply pre-processing the stator phase current, even for speed-varying 

conditions. Once the fault was detected, a cyclic time-frequency indicator was used 

to quantify the extent of the fault. It was obvious that the method was advantageous 

even when the fault characteristic frequency is very close to those of other faults or 

even a fundamental frequency of the motor or system. The approach allows the 

extraction of each frequency component separately and with high precision. Both 
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experimental and simulated results confirmed the effectiveness of this method for 

detecting a broken rotor bar even under time varying conditions.  

Cusido, et. al. [51] developed a methodology for the detection of faults in induction-

motors combining the Power Spectral Density (PSD) with using wavelet analysis of 

the stator current. It is claimed that this method is particularly useful for online 

diagnosis and industrial applications. The MCSA gives good results for the detection 

of motor faults under constant load torque, but improvement is required in the case of 

variable load torque, and also of variable speed. Cusido, et. al. demonstrated that 

their method can detect and diagnose shorted turns and broken rotor bars in induction 

motors in the cases where the load-torque is not constant, and achieved good fault 

diagnosis results for every operating point reported. However, this method requires 

good prior knowledge of the signals to determine the best sampling frequency and 

wavelet type to achieve detection of the faults. 

The authors introduce a so-called “merit factor” which is found by adding the 

squares of the detail corresponding to the frequency band where the fault harmonic is 

situated  and show that this is a powerful tool in enabling the process of diagnosis to 

be automated and applied to practical industrial systems under both constant torque 

and variable load torque. 

2.4 Fault classification  

Fillippetti [52] comprehensively reviewed the application of AI to machine 

monitoring and fault diagnosis. He demonstrated the validity of using NNs together 

with fuzzy logic for fault identification and fault severity evaluation. In recent years 

the CM and fault diagnosis of induction motors has moved towards Artificial 

Intelligent (AI) techniques [52] such Artificial Neural Network (ANN) and Support 
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Vector Machine  (SVM)  which have been applied in fault diagnosis of complex time 

varying and non-linear system. AI techniques use association, reasoning and decision 

making processes to solve diagnostic problems in a similar way to the human brain.  

A major advantage of AI techniques is that they are good candidates for automation 

of diagnostic procedures [53]. ANNs have many advantages over conventional 

diagnostic techniques, the most important being their learning flexibility and that 

their design does not need a rigorous model of the motor. ANNs have demonstrated 

their ability to in the field of CM and fault diagnosis of induction motors. ANNs can 

represent highly nonlinear functions and are capable of performing multi-input, 

multi-output mappings. 

Several research activities used ANN for CM and fault diagnosis of electric motors 

using different approaches and setting different tasks, Chow, et. al. [54] have listed 

these as: 

(1) “Pattern recognition, parameter estimation, and nonlinear mapping applied to 

CM, 

(2) Training based on both time and frequency domain signals obtained via 

simulation and experimental results, 

(3) Real time and online unsupervised diagnosis, 

(4) Dynamic updating of the structure with no need to retrain the whole network; 

(5) Filtering out transients, disturbances and noise, 

(6) Fault prediction in incipient stages owing to operation anomalies, and 

(7) Operating conditions clustering based on fault types.” 
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  Figure 2-1 Block diagram of an ANN-based fault diagnosis system [54] 

The ANN flow chart for fault diagnosis of induction motor faults based is shown in 

Figure 2.1. In [54], successful results were obtained using a Back Propagation neural 

network (BPNN) on motor winding short circuit and bearing fault detection. Merwe 

and Hoffman [55] showed if the classification problems are well defined, the Radial 

Basis Function (RBF)  neural network can identify the degree of fault severity. 

Penman and Yin [56], applied a Self-Organizing Feature Map (SOM) to CM of 

electrical drives and reported practical advantages including the ability to learn and 

produce classifications without supervision. 

Du and Wolfe [57] proposed an approach for diagnosis of faults in rolling bearing 

using neural networks and time-frequency-domain analysis of bearing vibration. In 

[32], the attempt was made model the non-linear steady state conditions of rotor 

speed and stator current versus damping factor and main winding equivalent turns 

using a multi-layer perceptron (MLP) approach by suitable training of the ANN. In 

[12], a supervised MLP structure detected broken rotor bars based on the spectrum of 
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the motor current; experiment and simulation was used to obtain a hybrid training 

set. In [58], an algorithm based on an unsupervised NN was proposed for online 

diagnosis of faults in the stators of induction motors. A fully automated and 

unsupervised method was applied in which a Hebbian-based unsupervised NN was 

used to extract the principal components of the stator current data. A very useful 

feature of this method is that it does not need a priori identification of system 

characteristics. 

Nejjari and Benbouzid [59] have used the Park’s vector for detecting different 

supply faults, including voltage imbalance in a single phase. A NN based on a back-

propagation algorithm was used to determine the condition of the machine by 

examining the patterns and shapes of the Park’s vector. Both classical and 

decentralized NNs were used and the generality of the method was tested 

experimentally. The authors claim that the results provide a “satisfactory level” of 

accuracy. 

Abiyev and Kaynak  [60] integrated fuzzy logic systems with a wavelet NN for 

identification and control of an uncertain system. In his paper he used the well-

known gradient decent algorithm to update parameters. It was claimed that the fuzzy 

wavelet NN networks can converge faster and are more adaptive to new data. 

Bouzid, et. al.[61] Suggested a NN approach for the automatic detection and 

location of an inter-turn short circuit in the stator of an induction motor. In his paper 

he used a feed-forward MLP NN trained using the back-propagation technique. The 

difference in phase between the phase voltage and line current of the induction motor 

was used as the input to the NN. The output is set to either ‘zero or ‘one. If a short 

circuit is detected in one of the three phases, the corresponding NN output is ‘one’; 

otherwise, it is ‘zero’. 
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 Hua et. al [62] successfully demonstrated a system for monitoring induction motor 

vibrations based on a NN which used analytical redundancy. The STFT was adopted 

for processing quasi-steady vibration signals for NN model training and faults were 

identified using changes in the vibration modelling error expectation. The main 

feature of this system was its attempts to account for the spread and random nature of 

the vibration signals. 

Vibration monitoring for diagnosis of rolling bearing faults via a NN was undertaken 

by Li, et. al. [63]. The research contained both experimental and simulated vibration. 

It was shown that the application of a NN to the interpretation of measured bearing 

vibration signals can effectively diagnose a range of faults. Li, et. al. obtained the 

vibration spectrum using the FFT. Vibration signatures were generated from the 

power spectrum of the vibration signal, these contained specific frequencies based on 

the prevailing defects, with a range of amplitudes. Time domain parameters such as 

kurtosis and mean and maximum amplitudes of the vibration waveform were also 

considered by the NN.  

 Jack and Nandi [64] claimed superior results were obtained when they used genetic 

algorithm assists the ANN. The genetic algorithm used statistical estimates of the 

vibration signal to select the most important aspects for machine condition 

monitoring.  A subset of six features was selected from a large set of possible 

features, and these gave a claimed classification accuracy of 99.8 %.  

It is possible that similar approach to that of  Li et al. [63] and Jack and Nandi  [64] 

could be adopted using mechanical vibration pattern analysis to detect when an 

induction motor operates with an electrical fault.  
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A radial-basis-function NN for fault detection in induction motors was developed by 

Wu  and Chow  [65]. The inputs to the system are represented by four-feature 

vectors extracted from the power spectrum of the vibration signals of the machine. 

This system was able to detect both mechanical and electrical faults, and also the 

subsequent development of the mechanical faults. Here, the four-feature vectors were 

total power average frequency , and normalised variance and skewness of vibration 

measurements. Good rates of detection were claimed by the authors for frequencies 

in the range 40 – 60 Hz. The seeded electrical fault was a stator inter-turn short 

circuit created by the addition of a resistor across one phase which changed the 

electromagnetic force on the stator. Unfortunately the simulated fault differed 

considerably from the actual vibration signals produced by real stator winding inter-

turn short circuits.  

Wu and Chow also investigated detection of mechanical faults within induction 

motors. The mechanical fault investigated was simply a loose screw used to hold the 

motor. This experiment was to highlight the high degree of accuracy that can be 

achieved with suitable feature extraction. It was found that the proposed NN 

diagnostic system was effective at identifying machine faults over a range of rotation 

speeds. 

Good results for detection of rotor faults in induction motors using RBF NNs were 

claimed by Kaminski, et. al. [66]. the presence of the load changes and converter 

supply harmonics, for the relatively short input vector of NN. The possibility of 

detection of the severity of the fault is a major attraction of the proposed RBF-based 

detectors. Other valuable advantages are the relatively simplicity of the design of the 

RBF network and that RBF-based detectors can be an alternative to the well-known 

MLP-based fault detectors. 
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Matic, et. al. [67] recently presented an overview of rotor condition classification 

using single perceptron NNs. They concluded that a well-trained ANN should be 

capable of providing an accurate classification of rotor condition. They also argued 

that this approach is suitable for online classification because of the simplicity of 

implementation of ANNs. They also suggest classification based on experimental 

data provides a more accurate and flexible approach than simulation and analytical 

models. 

Bouzid, et. al. [68], presented an efficient method for the automatic quantification of 

the number of the broken rotor bars in an induction motor. The method was based on 

a feed-forward MLP NN which continuously monitored the amplitude and frequency 

of a low frequency sideband of res-ids. Experimental validation showed that the 

proposed NN system gave accurate diagnosis of broken bars with a satisfactory 

robustness under different load conditions, and was insensitive to background noise. 

Santos and Costa [69] have presented an application of ANNs to detection of 

bearing faults. A feed-forward network trained using real vibration data collected 

from a test rig was used to detect a very small fault in the shield of a bearing. The 

results show proposed network can efficiently detect the incipient fault.  

Dash, et. al. [70] presented a comparison of MLP NN and RBF NN. techniques for 

detecting inter-turn faults in the stator of a three phase induction motor. The data 

base for the inter-turn fault was obtained from a model of the induction motor. They 

observed that the errors in RBF NN were very much less than for the MLP NN and 

concluded that the RBF NN was the more accurate as a fault detector. 

At present a new comprehensive and indirect diagnostic method is being developed 

for mechanical equipment driven by AC induction motors. This method of sensorless 
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detection and diagnosis and monitors the state of the motor (and system driven by the 

motor) by analysing motor’s stator current (Xianjiang, et. al. [71]).  Because it does 

not use additional sensors such as accelerometers or microphones it is called 

sensorless detection and diagnosis. It is possible because the power spectrum of the 

stator current contains large amounts of information relevant to faults in the 

mechanical system. 

The relationship between the magnitudes of the harmonics of current and vibration 

signals and specific machine faults has been studied closely [72],[73]. In [72] Riley, 

et. al. investigated the relationship between magnitudes of the vibration and stator 

current for a specific frequency of vibration to determine the feasibility of setting a 

limit on the mechanical vibrations by setting a limit the current harmonics generated 

by the vibrations. They concluded that for a given vibration frequency, the RMS 

vibration level and RMS current level for the individual harmonics are monotonically 

related.  In [73] Riley, et. al. proposed a sensorless on-line vibration monitoring 

using the motor current and carried out a laboratory evaluation. They showed that 

vibration information can be gained in this way by utilizing the nearly linear relation 

between a particular harmonic in the current spectrum with its corresponding 

vibration component and as an indicator of motor vibration. A series of experiments 

using an accelerometer determined the constant of proportionality between the 

current and vibration harmonics. It was claimed that the experimental results showed 

this method was applicable to a wide range of vibrations. 

Cause and effect between two signals is often estimated using the coherence 

function. Xianjian, et. al. [71] studied motor bearing degradation caused by 

accelerated electrical discharge machining. In an attempt to identify bearing damage 

using the motor current, the coherence function between vibration signal and motor 
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current was determined and the largest values of the coherence, i.e. where vibration 

signals and motor current are best correlated, are the locations of the bearing defect 

and dynamic eccentricity.  

While the literature review shows that thermal monitoring, vibration monitoring, and 

electrical monitoring, noise monitoring, torque monitoring and flux monitoring are 

the some important techniques of condition monitoring and fault diagnosis of three 

phase induction motors. Now days, electric monitoring or current monitoring is 

increasingly popular. In current monitoring, no additional sensors are necessary. This 

is because the basic electrical quantities associated with electromechanical plants 

such as currents and voltages are readily measured by tapping into the existing 

voltage and current transformers that are always installed as part of the protection 

system. As a result, current monitoring is non-intrusive and can even be remotely 

implemented in the motor control center of monitored motor 

In the literature review it has been shown to correspond to a relationship between the 

mechanical vibration of a machine and the amplitude of the harmonic component of 

the stator current. For increased vibration, the amplitude of harmonic components of 

the stator currents are also increased. This is because the mechanical vibration 

modulates the air gap at that particular frequency. These frequency components then 

show up in the stator inductance, and finally in the stator current. For this reason, the 

MCSA is the most commonly used method in the detection of common faults of 

three phase induction motors. 

Wavelet Transform can be used for the diagnosis of the failure of the three induction 

motor. It works on principle that all signals can be reconstructed from sets of local 

signals of varying scale and amplitude, but constant shape. It is an easy and fast to 

implement data processing technique. It analyses the signal at different frequency 
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bands with different resolution by decomposing the signal into coarse approximation 

and detail information. 

From the literature cited, the following observations can be made: 

(i) The biggest drawback of the vibration measurement is cost. A vibration 

sensor costs several hundred dollars. A high product cost can be incurred 

just by employing the necessary vibration sensors for a large number of 

electric machines. Another disadvantage of the vibration measurement is 

that it requires access to the machine. For accurate measurements, sensors 

should be mounted tightly on the induction motor, and expertise is 

required in the assembly. On other hand, there is no physical contact 

between the current sensor and motor-driven equipment in electric 

monitoring so an electric monitoring is especially attractive for 

applications where safety is of major concern. 

(ii) It has been a broadly accepted requirement that a diagnostic scheme 

should be non-invasive and capable of detecting faults accurately at low 

cost. Therefore, Motor Current Signature Analysis (MCSA) has become a 

widely used method because its monitoring parameter is a motor terminal 

quantity that is easily accessible. 

(iii)  The effectiveness of signal processing techniques for non-stationary 

signals has not been addressed appropriately in the literature. Therefore, 

more experiments need to be carried out with different signal processing 

techniques so that it may be examined which technique is best suited for 

non-stationary signals. 

(iv)  It is observed that no experimental studies have been published which 

may diagnose the fault of induction motors using an enhanced power 
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factor measurement technique. Therefore, an experimental study must be 

conducted to diagnose the fault with the power factor method. 

(v) Numerous applications of using electric monitoring in motor health 

monitoring have been published among the nuclear-generation, industrial, 

oil industries. In published work, researchers used the variety of motors of 

different rating to diagnose the faults. But no work has been done to 

diagnose the all possible common fault of induction motor by using 

reconstruction vibration signal from phase current signal so, there is a need 

to apply Radial Basis Function networks to the reconstruction of motor 

vibration using measurements of one phase of the motor current.  

2.5 Summary and Motivation 

Effective maintenance of induction motors is a serious problem faced by many 

utilities and industries because the initial cost of buying and installing the motor is 

usually cost less than half of the total life cycle cost. Maintenance can present 

between 15 to 40 % of the total cost and in some cases can rise to 80% . 

As the author has more then twelve years working in oil field with Veba oil 

Operations Company Libya branch the average installation period for Electrical 

Submersible Pumps (ESP) takes around 7 to 10 days in the normal conditions, that 

costs within the range between 50,000 to 100,000 US$ depends on the well depth, 

pump size, production rate, this cost does not include any suddenly influence in the 

operation of the pump repair. The most likely reasons causing ESP failures are due 

to: cable shorted, motor burn, pump sealed. 

Having reviewed techniques used for fault diagnosis of induction motors it is 

concluded that accurate models of the faulty machine are necessary for efficient and 
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effective fault diagnosis. Sometimes it is difficult to accurately model the faulty 

machine and to apply model based techniques. On the other hand, soft computing 

approaches such as NNs and wavelet techniques can provide a good analysis of a 

system even if accurate models are not available.  

For these reasons, focus has turned to alternative methods of vibration estimation 

based on easy-to measure variables. Advances in both sensors and adaptive 

computing technology together with increased availability of high performance 

signal processing, has made the use of advanced diagnostic systems possible in 

industrial applications. Such approaches include the use of non-parametric models 

such as RBF NNs.  

The purpose here is to develop a technique for detecting and locating faults 

(assessing condition and performance) in inaccessible equipment using RBF NNs to 

reconstruct the vibration waveform from the measured power (single phase current). 

The aim of this research is to develop an innovative, non-intrusive, accurate and 

reliable method for the early detection and diagnosis of faults in an induction motor 

using an enhanced power parameter measurement technique. It is argued, and initial 

results suggest that it is more effective to monitor the operating power factor of the 

induction motor using only measured current and supplied manufacturer’s data.  This 

may help in induction motor design and development 

 

 

 



54 

CHAPTER 3  

MODELLING AND SIMULATION FOR INDUCTION 

MOTOR FAULT DETECTION 

 

 

 

This chapter presents mathematical equations to describe the behaviour of the 

motor-driven system, and uses them to predict vibration and current in a motor 

driven system using the parameters for a healthy three phase induction motor, 

coupling and a load machine. The model's equations are solved numerically using a 

MatLab program to simulate the effects of rotor bar imperfections on the motor 

current including phase imbalance. The simulation predictions were tested against 

actual test rig results and found to be in good qualitative agreement.  
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3.1 Introduction  

Despite the extensive research devoted to induction motor research there still does 

not exist a general numerical approach capable of predicting the effect of variation in 

faults arising within the motor. The main objective of this chapter is to use 

electromechanical models to: 

1. Gain a better understanding of how the induction motor train system works and to 

be able to observe its performance under different loading and fault conditions  

2. Gain a better understanding of how motor structure and dynamics affect the 

vibration and motor current signatures for healthy and faulty rotor bar or power 

supply. 

3. Compare experimental and simulation results for healthy and faulty induction 

motors and make an assessment of the accuracy of the simulation. 

3.2 Modelling a Motor Driving System 

Typically motor driving industrial systems consist of: an induction motor (3-phase), 

some form of transmission (coupling or gearbox) and a load which may be a 

machine, see Figure 3.1. Any model of such a system should consist of three 

corresponding sub-systems. Here we assume the load system to have constant torque, 

so that only the model of the motor requires further development. 

Modelling can be seen as developing a mathematical representation of a system 

where the functional relationships between components of the real system can be 

solved for given boundary conditions and used for prediction and control [74]. Any 

model must be realistic, and should be simple to understand and easy to manipulate.  

Electromechanical systems are usually complex and their modelling is rarely 

straightforward. The numerical solution of the set of equation modelling the real 
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system by computer (“computer simulation”) is now almost universally applied to 

gain insight into the dynamic behaviour of electromechanical systems and has 

produced results that were unexpected from the available experimental or theoretical 

results. Using a suitable model it should be possible to simulate and predict fault 

development behaviour in an induction motor before ever running any experiment. 

Such models allow a better understanding of the system and individual component 

behaviour. Every model contains parameters that have to be estimated; in this case 

most will be based on the manufacturer's data. 

 

 

 

 

Figure 3-1 A schematic of a motor driven system 

3.3. Review of the Modelling of an Induction Machine 

3.3.1 Modelling parameters 

Each system component is examined and validated separately before being integrated 

into the set of equations modelling all components. 

To simplify the complexity of the model six initial assumptions were made[74] :  

(i) the induction motor is assumed ideal and linear which means a number of factors 

can be ignored. These are eddy current, friction and iron losses, saturation, skin 

effect and windage losses,  

(ii) the mains source power supply is also assumed ideal,  

(iii) A stationary reference frame (see Section 3.3.3),  
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(iv) The three phase induction machine has a symmetrical air-gap,  

(v) The mutual inductances between the stator and rotor windings are functions of 

the rotor position,  

(vi) The self and mutual inductances between stator phases or rotor phases are 

constant, and (vi) the motor has uniformly distributed cage bars and the rotor bars are 

insulated. 

A three-phase balanced system, each phase sine wave shaped, and all voltages 

symmetrical. The basis for the model to simulate a three-phase, P-pole, symmetrical 

induction machine is the winding connection induction machine shown in Figure 3.2. 

The values of the parameters used in the model are those of the equivalent circuit of 

the 3-phase asynchronous induction motor used in the real test rig. 

 

Figure 3-2 three -phase winding connection circuit used in the model 
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3.3.2 Base quantities equations 

Variables and parameters used in the model were normalized to the relevant base 

quantity. 

Machine equations are often described in terms rate of change of flux linkage,   , 

and reactances,   , which are related by the angular frequency,    , where          

            and frated is the rated frequency of the machine in Hertz[74]. For a 

three-phase, P-pole induction machine with rated line-to-line voltage the base 

quantities are peak rather than RMS values. The base voltage, impedance, electrical 

frequency and voltage are: 

1. Base voltage 

    (√ )(       )       (3.1) 

2. Base impedance  

   
(      )

 

      
                                  (3.2) 

3. Base electrical frequency  

                                                                                               (3.3) 

4. Base torque  

   
      

   
         (3.4) 

Where        = base mechanical frequency (Hz), 

           = rated power (W),  

           = rated voltage (V), 

               = number of pair-poles and  

      = machine rated frequency (Hz).  
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3.3.3 The dq0 reference frame transformation in induction motor modelling 

A core concern in the development of mathematical models of electrical machines is 

how to represent variables such as current, voltages, and flux. Usually this is done by 

space vectors expressed in a particular reference frame [75]. The common approach 

when modelling a three-phase electric machine is to transform all variables and 

equations of the model from Cartesian (abc) axes to direct-quadrature-zero (dq0) 

axes, see Figure 3-3. The dq0 reference frame rotates at the frequency of the system 

and so this transformation is a single reference frame transformation. Thus 

simulations in the dq0 reference frame will be particularly efficient at or around the 

system frequency [75]. Figure 3-3 shows the relationship between the abc and the 

dq0 quantities of a reference frame rotating at an angular speed   rad/s [74]. 

An advantage of using the dq0 reference frame for expressing three-phase equations 

for AC induction machine is that stator quantities are constants for balanced steady-

state operation. For other modes of operation the stator quantities vary slowly with 

time (2-3Hz). This means faster simulation times for balanced conditions with much 

slower variation of other parameters than in the original Cartesian reference frame.  

It is usual to begin by deriving relevant stator and rotor voltage equation in a dq0 

reference frame when modelling induction motors. The chosen rotational speed will 

be   rad/s in the direction of the rotor rotation. The dq0 reference frame for the 

induction machine stationery is obtained by setting   to zero. The abc to dq0 

transformation computes the direct axis, quadratic axis, and zero sequence quantities 

in a two-axis rotating reference frame for a three-phase sinusoidal signal.  
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Figure 3-3 Relation between abc and dq0 frames of reference 

Equation 5 shows the transformation equations from the abc into the dq0 reference 

frame. 

⌈
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Where   is the phase voltage (or current or flux linkage) of the machine and the dq0 

transformation matrix is given by [74]: 
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3.3.4 Induction motor electric dynamic equations 

This section presents the equations used to develop the model of a three-phase, P-

pole symmetrical induction machine and explains how they were derived. The model 

will be used to simulate the behaviour of the given induction machine in the qd0 

reference frame with winding connections as shown in Figure 3.2 [74]. We begin by 
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deriving the input voltage equations for neutral connections of the rotor and stator 

windings.  

First, we write down the equations for the three-phase balanced symmetrical voltages 

applied to the stator terminals, see Figure 3.2 [74]: 

    √             

    √          (  
  

 
)                 (3.7) 

    √          (  
  

 
)  

Next Equation (3.7) need to be re-written in with respect to the system reference 

point ‘g’ in Figure 3.2, as follows [74]:  

             

                      (3.8) 

             

From Equation 3.8, the dq0 stationery voltages    
      

      
  can be expressed as  
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(           )       

Given symmetrical, sinusoidal and balanced applied voltages      can be considered 

zero because the neutral current will be zero [74].  

Correspond transformation of the rotor winding voltages from the abc frame to the 

stationary dq0 reference frame stator quantities gives Equation 3.10 [74] where the 

prime denotes values referred to the stator:  
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Where    
 

  is the voltage between points r and n in Figure 3.2.  

The dq0 rotor quantities in Equation 3.10 can be transformed rotationally into the 

same stationary dq0 frame for the stator quantities using Equation 3.11[74] .  

   
      

       ( )      
       ( )  

   
       

       ( )      
       ( )            (3.11) 

Using Equations 3.10 and 3.11 gives the first transformation of the rotor voltages in 

the dq0 reference frame. It can be seen that these voltage are similar to those of the 

stator voltages.  

To link rotor and stator voltages in the dq0 stationary reference frame to the current 

in the induction motor - which is the parameter of most concern in this thesis - 

Equations 3.10 and 3.11 are re-written in term of the rate of change of flux linkage at 

the base frequency (see Equation 3.3), and all zero sequence equations are disabled 

since the operation condition is balanced [74]. Equations 3.12 – 3.15 give rotor and 

stator voltages as a function of the rate of change of flux linkage and current. The 

dq0 voltages at both rotor and the stator terminals are referred to the same stationery 

dq0 reference frame.  
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The electromechanical torque is given by Equations 3.16 and 3.17: 
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Equations 3.18 – 3.25 give rotor and stator currents and flux linkage in the dq0 

reference frame for the case of a symmetrical induction motor [74]: 
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Equations 3.12 – 3.25 can all be used as inputs to the simulation equations for the 

induction motor to obtain the corresponding dq0 currents [74]. 
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3.4 Mechanical dynamic equations 

The equations of motion of the mechanical system can be written with two degrees 

of freedom. The dynamic characteristics of the rotor and the load can be written as 

function of the electromechanical torque supplied by the induction motor (Tem), the 

torque due to the load (TL) as in in Equations 3.26 – 3.27: 

    ̈   (     )              (3.26) 

    ̈   (     )            (3.27) 

Where Jm is the moment of inertia of the motor and associated components and JL is 

the total moment of inertia of the load, and    ̈    ̇     are the angular acceleration, 

velocity and displacement respectively for the two rotational shafts of motor and load 

It can be seen from Equations 3.16, 3.17, 3.22 – 3.25, 3.26 and 3.27 that torque and 

speed govern the connection between the motor current and the mechanical 

behaviour of the system. 

 

 

 

 

Figure 3-4 Schematic diagram of model 
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3.5 Simulation of stator and rotor faults 

3.5.1 Simulation of asymmetric stator fault in a 3-phase induction motor 

The seeded asymmetric stator faults are unbalanced stator phase voltages. This is 

simulated in Equation 3.7 where an unbalanced voltage drop E is input to one phase: 

    √ (         )      

    √          (  
  

 
)                 (3.28) 

    √          (  
  

 
)    

The vibration response due to resulting variation in the electromechanical torque will 

be given by Equations 3.26 and 3.27. 

3.5.2 Simulation of a broken rotor bar in a 3-phase induction motor 

To simulate a broken rotor bar fault in a three-phase induction motor, the relevant 

simulation equations for unbalanced stator phase voltage were modified by changing 

each rotor bar’s inductance and resistance.   

3.5.2.1 Vibration system response  

The mass, M, of the healthy rotor is assumed concentrated on the central axis 

between the supported bearings, the unhealthy bearing with a hole drilled in one or 

more rotor bars will have an unbalanced eccentric mass (m0) located at a radial 

distance r rotating at the same angular speed,    as the rotor. 

The centrifugal force (Ff) due to mo which causes the vertical vibration force 

measured by the accelerometer at the base is simulated in Equation 3.29 

        
     (  )        (3.29) 
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3.6 Induction Motor Simulation and Model Validation 

The numerical simulation was run using a MatLab software package and the results 

are presented in Figures 3.5 to  3.10 which show rotor speed, variation in motor 

speed, motor stator phase currents, stator phase A current, stator phase B current and 

stator phase C current respectively. The motor starts from standstill and reaches a 

steady maximum speed of about 1475 rev/min when the load torque is 1.1 kW.  

 

 

 

 

 

 

 

Figure 3-5 Simulated rotor speed during start-up and steady-state for a healthy motor 

 

 

 

 

 

 

 

Figure 3-6 Simulated variation speed of healthy induction motor 
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Figure 3-7 Simulated stator phases current during start-up and steady-state for a 

healthy motor 

 

 

 

 

 

 

 

 

Figure 3-8 Simulated stator phase A current during start-up and steady-state for a 

healthy motor 
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Figure 3-9 Simulated stator phase B current during start-up and steady-state for a 

healthy motor 

 

 

 

 

 

 

 

Figure 3-10 Simulated stator phase C current during start-up and steady-state for a 

healthy motor 

Figure 3.7 shows the three stator phase currents as a function of time during start up 

under full load for the induction motor. Initially the amplitude of the current is much 

larger than the final (rated) current until the machine reaches its normal speed. This 

is because the inertial of the machine has to be overcome and the rotor accelerated to 



69 

35 40 45 50 55 60 65
-100

-50

0

50

100

Frequency (Hz)

d
B

 S
c
a

le

10 15 20 25 30 35 40
-100

-50

0

50

100

Frequency (Hz)

d
B

 S
c
a

le
(a)

(b)

35 40 45 50 55 60 65
-50

0

50

100

Frequency (Hz)

d
B

 S
c
a

le

10 15 20 25 30 35 40
-50

0

50

100

Frequency (Hz)

d
B

 S
c
a

le

(a)

(b)

its operating speed. At synchronous speed the motor draws only sufficient current to 

overcome frictional and electrical power losses in the windings [75]. Their 

frequencies are essentially constant at 24.6 Hz (rotational speed) and 50 Hz (power 

supply frequency) as shown in Figures 3.11 and 3.12.   

 

 

 

 

 

 

 

Figure 3-11 Frequency domain of simulated healthy stator phase A current during 

start-up (a) steady-state (b) at full load 

 

 

 

 

 

 

Figure 3-12  Frequency domain of simulated one rotor bar broken stator phase A 

current during start-up (a) steady-state (b) at full load 
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The graph in Figure 3.13 shows the electromagnetic torque from initial power-up to 

steady state. Initially the torque is oscillatory, very similar to that for a system with 

near critical damping, even with a balanced three phase supply.  

 

 

 

 

 

 

Figure 3-13 Simulated electromagnetic torque for a healthy motor 

To investigate the dynamic mechanical characteristics of the model of the induction 

motor, a sinusoidal load fluctuation was introduced:  

     (          (         )      (         ))     (3.30) 

Where fr1 and fr2 are the frequencies of rotation of motor shaft and loader shaft 

respectively. The factor of 0.79 is introduced so that the simulated torque remains 

less than the actual value of the motor torque. The constants a and b allow the degree 

of fluctuation of TL to be to whatever percentage of the full load (Tb) is required. The 

load fluctuations are introduced to both shafts because the fluctuation of the load 

shaft is always transmitted to the motor shaft. 

Figure 3.14 shows the simulated motor current spectrum when the load was kept 

constant at near full load with no load fluctuation. Obviously the spectrum is 

dominated by a peak at the 50 Hz main supply frequency.   
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Figure 3-14 Simulated ideal current spectrum with no load fluctuation healthy motor 

 

However, when a load fluctuation is introduced the current spectrum undergoes a 

dramatic change and sidebands appear both sides of the 50Hz peak, see Figure 3.15. 

These sidebands clearly demonstrate that the current is being modulated by the load 

fluctuation. The spectrum in Figure 3.15 exhibits symmetrical sidebands at motor 

and load shaft rotational speeds and their harmonics at 12 Hz, 24.60 Hz, 50 Hz, 

72.80 Hz and 98.40 Hz. This shows that the modulation of motor current signal is not 

only from the individual rotation speed but also from the speed combination of the 

two shafts. 
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Figure 3-15 Simulated stator current spectrum with load fluctuation healthy motor 

Figure 3.15 shows clearly the effect of different values of the amplitude parameter Tb 

on the motor current spectrum as the load fluctuates (Equation 3.30).  An increase in 

the fluctuating load equivalent to 1% of the full load (Tb) of the fluctuating produces 

an increase of approximately 20 dB in the amplitude of the sidebands (red dashed 

lines) in Figure 3.15. In addition higher harmonic sidebands are also generated in the 

spectrum (1.21 Hz, 98.80 Hz) as a result of this increase in the load fluctuation.  

3.7 Effect of Vibration Signal Modulation on the Motor Current Spectrum  

This section investigates the effect of radial and torsional vibration on the motor 

current spectrum, and examines the suggestion that the main sources of the induced 

sidebands in the motor current spectrum are amplitude and frequency modulation 

[75]. 

3.7.1 The effect of radial motor vibration 

This sub-section explores the modulation of motor current due to dynamic changes in 

the radial forces caused by rotor bar faults. The carrier and the modulation signals are 

assumed to be initially sinusoidal, and the instantaneous motor current is: 
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 ( )  √   [   (    )    ]         (3.31) 

Where f0 is the frequency (Hz) of the current     is the phase angle 3 and I0 RMS 

amplitude of the current (A). 

If only the signal amplitude is considered, the author may assume that the phase of 

the carrier signal is zero, hence   in Equation 3.31 can be neglected and i(t) can be 

written as: 

 ( )  √   [   (    )  ]                    (3.32) 

Due to dynamic changes in the radial forces caused by abnormal conditions Equation 

3.32 will be modulated by a signal m(t) which may contain more than one 

modulating frequency and may be described mathematically as: 

 ( )    ∑       (     )  
 
                              (3.33) 

Where frn is the nth modulating frequency (Hz), mrn is the nth modulation index, Bs is 

the amplitude of the modulating signal, n is the n
th

 harmonic, and k is the number of 

rotating shafts. 

The amplitude of the modulated motor current signal can be written as: 

 ( )    ( )[    ∑       (     )  
 
   ]             (3.34) 

Equation 3.34 may be separated into two parts; the first part consisting only of the 

main carrier frequency f0, and the second part representing the amplitude modulated 

motor current signal: 

 ( )   √   [   (    )  ]  √   [   (    )  ][  ∑       (     )  
 
   ] (3.35) 

Using the elementary trigonometric identity            
 

 
[   (   )      (  

 )] Equation 3.35 may be written as: 
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Where     
    

  
 ,     

    

  
 and     

    

  
  are the modulation indices.  

Equation 3.37 shows the presence of six sidebands at sum and differences of the 

main line frequency, f0, and the three different rotational speed frequencies fr1, fr2 and 

fr3). These frequency components are: 

(      )  (      ) (      ) (      ) (      )     (      ) 

Additional sidebands will be induced in the motor current spectrum due to rotor 

oscillations of the broken bar. If S is the motor slip frequency. 

      (    )                                                                                                  (3.38) 

3.7.2 The effect of the motor torsional vibration 

Under normal operating conditions the shaft speed is assumed constant. A fault in a 

rotor bar will, however, initiate a change in the tangential transmitted force, Ft, for 

that individual bar. This will appear as a load fluctuation that produces torsional 

vibration of the rotor as a whole, which leads to a cyclic change in the shaft 

rotational speed and creates a shaft oscillation [75]. The stator current is modulated 

at this oscillation frequency to a degree which determined by the inter-relations 

within the electro-mechanical system, and the induction motor’s electrical and 

electromagnetic characteristics [75]. A steady state equivalent circuit for the 
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induction motor was assumed and the stator current spectrum predicted for broken 

rotor bar faults [75].  

In this section the steady state assumption for the equivalent circuit of the induction 

motor has been used to derive the motor current spectrum with variation of motor 

speed. It is assumed that the supply is sinusoidal at frequency 50 Hz and the motor 

runs under steady state conditions. The equivalent circuit is simplified and includes 

only the slip dependent rotor resistance. Under healthy operation the rotor shaft 

speed is considered constant and of an average value, but with introduction of the 

fault the instantaneous speed will be the sum of the average value plus an oscillating 

component [75]. 

Figure 3.16 shows the simplified equivalent circuit of the induction motor. For the 

induction motor running at constant speed supplied with a purely sinusoidal voltage 

in the form:  

 ( )         ( )            (3.39) 

Where    = Peak supply voltage (volt),   =2πf0  angular frequency (rad/s) and f0 = 

frequency of the main supply (Hz). 

 

 

 

 

 

 

Figure 3-16 Simplified equivalent circuit of the induction motor 
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The aim here is to investigate the effect of rotor speed variation on the motor current 

spectrum in the presence of a motor fault, so the stator current is given in terms of 

the motor rotor slip. Applying Kirchhoff’s laws to the circuit node A: 

  ( )    ( )   ( )                      (3.40) 

Where   ( ) = total current (A),   ( ) = magnetization current (A) and  ( ) = stator 

current producing the torque (A). 

Applying Ohm’s law to the circuit in Figure 3.16, with the assumption that all higher 

harmonic are negligible we obtain:   ( )  
 ( )

  
  and i( )  

 ( )

  
 . The stator current 

Equation 3.40 can now be expressed as: 

  ( )  
 ( )

(  )(   )

(       )
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(   
  
 

 
)  (     
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                    (3.41) 

Where Z =  Rm // jxm  is the magnetising impedance (Ω) 

Substituting   ( )         ( ) in Equation 3.41 and expressing rotor impedance 

as  (     
 ) and stator impedance as (   

  
 

 
) gives  

  ( )  
       ( ) 
(  )(   )

(       )

 
       ( ) 

(   
  
 

 
)  (     

 )
                (3.42) 

3.7.3 Angular Speed Oscillation  

For the healthy motor we assume the rotational frequency of the rotor,   ( )  is 

constant, and        Hence the motor slip, S, is constant:   

  
     

  
                              (3.43) 

However, the presence of a faulty rotor bar will cause the angular speed of the drive 

shaft to oscillate and thus induction motor slip becomes time varying, and the shaft 

rotational frequency will consist of an average value    plus a superimposed 



77 

oscillation,         . More precisely this superimposed oscillation will have an 

impulsive component which occurs once per revolution, thus the sinusoidal terms is 

only an approximation for the purpose of this investigation. The superimposed 

oscillation will induce specific components into the stator current spectrum.  

Given the sinusoidal approximation the rotor speed,    ( )    be expressed as: 

  ( )                                                   (3.44) 

The shaft speed is now a function of time with an oscillating component of 

frequency, fc. Substituting Equation 3.44 into Equation 3.43 gives S as a function of 

time  

 ( )  
   (           )

  
                    (3.45) 

Substituting Equation 3.45 into Equation 3.41 gives the stator current is(t) as function 

of ωa, ωc, ω0 and ωs : 
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Re-arranging Equation 3.46 we obtain:  

  ( )  
        

  
 

        (   (           ))

(  (   (           ))  (     
 )(   (           ))

       (3.47) 

Equation 3.47 can be regarded as the sum of two terms, the first of which is not a 

function of slip, represents the steady state condition and so will not be affected 

fluctuations in the angular speed. The second term represents the effects of 

fluctuations in the angular speed and is a function of slip. The magnitude of the 

oscillation in angular speed is predicted to be very much less than the magnitude of 

the average rotational speed,    Also the term Vcsinωct in the denominator of the 



78 

second term in Equation 3.47 is considered negligible with respect to    [75]. Hence 

  ( ) can be written as: 

  ( )  
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 )(     )
        (3.48) 

For convenience let     [(  (     )   
 (  )]   (     

 )(     ) 
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            (3.49) 

3.7.4 .Spectral sidebands induced by angular speed oscillation 

The third term in the expression for   ( ) (Equation 3.49) can be re-written using the 

trigonometric identity already used above. Also     replacing by       and      by 

      gives Equation 3.50 which shows location of sidebands in the frequency 

spectrum.  

        (        )

  
 

    

 
[     (       )      (       )

  
                                       (3.50) 

It is clear from Equation 3.50 that sidebands are predicted at spectral locations f0 ± fc, 

showing that the motor current is modulated at oscillation frequency fc, due to the 

variation in the angular speed. 

3.8 Summary 

This chapter introduces the theory and illustrates the dynamic modelling for 

induction motor test rig vibration and current behaviour as well as different kinds of 

faults. The modelling includes a vibration generation from electric motor and output 

load as well. It provide the effect of vibration signal modulation on the motor current 

and how the phase current related and relation with vibration signal at specific 

frequency band. Based on this relationship the reconstruction of vibration signal 

from phase current of induction motor will full study in following chapters.    
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CHAPTER 4  

EXPERIMENTAL TEST RIG, FAULT SIMULATION 

AND INSTRUMENTATION 

 

 

This chapter provides information about the test rig and three phase induction motor 

used in the experiment. It then briefly explains how the local faults were simulated. 

Finally, it describes the instrumentation for measuring both vibration and current 

signals and how the data was collected. 
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4.1 Introduction 

In order to establish a relationship between phase current and vibration signal, 

experimental work was conducted on the test rig as had originally been designed and 

used to monitor the health of a three phase induction motor  using traditional 

techniques of vibration and phase current monitoring. The aim of the experiment was 

to introduce the seeding of known and controllable faults into a three phase induction 

motor under normal operating conditions in order to detect and correlate fault 

condition indices with realistic fault data. 

4.2 Outline of the Test Facility 

For the reasons given in Section 4.1, a low-voltage three phase induction motor test 

facility was constructed (Figures 4.1 and 4.2). It allowed the testing of 1.1 kW, three 

phase induction motor (Figure 4.1), which could be quickly and easily replaced as 

necessary, under repeatable and wholly realistic operating conditions. The mounted 

induction motor was directly coupled with a loading DC generator. The rotor of the 

generator was connected to an electrical loading bank so that the electrical energy 

generated could be dissipated as heat. The load could be set at 0%, 25%, 50%, 75% 

or 100% of the maximum rated load - based on the output torque – by switching-in 

different resistor combinations within the electrical loading bank whilst the rig was 

online  

Figures 4.1 and 4.2 show the three-phase induction motor and a schematic diagram 

of the test facility. In the interest of safety, a detailed risk assessment on the use of 

the test facility was produced along with comprehensive operating instructions. 
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Figure 4-1 Three-phase induction motor 

 

Figure 4-2 Schematic of experimental set-up 

Details of the induction motors placed into the test facility are presented in Table 4.1. 

Two motors was used one for healthy and other one was used to simulate rotor bar 

broken fault condition.  

Table 4-1 Test Motor Specification 

Parameter Value  

Number of phases  3 

Number of poles  4 Poles  

Supply voltage  220 V  

Supply current (at full load)  4.1 A  

Rated power  1.1 kW 

Rated speed  1475 rpm  

Number of stator  slots  36 

Number of rotor bars  28  
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4.3 Seeded Faults 

Two fault conditions were seeded into the test facility. Each of the faults could be 

carefully controlled, varied in severity (for some faults this could be achieved online) 

and implemented over a range of load conditions. 

4.3.1 Seeded Phase Imbalance Faults 

The first seeded fault condition was phase imbalance. In an ideal case, a three-phase 

balanced power supply can be represented by three equal magnitude voltage phasors 

spaced at exactly 120
0
. However, in practice, two main types of imbalance may be 

found in three-phase networks: structural and functional. 

Pierrat and Morrison [76] state that, for economic reasons, the physical structure of 

transformers and especially power lines is not balanced. This leads to unbalanced 

voltage phasors even if the generator voltages and load currents are perfectly 

balanced. This type of imbalance is referred to as structural and its value is virtually 

constant (provided the network infrastructure does not change) and is referred to as 

quasi-deterministic. The amount of structural imbalance may be compounded by 

poor power management from the nearest substation. For example, the single-phase 

lighting in a large building may be powered unevenly from one phase, or power 

demands may not have been considered appropriately in the extension of a building. 

Functional imbalance is due to fluctuations of consumer demand on the three-phase 

supply. This type of imbalance may have cyclic variation but is frequently 

random[76] . Large machines, such as a large motor or an arc welder, are particular 

causes of this type of imbalance because of their high current demands. In such 

instances, if the pull of current is more than the supply can provide, in an attempt to 

maintain power requirement, the voltage level will drop. 
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Alternatively, the increased resistance at a bad electrical connection, due to dirt, 

oxidation or even a loose connection, will result in increased voltage drop over that 

connection, and will correspondingly reduce the voltage over the motor windings. 

This is illustrated in Figure 4.3 by a bad connection of the red phase to the terminal 

block. Leakage current-to-earth faults in the local supply loop (ie between the 

machine and the nearest substation) may also lead to phase imbalance because of the 

loss of potential by the earth path. 

 

 

 

 

 

Figure 4-3 Schematic of voltage imbalance due to a bad electrical connection 

The motor test rig allowed for controlled imbalances to be induced by dropping the 

voltage on one phase by change the external resistance  

The effect of power supply imbalance on a motor is to introduce negative sequence 

components (components of rotating magnetic field in the reverse direction to the 

main field [76]. Such components result in additional losses and overheating [76]. A 

small amount of imbalance will cause an increase in the winding temperature by a 

large amount. As a rule of thumb the temperature rises by 25% (in 
0
C) for every 

3.5% voltage imbalance [77]. Several industrial maintenance engineers have reported 

to the author that phase imbalance is thus sometimes the cause of apparently random 

overheating of electric machines. Temperature rise causes thermal aging and makes 

the winding insulation, in particular, vulnerable to electrical, mechanical and 
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environmental stresses. It is estimated that for every 10
0
C rise in temperature the 

insulation life is halved [77]. 

Motors are designed in accordance with the NEMA standard MG 2-2001 to operate 

with a 10% voltage variation [10]. However, this design characteristic is based on no 

load operation; the introduction of shaft loading severely affects motor tolerance of 

imbalance. For example, a motor in the test rig will operate without noticeable 

impediment for an imbalance of 8.3% at zero-load, but when full load is applied the 

progressive heat build-up results in the motor tripping out (due to its inbuilt 

thermistor protection) after approximately 90 minutes of operation. In a critical 

industrial application and without adequate condition monitoring this would mean 

not only an unplanned stoppage but also that downtime would be incurred whilst the 

motor cooled sufficiently to recommence operation. Heat from the 3 kW motor in the 

test rig is dissipated only by natural convection and the motor requires longer than an 

hour before it can be operated following an overheat trip. The required cooling time 

could be much longer for larger motors and those which operate in hot and enclosed 

locations. 

Voltage imbalance is compounded by the use of three-phase variable speed 

controllers, since some of the more common controllers on the market only have 

typical imbalance accuracies of 3% (7.2 V for the 240 V UK power supply) [10]. 

4.3.2 Seeded Broken Rotor Bar Faults 

The second fault was seeded directly into the motor, this was a broken rotor bar. 

Induction motor failure through broken rotor bars, initiated by cracking in the rotor 

conductors, is common in many industrial applications. One of the reasons for this is 

that the large starting currents occur when the motor is relatively cold - this results in 
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thermal and mechanical stresses being a maximum. Therefore, the incidence of this 

failure mode is greatest when the start-up time is relatively long and when frequent 

starts are required as part of a heavy duty cycle. Figure 4.4 illustrates a typical 

squirrel cage rotor (from one of the 1.1 kW test motors). Figures 4.4 illustrates how a 

full broken bar were physically seeded by drilling through one of the aluminium 

conductors that make up the “squirrel cage”. 

 

Figure 4-4 Healthy and seeded broken rotor bar fault 

4.4 Theories on Detection of Seeded Fault Conditions 

This section provides the theory behind an initial approach to practical detection and 

diagnosis of the seeded faults detailed in Section 4.3. 

4.4.1 Detection of Phase Imbalance Faults 

In theory, electrical asymmetry (such as that caused by a voltage drop in one phase 

of power supply) may be detected and diagnosed through analysis of a frequency 

spectrum of recorded motor vibration. In particular, an increase of the frequency 

component at twice the electrical supply frequency is expected [78]. The following 

simple equations explain this characteristic. 
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The measured vibration is proportional to the force created by the electromagnetic 

forces within the motor. In generic form, the force (in newtons) experienced by 

between two magnetic poles is given by[10] : 

0

2

2

AB
F 

           (4.1)

 

Where B is the magnetic flux density (in Tesla, T), A is the cross-sectional area (m
2
) 

of the poles  and μ is the permeability of the medium between the poles (μ0 

specifically denotes the permeability of free space). It is well known that for constant 

cross-sectional area there is direct proportionality between flux density and current 

[10] , therefore: 

22 IB           (4.2) 

Where I is the alternating current which acts to magnetise a ferrous material and may 

be described as: 

)sin(ˆ tII           (4.3) 

Where  ̂ is the magnitude of the alternating current, t is time and ω is 2πf1 (where f1 

is the power supply frequency - 50Hz in the UK).  

When Equation 4.3 is squared, the force relationship can be written as: 

)2cos1(
2

ˆ2

t
I

F 
        

(4.4) 

Thus changes in the 50Hz current supply should manifest themselves at 2×50 Hz 

(100 Hz) in the vibration signal. 
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4.4.2 Detection of Broken Rotor Bar Faults 

Much of the work into the condition monitoring of induction machines has 

concentrated on the detection and diagnosis of broken rotor bars (see Section 3.1.2). 

However, the focus has been on the detection and diagnosis of a relatively large 

number of broken bars, using the presence of sidebands around the electrical supply 

frequency of the current, or by sidebands around the shaft drive frequency in the 

vibration signal. The work described in this thesis extends the existing knowledge by 

investigating other means of measurement and by considering only very small fault 

severities (i.e. half and full single rotor bar breakage). 

The sidebands previously mentioned are spaced at twice the slip frequency [10]. This 

feature may be understood by an analysis based on sequence component theory 

which is a mathematical means to simulate a three-phase unbalanced electrical power 

system by the phasor decomposition of positive, negative and zero rotating 

components [10]. The use of this method to explain the sideband spacing resulting 

from broken rotor bars has been demonstrated by several authors (for example Liang 

et. al.  [78]) . 

4.5 Parameter Measurement Transducers and Calibration 

Three measurement parameters were routinely recorded from the induction motor 

test facility, so that their relative potential use in condition monitoring could be 

investigated. Each parameter was measured by a different type of transducer. Every 

transducer was connected to a data acquisition system (see Section 4.6) via high 

quality coaxial BNC cables which produce low noise levels, and a voltage output 

corresponding to the amplitude of the measured parameter was recorded. The 

transducers and associated calibration processes are discussed below. 
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4.5.1 Current Transducers 

The current sensor module, PR30, made by LEM, is a Hall Effect sensor which could 

be interfaced with an oscilloscope or with an NI data acquisition card using 

LabVIEW software. It offers accurate and non-intrusive measurement of both AC 

and DC complex waveform currents. 

4.5.2 Specification of current transducer 

This type of current transducer was designed to gather electrical data with a 

measuring range from 0 to 30 A. The normal current is 20 A RMS, output 

sensitivity is 100 mv/A, resolution ±1 mA, frequency range is from 10 - 100 kHz 

(0.5dB), conductor size 19mm diameter, jaw opening 20mm maximum and output 

cable with connector is 2 m long. 

4.5.3 Accelerometers 

An accelerometer is defined as an electromechanical device which converts a 

mechanical motion, vibration or shock to an electrical  output. It is considered an 

inertial transducer which depends upon Newton's second law of motion.  

Accelerometers are widely employed devices because of their robustness, accuracy 

and sensitivity as well as being lighter, smaller and easier to mount than other kinds 

of vibration transducers. For the frequencies up to about 40 kHz, piezoelectric 

accelerometers are most suitable [79]. 

Piezoelectric accelerometers include two elements; a mass to generate an inertial 

force and a piezoelectric crystal to convert the force to electric charge, see Figure 4.5 

[79].   
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Figure 4-5 Schematic of an accelerometer mounted on a structure 

4.5.4 Accelerometer mounting techniques 

It is essential to install an accelerometer correctly. There are four common mounting 

techniques used to attach transducers to accurately pick up vibration signals, see 

Figure 4.6. The main requirement is for close mechanical contact between the 

accelerometer base and the surface to which it is to be attached.  

Stud mounted - this technique requires a stud to be mounted on the machine surface 

by drilling and screwing. The sensor is then screwed onto the stud, but not so tight as 

to generate stresses in the piezoelectric material. This is the best technique for 

permanent mounting and gives the best frequency response.  

Adhesive mounted - in this method, accelerometers are glued using an appropriate 

adhesive material such as dental cement in a damp or wet environment or superglue 

or Araldite.    

Magnetic, beeswax or double sided adhesive tape – These method are usually for 

temporary measurements and spot checks only. Their frequency responses, even 

when expertly attached are usually well below that of equivalent stud mounted 

accelerometers.  

 Non-mounted systems e.g. handheld probes are used for spot checks only and have a 

poor frequency response possibly only up to 5 kHz [1]. 
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Figure 4-6 Accelerometer mounting techniques [80] 

Figure 4.6 is for expertly mounted accelerometers, and it can be seen that 

accelerometer mounting has a great effect on frequency range. Bad mounting of the 

accelerometer can seriously reduce the frequency ranges shown above. 

The accelerometers used here were mounted using adhesive and each was connected 

to a PCB charge amplifier [model: 483A02] to fully utilise the full 16-bit resolution 

of the data acquisition cards (see Section 4.6). Calibration was by reference to charts 

provided on their last formal calibration (conducted by PCB Piezotronics in 

compliance with the recognised calibration standard: MIL-STD-45662A). 
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Figure 4-7 Adhesive mounted accelerometer 

4.5.5 Shaft Encoder 

The measurement of instantaneous angular speed (IAS) was achieved by analysis of 

the data from a relatively cheap optical shaft encoder (approximately £80). The 

device produced a square pulse output for every angular degree (thus termed a 360 

line encoder) and for every complete revolution. It was attached to a spindle adaptor 

on the non-drive end of the rotor shaft by a torsionally rigid rubber coupling (Figure 

4.8). No calibration of the magnitude of the square wave pulse train was required as 

the calculation of IAS was based on the periodic spacing of the square waves and not 

their strength.  

 

 

 

 

 

 

Figure 4-8 360 Line encoder with marker 
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4.6 Data Collection Hardware and Software 

4.6.1 Hardware 

The hardware includes the sensors, data acquisition (DAQ) card and PC. Here a 

National Instruments data acquisition card of type USB NI9233 was used, see 

Figure 4.9. This was used to transmit signals from the accelerometer to the PC. The 

card has the following features; 

 24-bit resolution,  

 102 dB dynamic range, 

 4  analogue inputs channel, 

 ±5 V input range, 

 Anti-aliasing filters, current excitation, and 

 50 kS/s maximum rate per channel  

 

 

                                             

 

 

 

Figure 4-9 Data acquisition card 

The resolution and full scale supply voltage (EFSR) of this DAQ card and the limit 

settings determine the smallest detectable change in the input voltage. This change in 

voltage represents 1 least significant bit (LSB) of the digital value and the resolution 

is calculated from the following formula [81]: 
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              (4.5)                         

For the DAQ, shown in Figure 4.9, the resolution is in the range of few microvolts. 

A portable data acquisition system was used to allow data collection from the 

induction motor test facility.  

4.6.2 Software 

DAQ software was tailor-made using LabVIEW for control of the PCI boards, 

visualisation of recorded data and for saving collected data to the hard disk. The 

software was designed to be used on Windows® operating systems and the graphical 

user interface (GUI) developed is shown in Figure 4.10 . 

 

 

 

 

 

 

 

 

Figure 4-10 Data Acquisition Graphical User Interface (GUI) 

4.7 Experimental procedure 

 The DAQ card, amplifier, accelerometers and cables were correctly 

connected and checked. 
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 The mounting locations for the transducers were cleaned of paint and the 

accelerometers were glued using an appropriate adhesive. 

 The charge amplifier converts the accelerometer high impedance, low charge 

(in the range of Pico-coulombs) signal into a low impedance and high voltage 

(in the range of mV) signal. 

 LabVIEW software was used to interface with the DAQ and to set the related 

parameters; signal input range, samples to read and sampling frequency. 

 A suitable graphical user interface (GUI) was built in LabVIEW to monitor 

the test rig and to save the collected data for further analysis using MatLab. 

4.8 Measurements Practice and data managements  

A standard test procedure was developed to ensure good measurement practice. For 

consistency, measurement transducers were always connected to the same input 

connectors on the BNC input box. Similarly, each accelerometer was clearly labelled 

by colour coding to help ensure it was always used in the same orientation. Data was 

collected from all transducers in any acquisition, whether all these transducers were 

of immediate interest or not, as this did not alter the saved file size or the acquisition 

time.  

Care was also taken to avoid unnecessary crossing of cables and hence minimise 

measurement error due to electromagnetic noise and power supply frequency pickup 

for data acquisition at a particular load and fault condition. This was often achieved 

over two separate days to ensure confidence in the repeatability of data collected. 

The first file in any data acquisition period was analysed, using the generic software 

described in Section 4.9, before further data was collected to ensure that sensible data 

had been recorded. A filename structure which included filter and amplifier settings 
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was established, from which the load and fault conditions and sequential file number 

could be identified. 

4.9 Generic MatLab® Software for Data Manipulation 

To enable fast analysis and manipulation of the raw data files recorded and to 

eliminate programming errors, a generically applicable user-friendly software 

program was written for use in MatLab. The program asked for the data filename(s) 

to be entered, offered the possibility of frequency averaging, automatically 

performed gain adjustments and calibration for each measurement channel, and 

allowed individual and multiple (superimposed) plotting of chosen channels in a 

variety of domains. It was this software that was used to produce most of the figures 

presented in this thesis. 

A separate piece of software was also written to plot a spectrum of a chosen 

measurement channel (from a chosen data file) and then automatically overlay a 

series of windows to mark the positions of expected frequency components. 

4.10 Summary 

An induction motor test facility was developed in which 240 V, 1.1 kW, motor could 

be tested under varying shaft loads. The facility enabled a range of controlled faults 

to be seeded so that data could be recorded during operation at these conditions. The 

seeded faults were: power supply phase imbalance that created electrical asymmetry 

in the stator; and broken rotor bars that created electrical asymmetry in the rotor that 

resulted in an air gap eccentricity. Each of these faults was seeded at a variety of 

severities. 
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Theoretically, phase imbalance may be detected by changes in the 2×50 Hz 

component in the vibration signal and broken rotor bars may be detected by twice 

slip frequency sidebands.  

Three types of measurement transducers were used in the motor test facility so that 

the information content provided by various machine parameters could be assessed 

and compared. Current transducers were used to measure electrically based 

parameters; accelerometers, and a shaft encoder were used to measure mechanically-

based measurement parameters. 

To enable simultaneous data collection from multiple measurement transducers, a 

16- channel data acquisition system was purchased and software developed for user-

friendly operation. Before data was collected, a structured approach to data 

management was established and a generic software program was written for fast 

analysis and manipulation of collected data. 
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CHAPTER 5  

INDUCTION MOTOR MONITORING BASIC DATA 

ANALYSIS 

 

 

 

This chapter first reports the collection and recording the data for the healthy 

induction motor for a range of loads. This database is used to provide the baseline 

representing normal motor characteristics. The data is then analysed to provide a 

number of statistical parameters for the healthy induction motor for the purpose of 

detecting, diagnosing and assessing the severity of the seeded faults: phase 

imbalance, and damaged rotor bar. Results from time and frequency domain 

analysis, and the trending of individual frequency components are then presented. 
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5.1 Introduction 

There are many conventional techniques which are used to monitor the condition of 

rotating machinery. Most of these methods are easy to understand and are also 

simple to implement. Some of them will briefly be introduced here and applied to 

induction motor measured data in order to assess motor conditions. They are: Time 

domain analysis and frequency domain analysis 

Some of these techniques extract diagnostic information directly from time domain 

signals whereas the others gather the information from the frequency domain. 

5.2 Review of Basic Analysis Techniques  

Time domain analysis and frequency domain analysis are the techniques most 

commonly used to process signals for CM.  

5.2.1 Time Domain Analysis 

Time domain analysis technique was introduced in section 1.7 and more explanation 

and mathematical analysis will be presented in this section.   

Analogue measurements produce a continuous record of the amplitude of a signal; 

we will not use such a system here. The digital time domain signal is a record of the 

amplitude of the signal taken at specific time intervals. Sophisticated digital systems 

will increase the sampling rate with an increase in the high frequency content of the 

signal, and vice versa, but today it is common to sample at a fixed rate. Small 

changes in such parameters as motor speed are often clearly visible in the time 

domain signal, and valuable features such as transients show up. However, the raw 

time-domain signal is usually less useful than the corresponding frequency domain.  

Statistical analysis is through parameters known as moments. These parameters have 

the advantage of being single-valued and so are relatively easy to interpret and use 
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for setting fault detection threshold levels. The first order moment (also called the 

first central moment) is the average value. The second central moment is the variance 

which provides a measure of the spread of the data. Parameters above the second 

order are termed “higher order”. The third order moment is the skewness which is a 

measure of the asymmetry of the data distribution. The fourth order moment is the 

kurtosis which provides a measure on  how sharp the peak is, and how spread out the 

“tails” are, of the data distribution. Higher orders do exist but require large data 

sample to evaluate and are rarely used. In CM the most commonly used statistical 

parameters for signal assessment are the Root Mean Square (RMS) a measure of the 

energy contained within the signal, Crest Factor (CF) the ratio of peak value to the 

RMS value, and Kurtosis (K). 

The values of these parameters will change both with the presence of a fault and as 

the magnitude of the fault increases, and may be used as a measure of the 

deteriorating condition of the induction motor. For example, the observed value of 

the RMS of the vibration signal from a faulty induction motor should be significantly 

different from the value for a healthy one. Thus by comparing measured RMS values 

with values determined using vibrations from a healthy motor, the presence and 

severity of a fault may be detected. Typically RMS values are more useful when the 

fault has developed. 

However, CF and K which reflect the “spikiness” of the measured signal are often 

more useful for incipient faults, and increase as the vibration increases. However, 

beyond a certain level with further increase in damage the vibration signal becomes 

more random in character and the values for CF and K fall to more normal levels. 

Thus, statistical analyses based on CF and K are generally not suitable to detect the 

later stages of motor defects. 
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5.2.1.1 The Root Mean Square (RMS) 

The RMS value of the time domain amplitude of a given signal is [28]: 

  



N
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x nx
N

RMS
1

21
       (5.1) 

Where  

N is the number of samples taken,  

x(n) is the amplitude of the nth sample. 

RMS is a simple and common approach to the measurement of the overall intensity 

of a signal, and provides an averaging effect which reduces the influence of 

individual impulses in, say, a vibration signal. 

5.2.1.2 Crest Factor  

CF gives an indication of significant changes in the envelope of the signal and is 

expressed as: 

xRMS
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         (5.2) 

5.2.1.3  Kurtosis 

Kurtosis is defined as: 
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As can be seen K depends on the fourth power of the difference between the sample 

values and the mean value, this makes it very sensitive to peaks in the signal. The 

higher the K value the sharper and higher the peaks and the more “stretched pout” 
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the tails. The lower the kurtosis the fewer and less pronounced the peaks. The above 

formula gives K = 3.0 for random noise following a Gaussian distribution.  

The signals from healthy, motors have typical K values of 3.0 or lower. With the 

introduction of a fault the K value increases, which suggests the distribution of the 

measured signal samples is no longer Gaussian. This is because the presence of faults 

introduces impulses (isolated peaks with high amplitude) into the time domain 

signal.  

5.2.2 Frequency Domain Analysis   

It has been found that the frequency domain of the measured signal is more useful 

than the time domain for determining motor condition. Thus the time domain signal 

is transformed to the frequency domain; traditionally this has been done using the 

Fourier or Fast Fourier Transform (FFT). It has been found that defects such as 

misalignment, eccentricity and many other faults generate modulation sidebands in 

the spectrum. Indeed it will be shown in this thesis that phase imbalance and broken 

rotor bars cause the amplitude of particular frequencies, sidebands around the power 

supply frequency in the measured signal spectrum to change. The magnitude of these 

sidebands often provides useful information on the condition of the motor. 

The sidebands cluster around the power supply frequency and the frequency of 

rotation of the motor. They are also found around the harmonics of these frequencies. 

Sidebands are generated by either frequency modulation or amplitude modulation or 

of the measured signal and so are often separated by integer multiples of the 

frequency of rotation of the motor. Thus, tracking the changes in amplitude of a 

sideband, or detecting eccentric sidebands in the signal, can provide a good 

indication of the presence of a fault and even possible motor failure.  
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In practice, however, there are problems with the spectrum as obtained using the 

FFT: the most important is in the detection of incipient faults when the signal to 

noise ratio (S/N) is low under which conditions the FFT can fail to detect the 

presence of peaks [82] ,secondly the spacing of the side bands depends on periodic 

variations in the load and in this situation it becomes difficult to extract meaningful 

information regarding individual peaks directly from FFT analysis of measured 

signal, thirdly when the complexity of the system generates a large number of 

frequency peaks it becomes almost impossible to distinguish the peaks from potential 

fault from peaks from other sources.  

5.3 Baselining Healthy Motor Data 

Essential for the CM of machinery is an appreciation of the baseline characteristics 

of the healthy machine. This section examines the baselining of the measurement 

parameters current and vibration. 

5.3.1 Baselining Current 

Figure 5-1 shows the currents in each of the three phases of the supply. At 75% load 

the RMS current is about 5A (see Figure 5.5 for RMS currents at different loads). 

Theory predicts that for a two pole pair motor there should be two electrical periods 

for each revolution , and this is what is observed. The three phases are 120
0
 apart but 

are not perfectly sinusoidal, probably due to loading of the supply by other 

equipment in the building. Also, factors within the substation could influence the 

per-phase current profiles 

. 
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Figure 5-1 Three-phase current at 100% load (healthy case) 

Figure 5-2 shows current spectra for a single-phase, at 0% and 100% of the rated 

shaft load. It can be seen that the spectra from each phase overlay almost identically  

In both plots the 50 Hz supply frequency and its harmonics are clearly visible. 

However at 100% load some of the higher harmonics are less pronounced. At 0% 

load sidebands spaced at running speed around 50Hz are prominent; but are less 

prominent at 100% load because the running speed at 0% load is close to 25 Hz 

(because the slip is very small) so the sidebands of the harmonics of the supply 

frequency overlap and combine to be more visible. At higher loads the motor speed 

is less and therefore the sidebands of the harmonics do not overlap and can be 

separated. Of course separation of the different sidebands depends on the frequency 

resolution available, here it is 0.39 Hz. 

At 100% load a number of additional peaks rise above the background noise level (in 

particular small sidebands around the 50 Hz peak representing twice the slip 

frequency) – these are considered in more detail in Section 5.6.3.  
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Figure 5-2 Spectrum of single -phase current at 0% (a) and 100% (b) load (healthy 

motor) 

RMS Values of Current 

Figure 5-3 shows average value of RMS values for the three-phases. The current at 

no-load is relatively high .Small motors are notorious for this feature which is caused 

by a relatively large air gap width in comparison to the rotor and stator dimensions 

(resulting in a relatively high magnetising current at all loads) [10] 

 

 

 

 

 

 

 

 

Figure 5-3 Effect of load on RMS current and RMS vibration level (healthy motor) 
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5.3.2 Baselining of Vibration 

The vibration parameter used in this research is acceleration. Figure 5-4 shows the 

vibration spectra at no-load and full-load conditions. It is obvious that there are 

greater differences between these two signals than there was between the current 

spectra. However, the measured acceleration will not be the same in all directions 

because the rotor/stator cross-section and mounting arrangements are not 

symmetrical. In addition, and importantly, different measurement positions will sum 

the vibrations reaching that point by different transmission paths[10]. 

 

 

 

 

 

 

 

Figure 5-4 vibration spectra at 0% (a) and 100% load (b) (healthy motor) 

The 50 Hz supply frequency is seen in both spectra. However, at 0% load the running 

speed is very close to 25 Hz and its second harmonic is at 50 Hz the same as the 

mains pickup. The two components add. Similarly, the third harmonic of the running 

speed (3 x 25 = 75 Hz) overlaps with the lower running speed sideband of the 100Hz 

peak (100 – 25 = 75 Hz).  

However, at higher loads, the running speed drops sufficiently so that these 

components may be distinguished separately. 

(a) 

(b) 
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RMS Values of Vibration 

Figure 5-3 shows that the RMS acceleration as a function of load. Interestingly, load 

does not appear to have an effect on the overall signal.  

5.4 Experimental results with basic techniques  

5.4.1 Phase Imbalance Faults 

The first fault condition seeded into the system was a phase imbalance; a decrease in 

the phase A voltage, as described in Section 4.3.1. Faults of three severities were 

seeded, first a drop of 20 V (8.3%), second a drop of 40 V (16.7%) and then one 

rotor bar broken 

5.4.1.1 Fault Detection by Current  

Figure 5-5 shows the RMS, CF and K values for the current signal for the motor 

under different load and fault condition. It can be seen from Figure 5-5, that while 

the three statistical parameters did vary with the induction motor fault and the load 

on the motor the changes in CF and K were not significant with either load or fault. 

Small changes can be seen in the RMS values for different faults and load, but no 

consistent pattern was observed. It was concluded that these features will not be 

effective indicators of these faults. More advanced signal processing techniques are 

necessary to determine required a robust feature able to diagnose induction motor 

faults.  
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Figure 5-5 Statistical parameters RMS (a), CF (b)  and K (c)  for the time-domain of 

the current signal 

Figure 5-6 shows that the frequency domain of one phase of the supply current signal 

at 75% load, healthy and with voltage imbalances of 20 V and 40 V. Peak values 

corresponding to the power supply frequency and sidebands can be seen. It can also  

be seen that the spectral amplitude at power supply frequency and its sidebands 

change with the severity of the faults. 
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Figure 5-6 Frequency domain of one phase of the supply current at 75 % load and 

with voltage imbalance (a)- Healthy (b)- 20 V drop (c) 40 V drop 

Figure 5-7 shows trends the amplitude of the 50 Hz peak of the Phase A current with 

varying load, and voltage fault. The 50 Hz peak increases with load for all three 

voltage conditions, but the greater the voltage drop the greater the Phase A current as 

the motor attempted to maintain constant power.  

 

 

 

 

 

 

 

 

Figure 5-7 Amplitude of peak at 50 Hz in Phase A 
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5.4.1.2 Fault Detection by Vibration. 

Figure 5-8 shows RMS, CF and K values of the time domain of the vibration signal 

for healthy motor and faulty motor operating under different conditions. It can be 

seen that the three parameters vary with type of fault and load. No significant 

changes were found for the CF and K values. The results did reveal some differences 

in the RMS values at 100% load for healthy and faulty conditions, there was no 

consistent pattern which would have allowed identification of which fault was which. 

These three statistical features are not able to detect the presence of a fault reliable 

nor identify it effectively. More advanced signal processing techniques are required 

for the robust identification of induction motor faults.  

 

 

 

 

 

 

 

 

Figure 5-8 Statistical parameters RMS (a), CF (b)  and K (c)for the time-domain of 

the vibration signal 

Figure 5-9 shows the vibration acceleration spectrum. It can be seen that the 100 Hz 

component increases in magnitude, as predicted in Section 4.4.1. The spectral 
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amplitude at twice power supply frequency and its sidebands change with the 

severity of the faults. 

 

 

 

 

 

 

Figure 5-9 Vibration acceleration spectrum, 75% load with voltage imbalance in one 

phase of the supply current (a) Healthy case (b)- 20 V drop (c)- 40V drop 

Figure 5-10 shows the amplitude of the 100 Hz peak in the vibration acceleration 

spectrum for different loads and the two voltage imbalance faults. For the healthy 

motor it can be seen that the 100 Hz peak gradually rises to a maximum value at 50% 

load and then decreases gradually.  Similar shapes are observed for each voltage 

fault, but the 100 Hz peak is larger the larger the voltage imbalance. With voltage 

imbalance the values of the 100 Hz peak appears to rise as the load is increased but 

not uniformly, this needs further investigation. 

Although detection of the voltage imbalance fault based on change in amplitude of 

the 100 Hz component appears feasible, severity assessment may not always be 

possible. 
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Figure 5-10 Amplitude of the 100 Hz peak in the vibration acceleration spectrum 

with load and voltage imbalance in one phase of the supply current 

 

5.4.2 Broken Rotor Bar Fault 

A damaged (broken) rotor bar was the second fault to be considered. Section 4.3.2 

describes how the damage was seeded by drilling into the conductor bars. 

5.4.2.1 Fault Detection by Inspection of Current Signal 

As predicted in Section 4.4.2, the seeded broken rotor bar generated sidebands in the 

spectrum of the current spaced at the twice slip frequency around the 100 Hz 

fundamental of the electrical current, see Figure 5-11 which shows the spectrum of 

the Phase A current for healthy motor operation, and operation with a fully broken 

bar. The fundamental frequency is labelled as are the location of the first and most 

visible of the lower and upper sidebands. 
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Figure 5-11 Current spectrum at 75% load (healthy motor (a) and one fully broken 

rotor bar (b)) 

Figure 5-12 shows the amplitudes of the carrier frequency and the average of the first 

lower and upper sidebands for a healthy motor and motor with a broken rotor bar. 

The figure shows that the difference in amplitudes at each of the motor loads is 

sufficient to show the presence of a fault and is indicative of a broken bar fault. The 

results also show that detection of this fault appears to be heavily dependent on load 

– the indication of the fault is more pronounced at 100% load than at 75% load by 

approximately a factor of two  
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Table 5-1 Slip and 1
st
 and 2

nd
 Sidebands 

Load percent (%) Rotor speed Slip 1
st 

sidebands 2
nd

 sidebands 

0% 24.85 Hz 0.006 0.6 Hz 1.2 Hz 

25% 24.60 Hz 0.016 1.6 Hz 3.2 Hz 

50% 24.41 Hz 0.0234 2.34 Hz 4.68 Hz 

75% 24.22 Hz 0.0312 3.12 Hz 6.24 Hz 

100% 23.88 Hz 0.0448 4.48 Hz 8.96 Hz 

 

 

 

 

 

 

 

Figure 5-12 Amplitudes of sidebands (50 Hz ± slip frequency) in current spectrum 

for healthy motor and one broken rotor bar. 

 

5.4.2.2 Fault Detection by Inspection of Vibration Spectrum  

In theory, sidebands at twice the slip frequency should be found around the peak in 

the vibration spectrum at the motor speed. Figure 5-13 shows the vibration 

acceleration spectra for a healthy motor and motor with one broken rotor bar. 
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Figure 5-13 Vibration spectrum at 75% load (healthy motor (a) and motor with one 

broken rotor bar (b)) 

Figure 5-14 is the corresponding figure to Figure 5-12. It shows the amplitudes of the 

sidebands immediately adjacent to the carrier (ie the first lower and upper sidebands) 

for healthy motor and motor with one broken rotor bar.  

 

 

 

 

 

 

 

Figure 5-14 Amplitudes of vibration acceleration peaks at 25 Hz ± slip frequency for 

healthy motor and motor with one broken rotor bar 
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5.7 Summary  

This chapter has shown how data from current and vibration transducers attached to 

an induction motor system may be analysed in both the time and frequency domains 

to detect diagnose and assess the severity of two faults (phase voltage imbalance and 

rotor bar breakage). Faults of low severity have been successfully detected which 

paves the way for detection and diagnosis of incipient faults. 

5.7.1 Baselining of Healthy Motor Data 

The baselining procedure of Section 5.2 provided the basis for an investigation into 

the effect of load on healthy motor operation. It was shown that both RMS current 

and vibration signals varied. Furthermore, it was shown that two frequency 

components from two different sources could sometimes overlap at low slip speeds. 

Without prior understanding of this feature, this could have misled subsequent 

interpretation of the data recorded during faulty motor operation 

5.7.2 Phase Imbalance Faults 

Section 5.3.1 showed that phase voltage imbalances of 20V and 40V could be 

detected by examining changes in the 50 Hz component of the Phase A current. 

Section 5.3.4 showed the detection and diagnosis of voltage phase imbalance using 

the machine vibration by trending increases in the amplitude of the 100 Hz frequency 

component. The CM capabilities for this particular fault were found to be relatively 

consistent irrespective of the motor load. 

5.7.3 Broken Rotor Bar Faults 

Section 5.4.1 demonstrated that the broken rotor bar fault seeded into the motor 

could be detected, diagnosed and its severity assessed by examining the twice slip 

frequency sidebands around the 50 Hz power supply peak in the spectrum of the 
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current. The broken bar faults could also be detected by the presence of sidebands 

around the 25 Hz running speed component in vibration spectra (Section 5.4.2).  

However neither the time nor frequency domains provide the instant of time at which 

the fault occurs and thus, in the next chapter time-frequency analysis will be used 

evaluates induction motor faults severity. 
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CHAPTER 6  

TIME-FREQUENCY ANALYSIS TECHNIQUES 

 

 

 This chapter compares the performance of the short time Fourier transform (STFT), 

the Wigner-Ville distribution (WVD), the continuous wavelet transform (CWT), the 

discrete wavelet transform (DWT) and wavelet multi-resolution analysis (MRA) 

using a simulated signal and measured data from an induction motor with seeded 

faults (phase voltage imbalance and broken rotor bar) 

It is shown that there are limitations to STFT and WVD techniques which can be 

overcome using the CWT and DWT. However the DWT is found to be faster than the 

CWT.  

Using higher level components of the DWT (d5 to d7) of the measured signal 

provided useful information on identification of the faults using the energy content in 

the frequency bands corresponding to mains supply frequency, twice the mains 

frequency and the shaft drive frequency The results of the experiment show wavelet 

decomposition is an appropriate technique for non- stationary signals representing 

faults in an induction motor.  
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6.1 Introduction  

Neither spectrum analysis nor time domain analysis alone can provide a complete 

picture of the time and frequency characteristics of a signal.  For stationary signals 

this is not really a problem because, by definition, their behaviour is not changing; 

however, for non-stationary signals simultaneous time and frequency information is 

important. To characterise non-stationary signals, combined time-frequency 

techniques are used. Those which have gained popularity in recent years are: the 

short time Fourier transform (STFT), Wigner-Ville distribution (WVD) and the 

wavelet transform (WT). 

6.2 Short Time Fourier Transform  

The STFT can be used to describe the change of frequency content of a signal with 

time. The STFT uses a time window to separate the main signal into small parts, each 

part is then assumed to be a stationary signal and the Fourier transform (FT) is 

applied to each part individually [83], as shown in Figure 6.1. Because the main 

signal is divided into small time intervals the process is named the Short Time 

Fourier Transform. As a result, it can produce a different spectrum distribution for 

the different time windows[84] .  A signal separated into such intervals is named a 

windowed signal as given in Equation 6.1  

  ( )   ( )  ( )            (6.1) 

Where x(t) is a main signal, w(t) is a window function and xw(t) is a windowed 

signal.   

 Since a window function is applied at different locations of the whole time signal the 

windowed signal can be represented as a function of the time, t, and window location 

τ [83]  as shown in Equation 6.2  
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  (   )   ( )  (   )          (6.2) 

The result of the Fourier Transform for each time interval can be called a windowed 

Fourier Transform and will be a function of window location. STFT can then be 

given as in Equation 6.3 [83] : 

    (   )  ∫  ( ) (   )         
 

  
        (6.3) 

Thus, for each location of the window, different spectra will be computed; the total 

number of these spectra is a function that represents a time frequency distribution 

[83]. The modulus of the STFT is called a spectrogram. 

The procedure to calculate the STFT can be summarized in the following steps, also 

shown in Figure 6.1  

 Compute  a windowed signal xw(t), by multiplying the main signal x(t) by the 

window function as in Equation 6.1 

 Fast Fourier Transform is applied to each windowed signal. 

When using very short window functions, the effectiveness of the STFT will 

decrease because as the time segments become very small and the amount of 

information decreases, so the content of the resulting spectrum decreases . 

 

Figure 6-1 Principle of operation of Short Time Fourier Transform [91] 



120 

6.3 Wigner-Ville Distribution  

Another type of joint time-frequency analysis technique is the Wigner-Ville 

distribution (WVD). This was first presented in 1932 by Wigner for studying 

problems in quantum mechanics and 15 years later the French scientist (Ville) 

applied the Wigner distribution to signal processing. So that today it is generally 

called the Wigner-Ville Distribution [85]. 

To understand the WVD, the power spectrum, PS(t, ω), is considered the Fourier 

Transform (FT) of the auto-correlation function, R(τ), which is defined as[85]; 

  (   )  | ( )|  ∫  ( )       
  

  
        (6.4) 

Where 

 ( )  ∫  ( )  (   )  
  

  
        (6.5) 

The Fourier Transform (FT) of the time-dependent auto-correlation function R(t,τ) 

with respect to the variable τ is a function of time and frequency: 

  (   )  ∫  (   )       
  

  
       (6.6) 

Where the time-dependent auto-correlation function R(t,τ) is defined as: 

 (   )  
 

  
∫   (   )  (   ) 

     
  

  
       (6.7) 

Where    (   ) represents the ambiguity function of signal x(t) and   (   ) 

represents the ambiguity function of window function. The time-dependent auto-

correlation function in the WVD is given as [[85], [86]]: 

 (   )   (  
 

 
)   (  

 

 
)       (6.8) 

Where x(t) is the analytical signal and x
*
(t) is the complex conjugate of the analytical 

signal x(t).  
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From the above equations, the WVD can be written as: 

     (   )  ∫  (  
 

 

  

  
)  (  

 

 
)              (6.9) 

Where WVDxx (t, ω) is the WVD of  the complex continuous-time analytical signal 

x(t).  

6.4 The Continuous Wavelet Transform (CWT). 

The CWT is an effective technique for the detection of faults in machinery and is 

widely recognized as useful for condition monitoring (CM). The CWT is suitable for 

the analysis of both stationary and transitory signals [87]. 

Time-frequency representations such as the STFT give a fixed resolution in the time 

and frequency domain once the window function is determined. Wavelet transforms 

(WTs) can analyse non-stationary signals. The WT of a time signal is an expansion 

of the signal in terms of a family of functions, which are generated from a single 

function called the wavelet kernel. The classical Fourier Transform moves data from 

a time to a frequency domain with sinusoids as the basis functions, which give the 

average characteristics of the signal. The WT translates data onto a scale, or time-

frequency domain, with the wavelet as the basis function containing the localised 

features of the original signal. One of the important characteristics of the WT is that 

it can narrow or widen the time window depending on whether the frequency is high 

or low. This is an important difference between the WT and other time-frequency 

methods. As a result, the WT has the ability to resolve very short-lived transient 

phenomena in the time dimension, making it suitable for the analysis of non-

stationary signals. Thus the WT is a technique which is potentially well suited to the 

detection of early failures from induction motors. 
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The CWT separates signals into a set of elementary functions, called wavelets. 

Wavelets come in sets or families of functions which define its basic shape and then 

each is defined by a dilation, which controls the scaling parameter, and translation, 

which controls the position of the wavelet in time. Mathematically, the CWT of the 

continuous signal x(t) is defined as [[5], [88],[89] ]: 

   (   )    (   )  
 

√ 
∫  ( )  
 

  
(
   

 
 )        (6.10) 

Where  ( ) is the mother wavelet , b is the translation factor and   (   ) is the 

dilation factor. The factor  
√ 
⁄  is used for energy normalisation. The continuous 

wavelet transform is extended by a family of kernel functions, which are translated 

and dilated versions of the mother wavelet, these are called daughter wavelets and 

expressed as: 

   ( )  
 

√ 
           (6.11) 

Where    ( ) represents the daughter wavelet and  (
   

 
) is the translated and 

dilated mother wavelet. The scaling and shifting parameters a and b continuously 

change so that the size of wavelet function     ( ) is varying. This is in contrast 

with the STFT where the window size is fixed.  

The CWT uses variable window size when analyzing different frequency 

components within a signal. When large scales are selected, the resulting    ( ) 

become a low frequency wavelet function and spreads out in time, and vice versa [5].  

Comparison between STFT and CWT is illustrated in Figure 6.2. Once the 

elementary function has been selected for the STFT, the time-frequency resolution is 

fixed over the entire time-frequency domain, see Figure 6.2a. With the CWT, the 
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time resolution increases with the central frequency of the analysis filter, and the 

frequency resolution (Δf) is assumed to be proportional to f [85] [90]. 

  

 
             (6.12) 

Where c is a constant. Figure 6.12b represents the CWT and shows that the 

frequency resolution is good at high frequencies, and the time resolution remains 

good at low frequencies [85]. 

 

 

Figure 6-2 Time-frequency resolution of (a) Short Time-Fourier Transform and (b) 

Continuous Wavelet Transform [85] 

The explanation below describes the difference between the STFT and the CWT and 

helps us to understand the behaviour each. 

The signal y(t) is assumed to carry two pulses in the time domain,  (    ) and 

 (    ), and two pulses in frequency domain,       and       as shown in 

Equation 6.13:  

 ( )   (    )   (    )   
                       (6.13) 
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The frequency domain for signal y(t) is expressed as in Equation 6.14: 

 ( )                 (    )     (    )                                 (6.14) 

The STFT and CWT for signal y(t) are plotted in Figure 6.3, which shows major 

differences between the two techniques. With the STFT; time and frequency 

resolution appear uniform over the time-frequency domain, see Figure 6.3a. But the 

resolution for both time and frequency changes when using the CWT, see 

Figure 6.3b. From Figure 6.3b it can be seen that at high frequencies, the CWT gives 

good time resolution as well as good frequency resolution at low frequency [91].  

 

 

 

 

 

Figure 6-3 Comparison of STFT and CWT (a) STFT time and frequency resolution 

(b) CWT time and frequency resolution 

6.5 Discrete Wavelet Transform  

Wavelet multi-resolution analysis (MRA) is a new and powerful method of signal 

analysis well suited to fault generated signals[91]. The windowing of the wavelet 

transform is adjusted automatically for low and high frequencies, i.e. it uses short 

time intervals for high frequency components and long time intervals for low 

frequency components and thus each frequency components gets treated 

appropriately without requiring any reinterpretation of the results. 
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This gives the wavelet transform much greater power in the analysis of the signals 

with localized transient components. The time frequency localization means that 

more energetic wavelet coefficients are localized. This is useful for feature 

extraction. Therefore, it is well suited for the fault location problem in, for example, 

electrical machines.  

For the discrete wavelet transform (DWT) the main idea is the same as it is in the 

case of CWT, but it is considerably easier and faster to implement [91]. The wavelet 

is simply a sampled version of the continuous wavelet transform, and much of the 

information it provides is redundant as far as the reconstruction of the signal is 

concerned. But this redundancy requires a significant amount of computation time. 

Discrete wavelets overcomes this problem by providing sufficient information both 

for analysis and synthesis of the original signal with a significant reduction in the 

computation time.  

A quick way to obtain the forward DWT coefficients is to use the filter bank 

structure shown in Figure 6.4. The approximation coefficients at a lower level are 

transferred through a high pass (h[n]) and a low-pass filter (g[n]), followed by a 

down sampling by two to compute both the detail (from the high-pass filter) and the 

approximation (from the low-pass filter) coefficients at a higher level. The two filters 

are linked to each other and they are known as quadrature mirror filters. High-pass 

and low-pass filters are derived from the mother wavelet and the scaling function, 

considered respectively in [91]. 

 

 

 



126 

 

 

 

 

 

 

Figure 6-4 Wavelet tree decomposition for three levels of detail 

Figure 6.5 shows the frequency ranges covered and the final approximation for a 

three-level decomposition. These are directly related to the frequency bands where 

the analysis will be performed. 

 

 

 

Figure 6-5 Frequency ranges for details and final approximation 

Figure 6.6 represents graphically the time-frequency window, which has better 

resolution in the time domain for high frequencies, and better frequency resolution 

for low frequencies, which means fewer resources for processing. 
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Figure 6-6 Time-Frequency window for the wavelet transform 

The shape of the frequency response for these filters depends on the type and the 

order of the mother wavelet used in the analysis. In order to avoid overlapping 

between two adjacent frequency bands, a high-order mother wavelet has to be used 

and that results in a high order frequency filter. 

6.6 Numerical Simulation  

With an induction motor operating at shaft frequency of 23.53 Hz, the power supply 

frequency at 50 Hz, twice power supply frequency 100 Hz, rotor oscillation 

frequency at 190.64 Hz with sidebands around the 1
st
 shaft  frequency at frequencies 

of 23.7066 Hz (23.83 - 2*slip) and 23.8934 Hz (23.83 + 2*slip), a simulated signal 

can be assumed to be 

x =0.2*sin(2*pi*23.83*t) + 0.1*sin(2*pi*1009.6*t) + 0.1*sin(2*pi*190.64*t) 

+ 0.1*sin(2*pi*100*t) +  0.1*sin(2*pi*96*t) + 0.1*sin(2*pi*50*t) + 0.1*sin(2*pi 

*23.8934*t) + 0.1*sin(2*pi*23.7066*t).         (6.15) 

The  vibration generated  by mechnical damaged of an induction motor often exhibit 

the time domain pattern shown in Figure 6.7. The signal shown in Figure 6.8 is 
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artifically corrupted by Gaussian noise, and is used to compare the ability of the 

signal analysis techniques to extract weak spikes  from vibration signals heavily  

contaminated with background noise and to choose the best which will then be used  

to detect  induction motor faults from test rig data.  

The time-domain and power spectrum of the simulated signal of Figure 6.8 with the 

addition of “spikes” to represent artificial faults are presented in Figures 6.9 and 6.10 

respectively 

The FFT simply identifies all frequencies in the signal, there is no information about 

when these spectral components occur. Therefore, the FFT is not a suitable method 

for non-stationary signals. 

 

 

 

 

Figure 6-7 Simulated signal                            Figure 6-8 Simulated signal with noise 
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Figure 6-9 Simulated signal with small spikes      Figure 6-10 Power spectrum of simulated signal 

Figures 6.11 and 6.12 show, respecrively, the STFT of the simulated signal articially 

corrupted by Gaussian noise and the same signal with “spikes” added. Both present 

the results using a spectrogram rectangle that gives a good description of the 

behaviour of each signal. However, a big diffenece in time-frquency localisation for 

the signal is apparent if the width of the window is changed. The bandwith limitation 

imposed by the window function mean that if, in the case of multi-component 

signals, we want to get better resolution in time we must sacrifice resolution in 

frequency and vice versa.  

 

 

 

 

 

 

 

Figure 6-11 STFT of simulated signal corrupted with Gaussian noise 
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Figure 6-12 STFT of simulated signal corrupted with Gaussian noise and with spikes 

The following figures show the effect of "cross-terms" in the WVD. Figure 6.13 

shows the WVD of the simulated signal, and Figure 6.14, the simulated signal 

corrupted with a few spikes. 

Although it is a good representation of the two signals, the only advantage chosen the 

WVD over the STFT is better time-frequency resolution. Concentration of energy in 

some frequency bands also makes the WVD preferable to the STFT in many 

applications of signal processing  
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Figure 6-13 WVD of simulated signal corrupted with Gaussian noise 

 

 

 

 

 

 

 

Figure 6-14 WVD of simulated signal corrupted with Gaussian noise and with spike 

In Figure 6.15, it is possible to see that, in the case of CWT, the characteristics of the 

time frequency signals are much clearer. The wavelet analysis highlights the exact 

time location of the transient spike as shown in Figure 6.16. 
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Figure 6-15  CWT of simulated signal corrupted with Gaussian noise 

 

Figure 6-16 CWT of simulated signal corrupted with Gaussian noise and with spikes 

The DWT consists in sampling, scaling and shifting parameters, but neither the 

signal nor the transform. This leads to high-frequency resolution at low frequencies 

and high-time resolution for higher frequencies. Figures 6.17 and 6.18 illustrates the 

waveforms respectively of the simulated signal corrupted by Gaussian noise and the 

simulated signal corrupted by Gaussian noise and with peaks. Here the "db23" 

wavelet was used as the mother wavelet .The waveforms have clear spikes. Obvious 

periodic spikes can be seen in Figure 6.18 in subplot of scale 4 and in the subplot of 

scale 3. While no impulses exist in othe subplots. 
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Figure 6-17 DWT of simulated signal corrupted with Gaussian noise 

 

 

 

 

 

 

Figure 6-18 DWT of simulated signal corrupted with Gaussian noise and with spikes 

 

By comparing the results obtained from time-frequency analysis of simulated signal 

it can be seen that time-frequency analysis has advantages over time-domain or 

frequency-domain analysis, and these benefits make it a powerful tool in CM of 

machines.  STFT can describe the frequency components of a signal at a specified 

time but a single window is used for all frequencies, so the the resolution of the 

STFT cannot vary for different frequencies.  
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The WT overcomes this problem by using a window length which is variable. 

However, the WDV is not capable of a satisfactory representation of multi-

component signals due to the presence of cross terms. In practical applications the 

WVD requires smoothing to remove this cross contamination. 

The DWT uses the same main idea as the CWT, but is considerably easier and faster 

to implement. Because of these benefits the DWT will be used for analysis of the 

induction motor data obtained in this research.   

A brief assessment of the different signal processing techniques used above is given 

in Table 6.1. This summarizes the understanding of the applications and limitation of 

fault detection techniques gained in the simulation exercise performed here.  

Table 6-1 Comparison of techniques used for analysis of simulated signal 

representing vibration signal for induction motor with phase current fault 

Techniques 

Name  

Advantage  Disadvantage  

FFT Suitable for high load condition 

Easy to implement  

Lost time information  

Not effective at light load 

condition 

STFT Suitable for varying  load 

condition Fast speed  

Analyze signal with fixed sized 

window 

Poor frequency resolution  

WVD  Fine frequency resolution  

Fast speed 

Strong cross terms interferences  

WT  Suitable for varying load and light 

load condition  

Requires expertise  

 

6.7 Application of CWT to Induction Motor data 

In this section, the WT transform is examined to see whether it is capable of 

detecting growing simulated local faults in the induction motor.  
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6.7.1 Detection of Phase Imbalance Faults   

6.7.1.1. Fault Detection by Current. 

Figures from 6.19 to 6.22 illustrate the CWT of induction motor current signals for 

four loads on the healthy motor, motor with 20 V drop in one phase and motor with 

40 V drop in one phase.  

The fundamental and second power supply harmonics are visible, though the energy 

of the current signal is mainly concentrated around the fundamental power supply 

frequency. The wavelet transform results in good frequency resolution at low 

frequencies and gradually deteriorates when moving to higher frequencies as shown 

in Figure 6.19 – 6.22. This varying resolution on the time-frequency plane is due to 

the change in the size of the wavelet during the analysis. Low frequency 

characteristics of the current signal therefore can be captured and displayed more 

clearly when compared to higher frequency regions. For the healthy condition the 

wavelet does not change significantly and most of the signal energy remains around 

the fundamental power supply frequency region. However, the wavelet plot begins to 

show a small frequency activity (50 Hz) at 10 and 20 % fault level which is fault 

symptom. 
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Figure 6-19 cwt of current signal for different phase imbalance with 0% load 

 

 

 

 

 

 

 

 

 

Figure 6-20 cwt of current signal for different phase imbalance with 25% load 
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Figure 6-21 cwt of current signal for different phase imbalance with 50% load 

 

 

 

 

 

 

 

 

Figure 6-22 cwt of current signal for different phase imbalance with 75% load 

6.7.1.2.  Fault Detection by Vibration 

Figures 6.23 to 6.26 illustrate the use of the CWT for analysis of vibration signal 

collected from the induction motor housing. The operating conditions are as 



138 

described in Section 6.7.1.A above.  The changes in amplitude and frequency 

distribution with time can be seen for every case which means the condition of the 

motor was varying. The energy of the signal remained close to twice the fundamental 

power supply frequency region (100 Hz) when the motor is in good condition or with 

very small faults (20 and 40 % voltage drop). However, when the local fault 

progresses energy in the vibration signal moves and concentrates in the frequency 

region around 150 Hz. But to classify the cases between healthy and faulty was 

difficult because there is no clear or known relationship between induction motor 

condition and amplitude/frequency distributions.  

 

 

 

 

 

 

 

 

 

Figure 6-23 cwt of vibration signal for different phase imbalance with 0% load 
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Figure 6-24 cwt of vibration signal for different phase imbalance with 25% load 

  

 

 

 

 

 

 

 

 

Figure 6-25 cwt of vibration signal for different phase imbalance with 50% load 
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Figure 6-26 cwt of vibration signal for different phase imbalance with 75% load 

 

6.7.2  Detection of Broken Rotor Bar Fault 

6.7.2.1.  Fault Detection by Current  

Figures 6.27- 6.30  shows the WT of one phase of the motor current signal for a 

healthy motor and with one rotor bar broken, for four loads: no load, 25%, 50% and 

75% full output load. Under healthy conditions, the wavelet plot shows a power 

supply frequency of about 50 Hz where the majority of the signal energy is 

concentrated. When one broken rotor bar was seeded into the motor there is no 

significant shift from normal condition.  
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Figure 6-27 CWT of current signal for healthy and one rotor bar broken with 0% 

Load 

 

 

 

 

 

 

 

 

 

Figure 6-28 CWT of current signal for healthy and one rotor bar broken with 25% 

Load 
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Figure 6-29 CWT of current signal for healthy and one rotor bar broken with 50% 

Load 

 

 

 

 

 

 

 

 

Figure 6-30 CWT of current signal for healthy and one rotor bar broken with 75% 

Load 
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6.7.2.2.  Fault Detection by Vibration Analysis 

The WT for the healthy induction motor and motor with broken rotor bar are 

displayed in Figures 6.31 -6.34. The figure shows changes in amplitude and 

frequency distribution with time for every case which means the condition of the 

motor was varying. There is some change in the energy of the signal changes at the 

twice fundamental power supply frequency (100 Hz) when the broken rotor bar is 

seeded into the motor, however there is no significant difference between the normal 

and fault conditions of the wavelet plots.  

 

 

 

 

 

 

 

 

Figure 6-31 CWT of vibration signal for healthy (a) and one rotor bar broken(b)  

with 0% Load 
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Figure 6-32 CWT of vibration signal for healthy (a) and one rotor bar broken (b) 

with 25% Load 

 

 

 

 

 

 

 

 

 

Figure 6-33 CWT of vibration signal for healthy (a) and one rotor bar broken (b) 

with 50% Load 
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Figure 6-34 CWT of vibration signal for healthy (a) and one rotor bar broken (b) 

with 75% Load 

6.8 Application of DWT to Induction Motor Data 

In this section, the DWT is examined to see whether it is capable of detecting 

simulated local faults in the induction motor. Figure 6-34 shows a flowchart with the 

steps that should be followed in order to apply the DWT for the diagnosis of faults in 

an induction motor. 
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Figure 6-35 Flowchart for the DWT-based diagnosis methodology 

6.8.1 Selection of the Mother Wavelet 

Before applying the DWT it is necessary to select the type of mother wavelet and the 

number of decomposition levels [91]. The selected mother wavelet is related to the 

coefficients of the filters used in the filtering process inherent in the DWT. Several 

wavelet families with different mathematical properties have been developed [91]. 

These wavelets may be classified into two general groups; the infinite supported 

wavelets such as the Gaussian, Mexican Hat, Morlet, Meyer, etc., and compact 

supported wavelets such as orthogonal wavelets (Daubechies or Coiflet) and bi-

orthogonal wavelets, etc., [91]. In the field of fault diagnosis of an induction motor, 

some families have shown better results for particular applications. However, in the 

case of compactly supported wavelets, once the wavelet family is selected, it is 

advisable to carry out the DWT using a high-order wavelet (i.e. a wavelet with an 

associated filter with a large number of coefficients) as the mother wavelet. If a low 

order wavelet is used, the frequency response deteriorates and there may be overlap 

between adjacent frequency bands. 

Collected the signal for healthy and faulty cases 

Application of DWT  

Selection of the Mother Wavelet 

Specification of the number of decomposition levels 

 

  Analysis of the Wavelet Signals 

Decision 

  



147 

6.8.2 Specification of the Number of Decomposition Levels  

The number of decomposition levels is determined by the low-frequency components 

to be traced. The extracted frequency band becomes lower if the number of 

decomposition levels of the DWT becomes higher as shown in Table 6.2. So, the 

evolution of these components will be reflected through the high-level signals 

resulting from the analysis 

Typically, for the extraction of the frequency components caused by rotor 

asymmetries or even eccentricities, the number of decomposition levels should be 

equal or higher than that of the detail signal containing the fundamental frequency. 

This number of decomposition levels (nf) is by given by [91]. 

          [
   (

  
 ⁄ )

   ( )
]                                     (6.16) 

For data collection at a rate of fs = 5000 samples/s and f = 50 Hz, the application of 

Equation 6.16 leads to nf = 7. The frequency bands associated with each wavelet 

signal are shown in Table 6.2.  

Table 6-2 Frequency bands for the wavelet signal 

Level Signal Frequency band 

D1 

Detail signal 

 

1250-2500 Hz 

D2 625-1250 Hz 

D3 312.5-625 Hz 

D4 156.25-312.5 Hz 

D5 78.12-156.25 Hz 

D6 39.06-78.12 Hz 

D7 19.53-39.062  Hz 
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To perform the diagnosis, the energy factor need to be determined, this is defined as 

the estimation of the energy content of any decomposed detail. Energy is the 

percentage of energy corresponding to the details level. 

6.8.3 Detection of Phase Imbalance Faults   

6.8.3.1.  Fault Detection by Current Measurement  

As predicted in Section 4.4.2, the induced faults in the current phase cause sidebands 

around the fundamental electrical supply frequency in the current signal. To obtain 

the components of the measured signal in a band near the fundamental harmonic of 

50 Hz, a 7 levels one-dimensional discrete wavelet analysis was performed using the 

wavedec function.  The db23 type wavelet from the Daubechies family was used.  

As it will be seen the difference signal at the 6
th

 level of decomposition (d6) can be 

used for fault detection of the rotor induction motor phase imbalance faults, because 

its frequency  band is between 39 and 78 Hz, where all the sideband components of 

interest can be found. 

In Figures 6.36 to 6.39 the obtained d6 wavelet coefficient's variation with time are 

given for the healthy and faulty induction motor at different loads. For a better 

comparison in all the four cases the same axis scaling was applied. 
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Figure 6-36 Detail d6 level of current signal healthy and 20& 40 voltage drop with 

0% Load 

 

 

 

 

 

 

 

Figure 6-37 Detail d6 level of current signal healthy and 20& 40 voltage drop with 

25% Load 
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Figure 6-38 Detail d6 level of current signal healthy and 20& 40 voltage drop with 

50% Load 

 

 

 

 

 

 

 

 

Figure 6-39 Detail d6 level of current signal healthy and 20& 40 voltage drop with 

75% Load 

The fault can be detected by comparing d6 level of DWT of one phase of the motor 

current under healthy and fault conditions. It can be clearly seen that the amplitude at 
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level 6 significantly changes with the presence of as phase imbalance fault in the 

induction motor.  

As a second step to improve comparison between healthy and faulty cases a 

classification method has been developed which represents the relative increase in 

amplitude of the energy level of a single branch of the decomposition tree to healthy 

condition values. In the Figures 6.36 -6.39 this method is applied to the 6
th

 level of 

the wavelet for the motor healthy and seeded with the phase voltage fault at different 

loads.  It can be seen that the energy of the signal in the fundamental power supply 

frequency band (around 50 Hz) changes with the seeding of very small faults (20 and 

40 voltage drop).  It can be noticed that, using this method a clear detection of faults 

is observed at the 6
th

 level of composition as shown in figure 6.40 

 

 

 

 

 

 

 

Figure 6-40 Energy in 6
th

 level energy of stator current (frequency band between 39 

and 78 Hz) 

6.8.3.2. Fault Detection by Vibration Measurement 

Theoretically, phase imbalance may be detected by changes in the 2×50Hz 

component in the measured vibration. As only a single branch of the decomposition 
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tree is required for the fault analysis of the phase imbalance fault of induction motor 

the d5 coefficient of the one-dimensional vibration signal was used because its 

frequency band is between 78 and 156 Hz, where all the sideband components of 

interest can be found [9]. The fault can be detected by comparing d5 level of DWT of 

vibration measured under healthy and fault conditions. It can be clearly shown that 

the amplitude at level 5 is significantly changed which indicates the presence of 

phase imbalance fault. 

 In Figures 6.41 – 6.45 the energy detection method is applied to the 5
th

 level of the 

wavelet for the healthy motor and motor with seeded phase current faults at different 

loads. The energy of the signal changes at the twice fundamental power supply 

frequency band (100 Hz) when the motor is in good condition or with small faults 

(20 and 40 V drops). It can be noticed that, using this method a clear detection of 

faults is observed at the 5
th

 level of composition.  

 

 

 

 

 

 

 

 

Figure 6-41 Detail d5 level of vibration signal healthy and with 20 and 40 V drop 

0% Load 
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Figure 6-42 Detail d5 level of vibration signal healthy and with 20 and 40 V drop 

with 25% Load 

 

 

 

 

 

 

 

 

Figure 6-43 Detail d5 level of vibration signal healthy and with 20 and 40 V drop 

with 50% Load 
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Figure 6-44 Detail d5 level of vibration signal healthy and with 20 and 40 V drop 

with 75% Load 

 

 

 

 

 

 

 

Figure 6-45 Vibration energy in 5
th

 level energy (frequency band between 78 and 

156 Hz) 
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6.8.4 Detection of Broken Rotor Bar Faults   

6.8.4.1. Fault Detection by Current Measurement  

As predicted in Section 4.4.2, the induced broken rotor bar faults caused sidebands 

spaced at twice the slip frequency around the fundamental electrical supply 

frequency. As mentioned in section 6.8.3, the sixth level of decomposition (d6) can 

be used for fault detection of a broken rotor bar in an induction motor.  

 

 

 

 

 

 

 

Figure 6-46 Detail d6 level of current signal healthy and one broken rotor bar under 

0% Load 

 

 

 

 

 

 

Figure 6-47 Detail d6 level of current signal healthy and one broken rotor bar under 

25% Load 
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Figure 6-48 Detail d6 level of current signal healthy and one broken rotor bar under 

50% Load 

 

 

 

 

 

 

 

Figure 6-49 Detail d6 level of current signal healthy and one broken rotor bar under 

75% Load 

The fault can be detected by comparing d6 level of DWT of one phase of the motor 

current for healthy motor and motor with one rotor bar broken. It can be clearly 

shown that the amplitude significantly changes which indicates the presence of the 

fault. 
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In Figure 6.50, the energy detection method is applied to the 6th level of the wavelet 

for healthy and faulty motor (broken rotor bar) for different loads. The energy of the 

signal around the fundamental power supply frequency (50 Hz) changes both with 

change in load and the seeding of the fault.  It can be noticed that, using this method 

a clear detection of faults is observed at the 6
th

 level of composition.   

 

 

 

 

 

 

 

Figure 6-50 Energy in 6
th

 level energy of stator current (frequency band between 39 

and 78 Hz) 

6.8.4.2. Fault Detection by Vibration Measurement  

Theoretically, broken rotor bars may be detected by the presence of sidebands around 

the running speed frequency in the vibration spectrum. In order to obtain the 

components of the measured signal in a band near the running speed frequency, 24.3 

Hz, the 7
th

 level of decomposition (d7) can be used for fault detection of the seeded 

rotor induction motor faults, because its frequency band is between 19 and 39 Hz, 

where all the sideband components of interest can be found [9].  
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Figure 6-51 Detail d7 level of vibration signal healthy and one rotor bar broken with 

0% Load 

 

 

 

 

 

 

 

Figure 6-52 Detail d7 level of vibration signal healthy and one rotor bar broken with 

25% Load 
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Figure 6-53 Detail d7 level of vibration signal healthy and one rotor bar broken with 

50% Load 

 

 

 

 

 

 

 

 

Figure 6-54 Detail d7 level of vibration signal healthy and one rotor bar broken with 

75% Load 

The presence of the fault can be detected by comparing d7 level of DWT of vibration 

under healthy and faulty (one rotor bar broken) conditions. The energy of the signal 

in the fundamental running speed frequency band (24 Hz) changes when load on the 
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motor increases, whether the motor is healthy or with a rotor bar fault. However, 

there appears to be a significant difference between healthy and faulty condition only 

for low loads. 

 

 

 

 

 

 

 

Figure 6-55 Vibration energy in 7
th

 level (frequency band between 19 and 38 Hz) 

6.9 Summary 

Chapter 5 showed that conventional statistical techniques and the FT of the time 

domain signals provide only limited information for fault detection and diagnosis, 

because non-stationary signals can be analysed more effectively by time-frequency 

analysis to provide a description of changes in frequencies of the measured signal 

with time.  STFT, WVD, CWT and DWT are advanced signal processing time-

frequency techniques that have been tested by numerical simulation signal to 

determine their effectiveness in diagnosing faults in an induction motor. The results 

showed that there are limitations when using STFT and WVD techniques to diagnose 

and classify the faults. To overcome these limitations WT was applied when the 

motor operated under various output loads and different degrees of faults. DWT has 
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also been used to diagnose faults in the induction motor under varying load 

conditions and was found faster than the CWT.  

The higher level components DWT of the measured signal did not provide useful 

information. Low frequency details d5 to d7 are much more relevant for fault 

detection because they cover the frequency bands corresponding to the supply and 

the fault frequency. The results of experiment show the wavelet decomposition is an 

appropriate technique for non- stationary signals representing faults in an induction 

motor. 
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CHAPTER 7  

RECONSTRUCTION OF VIBRATION SIGNAL FROM 

PHASE CURRENT SIGNAL IN INDUCTION MOTOR 

 

 

 

Many processes and systems using three phase induction motors are inherently non-

linear. Thus they cannot be represented by simple and accurate models. A common 

example of a nonlinear process within the induction motor is the vibration signal 

measured in order to detect a fault or defect. Yet measurement and analysis of the 

vibration signal are important in improving motor performance and condition 

monitoring and this necessitates sophisticated analysis techniques that have yet to be 

proven in practice. An effective alternative to direct vibration measurement, 

preferably using easy-to-measure variables would be very attractive to industry, and 

in an attempt to meet this need this chapter applies radial basis function networks to 

the reconstruction of motor vibration using measurements of one phase of the motor 

current. 
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7.1 Introduction 

Vibration measurement is widely used for diagnosing the condition of rotating 

machinery; but sometimes direct measurement can be difficult and expensive in 

remote or locations that are challenging to access, in harsh environments and where 

it is expensive to install sensors close to the machine. These conditions apply to 

electrical submersible pumps (ESPs) in deep-well oil and gas extraction, or deep 

within nuclear power stations. The current driving the pump has a signature which 

has been shown to provide information on the condition of the pump without 

requiring direct access to the pump itself. But some faults, mechanical are better 

detected by vibration analysis.  

This chapter investigates the relationship between driving current of a pump and 

pump vibration using coherence technique as a measure of the relationship. The 

relationship between driver’s current signature (DCS) and its vibration signature 

(DVS) is found by calculating the magnitude of the square of the coherence and 

phase coherence parameters in a certain frequency band using a continuous wavelet 

transform (CWT).  The secondary purpose was to develop a technique for detecting 

and locating faults (assessing condition and performance) in inaccessible equipment 

using radial basis function (RBF) networks to reconstruct the vibration waveform 

from the measured phase current.  

Initially the relationship between phase current signals and vibration is investigated. 

This is done by using non-parametric mapping to establish a relationship between the 

motor phase current signal time series and the vibration time series by applying an 

RBF network. 
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The key parameters measured via the test rig were: one phase of the motor current 

signature (MCS) and the motor vibration signature (MVS). The phase current is an 

input parameter to the prediction model for predicting motor vibration, and the motor 

vibration is the output parameter.  

Figure 7.1 shows how the RMS vibration varies with RMS stator current at different 

motor loads. It can be seen that RMS current and vibration are inversely related as 

the motor load increases.  

 

 

 

 

 

 

 

 

Figure 7-1 Influence of load on the RMS current and vibration signals 

7.1.1 Coherence  

Coherence is a function of the power spectral densities (Pxx and Pyy) of x and y and 

the cross power spectral density (Pxy) of x and y and is given by:  

   ( )  
|   ( )|

 

   ( )   ( )
        (7.1) 

Coherence is the function of frequency f with Cxy(f) lying in the range 0 to 1 and 

indicates how well the frequency components of signals x and y correspond. The 
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degree of synchronization in stator current signal and vibration signal it could be 

characterized by coherence phase and magnitude squared coherence.  

Figure 7.2 shows the calculated coherence function between motor current and 

vibration signature. It can be seen that the largest values of coherence (where 

vibration signal and motor current are best correlated) are located at 50, 100 Hz , 400 

Hz and 500 Hz.  

 

 

 

 

 

 

 

Figure 7-2 Coherence between MCS and MVS signals 

 

7.1.2 Wavelet coherence 

Areas in the time-frequency plane where the two time series exhibit common power 

or consistent phase behaviour indicate a relationship between the signals. 

The wavelet coherence of two time series x and y is: 
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Where Cx(a,b) and Cy(a,b) denote the continuous wavelet transforms of x and y at 

scale a and position b. The superscript * is the complex conjugate and S is a 

smoothing operator in time and scale. 

Wavelet coherence is the square of the local correlation coefficient in the time-scale 

plane. Figure 7.3 displays wavelet coherence for the measured vibration and current 

signals. The common period of the signals at scale 192 is clearly detected. Note that 

this corresponds to a frequency of 50 Hz .The arrows in the figure represent the 

relative phase between the two signals as a function of scale and position. 

 

 

 

 

 

 

 

 

Figure 7-3 Wavelet coherence of MCS and MVS signals (a) time domain (b) 

wavelet coherence 

In conclusion the relationships between the input and output parameters (stator phase 

current and vibration respectively) had a non-linear correlation. Therefore, a suitable 

processing technique for modelling non-linear correlations had to be found. 

Advances in computing technology and sensors, together with cost effective high 

performance signal processing have made advanced diagnostic systems readily 
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available including non-parametric models such as RBF neural networks. Such 

models are especially useful for obtaining connections between input and output 

variables where the operating conditions are known. Such an approach can be used 

for diagnostic purposes since a deviation from the expected output for a given input 

can be attributed to a specific defect or particular fault. For example, using 

simulation, reconstruction of an otherwise difficult to obtain vibration signal is 

possible from motor phase current. Such an approach could help in development of 

induction motor design.   

7.2 Neural networks  

7.2.1 A brief overview  

Artificial neural networks (ANNs) are computer algorithms which attempt to 

simulate the working of the human brain [57]. Work in this field began mid-1940s 

inspired by interest in how the brain functions and today ANNs are widely used in 

application from engineering to finance, and from manufacturing to medicine.  

Network architectures can be divided into fundamentally different groups[57]. The 

simplest is the single-layer feed-forward (F-F) neural network which consists of only 

an input and an output layer. Multi-layer F-F neural networks differ from the single-

layer because they contain at least one hidden layer. A recurrent or feed-back neural 

network contains at least one feed-back loop. 

An important feature of ANNs is their ability to improve their performance through 

learning making them respond differently to their environment because of what has 

been learned[57]. An ANN can learn from its environment and the manner it learns 

needs to be considered and integrated into the learning process. A learning paradigm 

relates to the process by which, or the environment in which an ANN learns: the two 
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generally considered most important are supervised learning (learning with a teacher) 

and unsupervised learning (learning without a teacher). This project uses supervised 

learning.  

In supervised algorithms the learning is guided by specifying for each training input 

data sample, the class to which the pattern is supposed to belong. That is, the desired 

response of the network to each training input data sample is compared with the 

actual output of the network and the deviation between the both is used to adjust the 

weights so as to minimise it. Once the weights are adjusted (the deviation cannot be 

further minimised (significantly) the network is then capable of classifying input data 

samples. 

In unsupervised learning the NN forms its own classification based on similarities 

(clustering). 

An artificial neuron is a device with many inputs and one output. The neuron has two 

modes of operation; the training mode and the prediction/classification mode. In the 

training mode, the neuron can be trained to fire (or not), for particular input patterns. 

In the prediction mode, when a taught input pattern is detected at the input, its 

associated output becomes the current output. 

If the input pattern does not belong in the taught list of input patterns, the activation 

function is used to determine whether to fire or not. 

7.2.2 Neurons activation functions 

The output of each particular neuron is determined by a non-linear activation 

function: 

   (∑       )
 
              (7.3) 
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Where   is the bias, which determines the values around which the output is most 

sensitive. 

There are different activation functions, but the most popular functions are: 

a) Linear 

  ∑       
 
           (7.4) 

 

b) Threshold 
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c) Sigmoid 

  
 

   
  ∑       

 
   

        (7.6) 

 

d )  Gaussian  

 

     ∑       
 
               (7.7) 

 



170 

 

Figure 7-4 Activation function 

 

The most widely used are the last two because they are smooth (differentiable). 

7.2.3 Motivation for use  

ANNs are most commonly used in applications involving pattern recognition, and 

this is their use in this thesis. The inputs generate outputs according to patterns 

contained in the baseline data. The ANN has to reproduce that pattern so a given 

input produces the required output. Experience has demonstrated that the 

relationships between inputs and outputs are all non-linear using just one input. This 

means at least two inputs are necessary for the technique to produce the required 

output.  

ANNs are able to model multi-input, non-linear relationships which make them very 

useful for real-world applications [92]. ANNs with a suitable design are able to learn 

rapidly from experience and, generally, the more data supplied the more accurate the 
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prediction [55]. Because ANNs appeared so well-matched to the system to be used in 

this project it was assumed they were a suitable prediction tool to use. 

7.2.4 Specific types of neural network  

When the activation functions in the hidden layer are Gaussians and the activation 

functions in the output layer are linear we have an interesting special type of NN 

called Radial basis function (RBF) . 

Today many variations of ANNs are in use and here RBF neural networks will be 

used to provide an accurate fault diagnostic classification. RBF networks have two 

major advantages;  

(i) a well-known and user friendly training algorithm determines the best 

possible network architecture according to the given input data with a 

minimum number of trials ( feature that is sought after in industry),  

(ii) The radial basis function neural networks (RBFNN) has ability to model 

smooth non-linear function and; 

(iii) The outputs of the ANN can not only provide fault detection and 

diagnosis but can also indicate the severity of the fault. 

7.2.5  RBF Network Structure 

In recent years, Radial Basis Function (RBF) networks have been enjoying greater 

and greater popularity as an alternative solution to the slowly convergent multi-layer 

perceptron. The radial basis function neural networks (RBFNN) has ability to model 

smooth non-linear function, and do not need many nodes to achieve the required 

approximating properties However, this kind of neural networks needs many nodes 

to achieve the required approximating properties [93]. This phenomenon is similar to 

the choice of the number of hidden layers and neurons in the multi-layer perceptron. 
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The RBFNN architecture is shown in Figure 7.4. Such a network has three layers: the 

input layer, non-linear hidden layer and the linear output layer, where x = [x1, . . . , 

xn]T , 
n

Rx  is the input vector, h = [h1, . . . , hp]T , 
p

Rh  is the hidden layer 

output vector, 
pq

RkW


)( is the weight matrix with entry ijw
 the weight linking the jth 

node in the hidden layer to the ith node in the output layer, and 
p

p Ryyyy  ]ˆ,,ˆ,ˆ[ˆ
21 

 

is the output vector of the RBFNN. The distance between the input vector x and the 

vector of the centers ci = [ci1, . . . , cin]T , is described by the following expression 

[93] :  
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where i=1….q , Rq , ci is the ith center in the input space and 
)]([ kzf i  is the 

nonlinear activation function in the hidden layer. Many different activation functions 

have been suggested. The most frequently used are Gaussian functions [93]      
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  (7.11)

 where i is a positive scalar width. The RBFNN model is used to estimate the 

compressor voltage input as an inverse model. 

The fundamental operation in the RBF network is the selection of the function 

number, function centers and their position. a small a number of centers can result in 

weak approximating properties. On the other hand, the number of exact centers 
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increases exponentially with an increase in the input space size of the network. For 

training RBF neural network the K-means algorithm will be used.  
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7-5 Structure of the RBF Neural Network with N Inputs and Q Outputs 

7.2.6  RBF Network off-line Training Algorithms 

The training of RBF means optimizing the parameters of centers, widths and weights 

in the network to get the same desired output. For training RBF neural network the 

K-means algorithm is used to choose the centers, P-nearst algorithm decides the 

widths and the recursive training algorithm calculates weights for the output layer of 

RBF network. All this algorithms are discussed in brief below. 

A. K-Means Algorithm 

The aim of the K-means clustering method is to minimize the sum of the squared 

distance from each input data to its closest centre so that the data is adequately 

covered by the activation functions
)]([ kzf i . The k-means clustering method can be 

surmise as following: 

1. Choose q inputs data randomly to be the initial centers c1(k), c2(k),…, cq(k). 

The number of the centers is designed according to the complexity of the 

problem. 
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2. Assume p(x) is the index of the best-matching centre for the input vector x. 

At the iteration t find p(x) by minimizing the sum squared distances:

2
)()(minarg)( kckxxp i

            (7.12) 

Where ci(k) is the centre of the ith activation at iteration k. 

3. By using the following rule update the centers of the activation function: 
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         (7.13) 

 Where c is the centre learning rate that lies in the range (0,1). 

4. Increment k by 1 and repeat step 2 until ci (k+1) = ci (k). 

B. P-nearest Neighbour’s Algorithm 

The width σ of the RBFNN for each center is determine by  ρ – Nearest Neighbour’s 

method as the square root of average squares of the distances from the center to 

nearest p centers is given by the following equation [93] 
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C. Recursive Least Squares Algorithm 

The recursive least-squares algorithm is a recursive form of the least-squares 

algorithm. It is used here to find the RBF network weights W, which can be 

summarized as [23]: 
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)()()1()( kykgkWkW pz
     (7.18) 

where W(k) and h(k) represent the RBF network weights and activation function 

outputs respectively at iteration k, yc(k) is the process output vector, and Pz and gz 

are middle terms. µ here is called the forgetting factor ranging from 0 to 1 and is 

chosen to be 1 for offline training. The parameters gz, W, and Pz are updated orderly 

for each sample with the change in the activation function output h(k) 

7.3 Reconstructing of Vibration Signal  

Neural networks are a powerful technique in modelling of non-linear dynamic 

processes. Moreover, RBF neural networks will be used to predict the motor 

vibration according to the one phase current demand in the feed-forward path. 

a. Data collection  

The first step in the reconstruction vibration based is the collect a suitable training 

data set. The accuracy of the neural network modelling performance will be 

influenced by the training data.  In the three phase induction motor data collection, 

the training data must be representative motor behavior in order to analyze the 

performance of RBF reconstruction based in practical operating conditions. A set of 

phase current signal was collected to obtain a representative set of input data and a 

set of vibration signal was collected to obtain a representative set of target data 

b. Data scaling  

Before training or validating the neural network, all inputs and outputs data are 

scaled to the range of [-1, 1] using equation 7.19, 

Z = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;          (7.19) 

 

Where y is the vibration measured signal and x is the phase current signal  
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c. RBF neural network training 

 In order to train this neural network model, This data were divided into two 

groups: the first 1024 data samples were used for training while the other 1024 data 

samples were used for validation. The raw data were scaled using equation 7.19. 

7.4 Vibration waveform reconstruction 

The intention of this research is to reproduce a vibration waveform from phase 

current data sets. To this end the training of the network required both current data 

for a variety of operating condition, and the corresponding vibration waveform. 

These vibration waveforms were collected using a vibration transducer. The use of 

this intrusive vibration sensor was necessary only to train the neural network, and 

once trained, such an intrusive measuring system was no longer necessary. Trained 

the neural network with the current signal as the ideal input and the correspondingly 

measured vibration as the ideal output, and with the induction motor operating under 

different loads was tested as shown in figure7-6.  
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Figure 7-6 flow chart of reconstruction signal 

To make comparisons, the vibration signal was measured only once and used the 

target of the ANN and the output of network tested with untrained one phase current 
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are chosen to reconstruct motor vibration when the motor was subject to 0%, 50% 

and 100% loads.  

The reconstructed vibration signals, both time and frequency domains, for different 

load conditions can be seen in Figures 7.6 to 7.9. To obtain a more accurate 

validation and to be able to extract additional information both measured and 

reconstruction signals were transformed to the frequency domain using the discrete 

Fourier transform (DFT).  These three figures indicate that it is feasible to 

reconstruct induction motor vibration waveform with good accuracy from phase 

current signals by means of an ANN. 

The Mean square error (E) is used to evaluate the method in this research, which is 

given by the following equations: 

        
(    )

( )⁄  

         % instantaneous error 

           % instantaneous squared predictive error 

    
   (  )

      ( )⁄     % Mean square error      (7.20) 

 

 Where y is the vibration measured signal and a1 is the reconstruction vibration 

signal  
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Figure 7-7 Measured vibration signal and reconstructed signal at one trained data at 

0% load (a) time domain (b) frequency domain 

 

 

 

 

 

 

 

 

Figure 7-8 Measured vibration signal and reconstructed signal at one trained data at 

50% load (a) time domain (b) frequency domain 
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Figure 7-9 Measured vibration signal and reconstructed signal at one trained data at 

100% load (a) time domain (b) frequency domain 

It can be seen from the measured and reconstructed results that although some errors 

do exist between the measured and predicted values (see Figures 7-10and 7-11) 

 

 

 

 

 

 

 

Figure 7-10 Error between the measured and reconstructed signals A – Zero load, B 

- 50% load and C – 100% load 
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Figure 7-11 Mean square error 

7.5 Validation of the proposal method   

The one phase current and vibration signals were recorded continually throughout the 

test. Since the model was to be validated across a wide range of load settings, data 

were collected with the motor running steadily at 0%, 50% and 100% load. The data 

set for each cycle was 1024 samples of each of the vibration and single phase 

current. At each motor operating setting, the data sets were divided into training data 

(which are used to set the free model parameters) and validating data (which are used 

to validate the trained network). After the RBF network had been trained using the 

input data and output data the weights were found and the RBF network was 

determined.  

Figures 7-12, 7-13 and 7-14 show the measured and RBF reconstructed vibration 

waveforms for three different loads. It can be seen that the measured and predicted 

vibration traces correlate well. To show a more detailed comparison between 
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(b)Measured signal Reconstrcted signal

measured and predicted vibration signals the time domain signals were transformed 

to the frequency domain using the DFT.   

 

 

 

 

 

 

Figure 7-12 Measured and predicted induction motor vibration waveforms at 0% 

load (a) time domain (b) frequency domain 

 

 

 

 

 

 

 

Figure 7-13 Measured and predicted induction motor vibration waveforms at 50% 

load (a) time domain (b) frequency domain 



183 

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

Sample
A

m
p

li
tu

d
e

 (
m

/s
e

c2
)

 

 (a)Measured signal Reconstrcted signal

0 50 100 150 200 250
-50

0

50

100

150

Frequency (Hz)

P
o

w
e

r 
S

p
e

c
tr

u
m

 (
d

B
)

 

 (b)Measured signal Reconstrcted signal

0 200 400 600 800 1000
0

0.01

0.02
(a)

0 200 400 600 800 1000
0

0.5

1

A
m

p
li
tu

d
e

 (
m

/s
e

c2
)

(b)

0 200 400 600 800 1000
0

1

2

Sample

(c)

 

 

 

 

 

 

 

Figure 7-14 Measured and predicted induction motor vibration waveforms at 100% 

load (a) time domain (b) frequency domain 

It can be seen from the measured and reconstructed results that although some errors 

do exist between the measured and predicted values (see Figures 7-15 and 7-16) the 

consistency and accuracy of this approach are at acceptable level. 

 

 

 

 

 

 

 

Figure 7-15  Error between the measured and reconstructed signals A – Zero load, B 

- 50% load and C – 100% load 
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Figure 7-16 Mean square error 

7.6 Detection of the induction motor faults using reconstructed vibration signals 

Measurement and analysis of motor vibration can yield considerable useful 

information about the induction motor conditions. The aim in this section is to 

determine if reconstructed motor vibration can be used for detection of faults in an 

induction motor. The method customarily used for this type of data capture involves 

recording motor vibration using vibration transducers mounted on the motor housing. 

This method has some obvious disadvantages; it is intrusive, is inappropriate for the 

more demanding on-board-conditions, and limited lifetime transducers are expensive 

when used in a harsh environment A simpler and easier method is the one proposed 

in the previous  section i.e., a non-invasive method based on reconstructed vibration 

signals.   

After the RBF network has been trained by the input data (one phase current) and 

output data (vibration), the network weights are obtained and the RBF network is 

fixed. To validate the RBF network, the validating one phase current data are used as 
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(b)Measured signal Reconstrcted signal

the input to the RBF network and the output, which is the predicted motor vibration, 

is obtained. By comparing the measured vibration values with the predicted vibration 

values, it is possible to decide whether the RBF network is performing satisfactorily. 

Figures 7-17, 7-18, 7-19 and 7-20  present a selection of vibration waveforms, both 

time and frequency domain, generated from measured data and from RBF network 

model prediction for healthy motor and motor with and 20 and 40 voltage drop in 

one phase of the three phase supply, for the motor under different three loads. The 

amplitude of the signal changes at the twice fundamental power supply frequency 

band (100 Hz) when the motor is in good condition or with small faults (20 and 40 V 

drops). It can be seen that, using this method gives a clear indication of a fault. It can 

be seen that there is a reasonable degree of agreement between the measured and 

predicted vibration traces. 

 

 

 

 

 

 

 

Figure 7-17 Measured and reconstructed signal for healthy condition at 0% load (a) 

time domain (b) frequency domain 
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Figure 7-18 Measured and reconstructed signal for 20 V drop at 0% load (a) time 

domain (b) frequency domain 

 

 

 

 

 

 

 

 

Figure 7-19 Measured and reconstructed signal for 20 V drop at 0% load (a) time 

domain (b) frequency domain 
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Figure 7-20 Measured and reconstructed signal for 40 V drop at 0% load (a) time 

domain (b) frequency domain 

Figure 7-21 clearly shows that the most accurate prediction (lowest MSE) was 

achieved at healthy case and under 0% load condition.  
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Figure 7-21 Error between the measured and reconstructed signals. A – Healthy,  B 

– 20 V voltage imbalance in one phase of motor current, and C – 40 V voltage 

imbalance in one phase of motor current 

Theoretically, phase imbalance may be detected by changes in the 2×50Hz 

component in the measured vibration. The amplitude of this component changes 

when faults occurred as shown in figures 7-18, 7-19, and 7-20.  

At 50% load the presence of the phase imbalance faults are more pronounced The 

presence of the fault can be detected by comparing the measured and reconstructed 

vibration signals for the healthy motor with those for the motor with a fault in one 

phase of the current (20 and 40 V drops) as shown in figures 7-22, 7-23, and 7-24. 

However, there appears to be a significant error between measured and 

reconstruction signals for faulty condition at 50% load, see Figure 7-25. 
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Figure 7-22 Measured and reconstructed signal for healthy condition at 50% load (a) 

time domain (b) frequency domain 

 

 

 

 

 

 

 

 

 

Figure 7-23 Measured and reconstructed signal for 20 V drop at 50% load (a) time 

domain (b) frequency domain 
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Figure 7-24 Measured and reconstructed signal for 40 V drop at 50% load (a) time 

domain (b) frequency domain 
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Figure 7-25 Mean square error between the measured and reconstructed signals at 

50% load. A – Healthy,  B – 20 V voltage imbalance in one phase of motor current, 

and C – 40 V voltage imbalance in one phase of motor current 

At 100% load the phase imbalance fault can again be detected by comparing 

measured and reconstructed motor vibration signals when the motor is in good 

condition or with small faults (20 and 40 V drops). It can be clearly seen that the 

amplitude of the signals significantly changes, particularly at 100 Hz, as shown in 

Figures 7-26, 7-27, and 7-28 

However, there appears to be a significant error between measured and reconstructed 

signals for faulty conditions at 100 % load as shown in Figures 7-29.  
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Figure 7-26 Measured and reconstructed signal for healthy condition at 100% load 

(a) time domain (b) frequency domain 

 

 

 

 

 

 

 

 

Figure 7-27 Measured and reconstructed signal for 20 V drop at 100% load (a) time 

domain (b) frequency domain 
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Figure 7-28 Measured and reconstructed signal for 40 V drop at 100% load (a) time 

domain (b) frequency domain 

 

 

 

 

 

 

 

 

 

 

Figure 7-29 Mean square error between the measured and reconstructed signals at 

100% load. A – Healthy,  B – 20 V voltage imbalance in one phase of motor current, 

and C – 40 V voltage imbalance in one phase of motor current 
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7.6 Summary  

This study used spectral estimation to investigate the coherence between the DCS 

and the DVS signals at a particular frequency and in different frequency. Both 

signals are completely coherent if the magnitude squared coherence (MSC) is equal 

to 1, if MSC is equal to zero then the both signals are independent to each other. The 

results show the both signals are coherent at the frequencies at which the MSC is 

greater than 0.5 and both signals are less coherent if DSC is less than 0.5. Wavelet 

coherence analysis greatly facilitates the detection of the quasi-periodic component 

indicative of a system anomaly.  Wavelet cross spectrum and wavelet coherence are 

useful to reveal localized similarities between DCS and DVS signals in the time-

scale plane and to interpret the results. It may be possible to acquire the DVS signal 

information from the DCS signal  

This research has demonstrated the possibility a condition monitoring method based 

on the motor current for reconstruction of motor vibration. It is proved feasible to 

reconstruct motor vibration effectively by using the current signal from one phase of 

the motor supply. This method is of high precision and good repeatability. This is a 

non-invasive technique which can open new possibilities for performing necessary 

diagnostics and making checks on induction motors without laborious and expensive 

investigations that are truly rigorous only in laboratory conditions. The method has 

been tested by statistical analysis and shows a good agreement with the widely used 

approach that entails making on-motor vibration measurements. 

This application to motor modelling and motor vibration waveform reconstruction 

has utilized the ability of a RBF to classify a complicated nonlinear system in a 

succinct manner. Using the RBF network, the motor vibration process is described as 

a non-parametric model. 



195 

It is suggested that it is simpler and easier to reconstruct the vibration signal from the 

motor current than to use vibration sensors that may be intrusive, difficult to place, 

expensive and subject to attack when in corrosive environments. It has been 

demonstrated that the proposed method detects induction motor faults and the status 

of the induction motor can be estimated with a reasonable degree of accuracy. 
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CHAPTER 8  

SMART TECHNIQUE FOR INDUCTION MOTOR 

DIAGNOSIS BY MONITORING THE POWER FACTOR 

USING ONLY THE MEASURED CURRENT 

 

This chapter presents a discussion on an innovative, non-intrusive, accurate and 

reliable method for the early detection and diagnosis of faults in an induction motor 

(IM) using an enhanced power parameter measurement technique. It is argued, and 

initial results suggest that it is more effective to monitor the operating power factor 

(PF) of the IM which provides better protection under-load than the motor current 

based approach. Traditionally, to estimate the PF would require both voltage and 

the current measurements in order to apply the displacement power factor method. 

This chapter determines the operating PF of the IM using only measured current and 

supplied manufacturer’s data. Experimental results confirm that the PF can be used 

successfully for IM fault diagnosis and is promising also for assessing fault severity. 

The suggested method offers an inexpensive, reliable and non-intrusive and CM tool 

which can be used with real-time systems. A significant portion of this chapter has 

been presented at the 25th Int. Cong. on Condition Monitoring and Diagnostic 

Engineering: Smart Technique for Induction Motors Diagnosis by Monitoring the 

Power Factor Using Only the Measured Current  and published in Journal of 

Physics: Conference Series 364 (2012).  

http://iopscience.iop.org/1742-6596/364/1/012062/pdf/1742-6596_364_1_012062. 

pdf 

http://iopscience.iop.org/1742-6596/364/1/012062/pdf/1742-6596_364_1_012062.%20pdf
http://iopscience.iop.org/1742-6596/364/1/012062/pdf/1742-6596_364_1_012062.%20pdf
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8.1 Introduction 

Many techniques have been proposed for detection and diagnosis of faults in three- 

phase IM; including some which measure the current. Those that analyse the current 

using, for example, Fourier methods tend to be called “motor current signature 

analysis techniques[14]. Park’s vector components derived from the three phases of 

the current through the IM have been used for diagnosing bearing faults and air-gap 

eccentricities. Coils sensing axial leakage flux have been successfully used for 

specific faults [94], [95]. Analysis of the instantaneous power of specific phases of 

the motor current has been used by the authors to effectively simulate and 

experimentally detect and diagnose mixed eccentricities in a squirrel cage IM [96]. 

Partial power as well as the total instantaneous power can be used for the detection of 

such faults. Complex apparent power (see Figure 8.1) has been suggested for the 

detection and diagnosis of air-gap eccentricities [97]. 

The PF (also known as cos φ) has been one of the IM parameters that has been used 

for CM of IMs. To use the displacement method to monitor the operating PF would 

normally require sensors to measure both current and voltage.  PF calculations and 

derivations of basic equations are presented in ref [101], however, this work adopts 

the technique for monitoring the ESP induction motors condition by determining the 

PF using only measured current and manufacturer’s data. Because no voltage 

measurements are required this method provides a relatively low-cost solution. In 

fact, for low load conditions, it is suggested that the PF is more reliable than motor 

current-based approaches and should be very useful for such applications as under-

load protection of pumps with PF compensation for improving the power quality. 
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 8.2 Static and dynamic air-gap eccentricities 

Static eccentricity is when the rotor’s axis of rotation is displaced and can be caused 

by stator ovality or by the incorrect positioning of the rotor or stator at the 

commissioning stage, e.g. the longitudinal axes of stator and rotor do not coincide. 

Since the rotor is not centred within the stator bore, the field distribution in the air-

gap is no longer symmetrical. The non-uniform air-gap gives rise to a radial force of 

electromagnetic origin, which acts in the direction of minimum air-gap and which is 

called unbalanced magnetic pull (UMP). However, static eccentricity may cause 

dynamic eccentricity [14]. This kind of eccentricity may be caused by a bent shaft, 

mechanical resonances, bearing wear or misalignment or even static eccentricity as 

mentioned above. Therefore, the non-uniform air-gap of a certain spatial position is 

sinusoidally modulated and results in an asymmetric magnetic field. This, 

accordingly, gives rise to a revolving UMP [14]. Air-gap eccentricity in induction 

machines causes characteristic harmonic components in electrical, electromagnetic, 

and mechanical quantities. Therefore, either mechanical quantities such as vibrations 

or torque oscillations or electrical quantities such as currents or instantaneous power 

can be analyzed to detect eccentricity conditions[98]. 

8.2.1 Non-active power of an eccentric induction motor 

When eccentricity takes place in an induction motor, the stator current, Iecc(t) is given 

by [96]: 

    ( )       ((   )   )  ∑ {         [  (     )     ]  
 
   

          [  (     )     ]}               (8.1) 

Where        and     are the amplitude of the current component at a frequency 

(     ) and its initial phase angle, respectively;        and     are the amplitude 
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of the current component at a frequency (     ) and its initial phase angle, 

respectively. Clearly, in the current spectrum, two sideband components will appear 

around the fundamental component at frequencies (    ) and (    ) [96]. 

8.3. Unbalanced voltage  

In this part the unbalance in the phase and the magnitude of the voltage are 

considered. To model the electrical motor symmetrical components can be used. A 

wide variety of research has been done on modelling of the unbalanced condition. 

For unbalanced voltage operation the torque can be written as [99]; [100]: 

  
 

 
                                     (8.2) 

In which, T0 is the DC torque. T2 is the torque component whose frequency is twice 

the supply frequency. Assuming the IM can be considered as a RL load the torque 

can be written as: 

                              (8.3) 

In which E and I are input voltage and current of each phase respectively. Assuming 

sinusoidal waveforms for voltage and current, with a 50 Hz supply, this equation can 

be rewritten as: 

      (       )      (       )                          (8.4) 

So, 

    [   (   )      (          ]                               (8.5) 

Based on Equation (8.5) the resulting torque would include a DC term and a term 
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whose frequency is twice the fundamental frequency of the applied voltage. In order 

to detect the unbalanced supply voltage this extra torque component can be used. 

8.4 The effect of rotor bar fault on power factor   

The input impedance of the induction motor, which shows the neglecting of the rotor 

leakage and stator impedance, can be written in the formula as follows:  

    
 
  
 
  

  
 
    

                              (8.6) 

The phase angle of the impedance will be; 

             
 (

  
  

 ⁄
)                         (8.7) 

The steady state power factor of the IM is cos . 

Therefore, by increasing  , which might be due to a rotor bar fault, the phase angle 

of     declines, and this in turn would give a higher power factor.  It is evident that 

rotor bar faults can be detected using the analysis of the power factor.  

8.5 The proposed method: current only power factor calculation  

The power triangle shown in Figure 8.1 shows the basic principles of power 

measurement. If you have the values of three variables such as voltage, current and 

phase angle between current-voltage, the other parameters can be obtained. 

 

 

 

 

Figure 8-1  the power triangle 
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The power factor defines what proportion of the power that is supplied would 

achieve useful work. The real power, true power, or resistive power is the power 

“drawn” by the electrical resistance, which performs useful work (Watts). Reactive 

power is the electrical power dissipated in the capacitances and inductances that are 

part of the system, and though this consumes energy it does not perform any useful 

work (VA). Useful work requires the voltage and current to be in the phase 

(=Apparent Power x cos ), while for Reactive power the current and voltage are 

900 out of phase (=Apparent Power x sin ). 

A mechanical way to represent power factor is to imagine a horse pulling a barge 

along a straight canal as shown in Figure 8.2. The horse pulls the barge from the tow-

path and is thus pulling the barge at an acute angle to the direction of motion of the 

barge. Because the force exerted by the horse is at an angle, not all of the force 

moves the barge forward along the canal.  Some force would pull the barge towards 

the side of the canal. So in this example we can conclude that:  

 The force exerted by the horse is the total or apparent power 

  The power used to move the barge is the working power or real power 

  The force pulling the barge towards the side of the canal is nonworking 

power or reactive power.  
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Figure 8-2 Explanation of the differences in the power values 

The apparent power (Papp) to the motor is given as [101]:  

     √                                               (8.8) 

Where V and I are the line voltage and current, respectively. 

 

 

 

 

Figure 8-3 IM equivalent circuit 

The active power supplying the load is: 

     √                                       (8.9) 

The power factor (PF) is  

   
    

    
                     (8.10) 
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The motor current, I, has two components, Iactive and Ireactive. The active part of the 

current (Iactive) accounts for the torque, which changes according to the load (from 

no-load to full/over-load). The reactive part of the current (Ireactive ) accounts for the 

magnetising current of the IM, and does not change much from the no-load to the 

full-load condition, staying practically constant [101].This is because for IM, the 

magnetising circuit, i.e. the stator coil inductances remain the same [101]: 

  √       
           

              (8.11) 

                         (8.12) 

                           (8.13) 

Substituting Equation (8.10) in (8.13)  

               (   
    )          (8.14) 

Equation (8.10) can be rewritten using  

        √        √  (
         

 
)
 

      (8.15) 

 

Figure 8-4 Current presentation 
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As the reactive component remains constant, it can be estimated from the nominal 

condition given by the manufacturer data and/or nameplate data using (8.14). Now, 

as the motor load increases, the total motor current (I) in (8.15) would increase, while 

Ireactive remains constant. Hence, the ratio (Ireactive/I) in Equation (8.15) decreases, 

causing the PF to increase and approach closer to unity. Theoretically, at no-load 

condition, there is no active current flow. So, at no-load, I = Ireactive, making     0
 

and PF = 0. Physically, at no-load, there is no mechanical resistance; therefore the 

entire circuit is almost wholly inductive due to the stator coils causing a low PF. A 

surge in motor load is essentially similar to adding resistance to the circuit, causing 

the PF to increase [101]. 

Therefore, in the current-only PF estimation approach, we would estimate the Ireactive 

using (8.14) from the nominal PF from the nameplate data. So by using the measured 

motor current and assuming constant Ireactive, we can estimate the operating PF from 

Equation (8.15). Synchronized voltage and current measurement are not required as 

in displacement PF measurements. 

8.6 Economic issues 

The proposed PF method for determining motor faults measuring and analysing the 

current waveform has the following advantages:  

 A non-invasive, on line monitoring technique,  

 Uses the motor as sensor,  

 Low cost, requires significantly less instrumentation than other methods, 

 Low cost, the instrumentation required is relatively low cost, and 

 Online monitoring with minimum computation complexity and remote 

accessibility. 
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Table 8-1 Cost comparison of PF and vibration techniques 

PF Method Vibration analysis 

Cheap sensor (~£50) Accelerometer (~£500)  

Charge amplifier(~ £2 k) 

Low data acquisition card specs,  

10 bit, 10 kHz (~ £100) 

High data acquisition card specs,  

24 bit, 50 kHz (~ £900) 

 

No accessibility problem  Possible accessibility problem   

 

Total: ~ £150 Total: ~ £3.5 k 

 

8.7 Experimental Results 

The test rig consisted of a variable speed, 1.1 kW three-phase induction motor, 

attached to a DC-generator and a resister bank as load. The motor was tested at 1410 

rpm and 100% load in a healthy condition and then under four different phase 

imbalance voltages of 10 V (fault1), 15 V (fault2), 20 V (fault3),  and 25 V (fault4); 

these represented imbalances of 4%, 6%, 8% and 10% respectively, of the nominal 

main voltage level.  

The measured current for the test motor at different loads and the corresponding 

calculated PFs using Equation (8.11) are shown in Figure 8.5. It can be seen that 

there is a direct relationship between the loads and the PF because the current motor 

increases when the load increases to maintain the same output power  
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Figure 8-5 Power factor for 1.1 kW 3 phase induction motor for healthy condition at 

various loads 

The PF values were calculated for the motor running under various fault conditions 

and at different loads. Figures 8.6 and 8.7 show the PF values for all the cases tested. 

It can be seen that there is a direct relationship between the fault severity and the PF.   

 

 

 

 

 

 

 

 

Figure 8-6 Calculated power factor for 1.1 kW three phase induction motor at three 

loads, healthy and with various imbalance phase faults 
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Figure 8-7 Calculated power factors for 1.1 kW 3 phase induction motor at three 

loads, healthy and with one rotor bar broken 

 

8.8 Summary  

For the IM, the operating PF can provide better CM than motor current-based 

approaches. Traditionally, PF estimation would require both voltage and the current 

measurement to use the ZC displacement method. In this chapter, a method of 

determining the operating PF of the IM using only the measured current and the 

manufacturer’s data available from the nameplate and/or datasheet has been 

presented. From the nameplate data the reactive component of the motor current is 

estimated, and this remains constant for different load conditions, as per the IM 

principle. Then, using the measured total motor current and the estimated constant 

reactive part, the PF can be found for different loads and motor conditions. 

Experimental results are shown for a realistic test setup the potential of the proposed 

method is very promising when compared to other state of the art methods (power 

rating, pole pairs, etc.,) for the class of motor used. Using the operating PF, a method 
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which does not require voltage measurement would provide a cheaper solution to 

monitoring IM, e.g., in pump applications. Operational PF can also be used for PF 

compensation to improve the power quality. 
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CHAPTER 9  

CONTRIBUTION TO KNOWLEDGE, ACHIEVEMENTS, 

CONCLUSIONS AND FUTURE WORK 

 

 

 

 

This chapter illustrates contribution to knowledge. It summarises the achievements of 

the research project and explains how the objectives stated in Section 1.10 were 

achieved. The chapter concludes the study and suggests some steps for further work.  
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9.1 Contribution to knowledge 

The research work carried out in this thesis included a number of important aspects 

that were novel and not previously implemented by other researchers or practitioners 

in a similar manner. These aspects of novelty are summarized below:  

• Novelty one: 

An effective alternative to direct vibration measurement, preferably using easy-to-

measure variables would be very attractive to industry, and in an attempt to meet this 

need to apply Radial Basis Function networks to the reconstruction of motor 

vibration using measurements of one phase of the motor current. 

• Novelty two: 

Apply a method of determining the operating PF of the IM using only the measured 

current and the manufacturer’s data available from the nameplate and/or datasheet to 

detect, diagnose and assess the relative fault severity of the seeded faults 

9.2 Review of objectives and achievements 

The main achievements of this work are described below and correlated with the 

original objectives set out in Section 1.10. 

Objective 1: 

Explore induction motors failure modes and understand condition monitoring 

techniques e.g. vibration and motor current signature analysis. 

Achievement 1: 

 Static Techniques include motor current measurement, temperature of the motor, 

electrical resistance of the winding, observation of the state of the lubricating oil and 

Dynamic techniques include Motor Vibration Signature and Motor Current Signature 



211 

Analysis were outlined in chapter one. Also in Chapter one motor failure mode and 

the data processing to detect and diagnosis the faults is introduced.   

Objective 2: 

Develop a mathematical model for induction motor operations and effect of faults on 

the measured performance 

Build and develop a mathematical model of the electromechanical system under 

investigation (motor, coupling and load), to gain a better understanding of how a 

three phase induction motor interacts with a faults. Moreover, to use the model to 

gain a better understanding of how effect of faults on the measured performance and 

to compare the experimental results with those obtained from the model to assess the 

effectiveness of MCSA in a qualitative manner. 

Achievement 2: 

This objective was delivered in chapters three. The developed model includes not 

only the dynamics of a motor but also the behaviour of phase imbalance faults and 

rotor bar breakage faults. Numerical simulation of the Equations forming the model 

show that the current spectrum of a faulty motor is dominated by the main supply 

frequency 50Hz but also with a number of pronounced sidebands that spread around 

50Hz. These sidebands are largely determined by the primary shaft speed and slip. 

Moreover, when a local fault is introduced into the motor, the model predicts the 

amplitude of these sidebands will increase, and more sideband components will 

appear at higher order harmonics of the primary shaft speed. These features, which 

form the basis of a possible detection mechanism, have been confirmed through test 

investigation.  A detailed model for the motor load driving system has been deduced 

and explained. The developed model can be used to simulate different operational 
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conditions with the correct selection of parameters. It was found that this simulation 

is an inexpensive and useful method for gaining an insight into the dynamic 

behaviour of motor faults using the induction motor as the only transducer. 

Objective 3: 

Design and construct a test rig with associated instrumentation for fault simulation, 

data collection and subsequent data analysis. 

Achievement 3: 

Chapter four described the test rig used in research, see Figure 4.2. It comprises a 1.1 

kW three-phase induction motor and connected to a D.C generator and adjacent 

resistor banks. The seeded faults were: power supply phase imbalance and broken 

rotor bars. Each of these faults was seeded at a variety of severities. Three types of 

measurement transducers were used in the motor test facility so that the information 

content provided by various machine parameters could be assessed and compared. 

Current transducers were used to measure electrically based parameters; 

accelerometers, and a shaft encoder were used to measure mechanically-based 

measurement parameters. 

Objective 4: 

To investigate and apply basic monitoring techniques e.g. time-domain and 

frequency-domain analysis to collected data and attempt to detect, diagnose and 

assess the relative fault severity of the seeded faults, and determine the practical 

implications of doing this. 

Achievement 4: 

Time and frequency domain signal processing methods were applied to the collected 

data from the different measurement transducers. Each of the processing methods 
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was evaluated based upon its usefulness in the fault detection, diagnosis and severity 

assessment levels of condition monitoring. Attention was also focused on the 

practical implications of using the various methods. 

Although initial emphasis was focused upon spectral analysis, data was also 

examined in the time domains. These two methods are presented throughout Chapter 

5. For the frequency analyses, trending of individual components was also 

performed. 

Objective 5: 

Apply advanced signal processing methods such as time-frequency domain analysis 

using the short- time Fourier transform, Wigner Ville distribution  and continuous 

wavelet transform (CWT) and discrete wavelet transform (DWT)  for detecting and 

diagnosing quantified faults.   

Achievement 5: 

This objective was delivered in chapter six. The performance of the short time 

Fourier transform (STFT), the Wigner-Ville distribution (WVD), the continuous 

wavelet transform (CWT), the discrete wavelet transform (DWT) and wavelet multi-

resolution analysis (MRA) are compared using a simulated signal and measured data 

from an induction motor with seeded faults (phase voltage imbalance and broken 

rotor bar) 

It is shown that there are limitations to STFT and WVD techniques which can be 

overcome using the CWT and DWT. However the DWT is found to be faster than 

the CWT.  

Using higher level components of the DWT (d5 to d7) of the measured signal 

provided useful information on identification of the faults using the energy content in 
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the frequency bands corresponding mains supply frequency, twice the mains 

frequency and the shaft drive frequency The results of the experiment show wavelet 

decomposition is an appropriate technique for non- stationary signals representing 

faults in an induction 

Objective 6: 

Measurement and analysis of the vibration signal are important in improving motor 

performance and condition monitoring and this necessitates sophisticated analysis 

techniques that have yet to be proven in practice. An effective alternative to direct 

vibration measurement, preferably using easy-to-measure variables would be very 

attractive to industry, and in an attempt to meet this need to apply Radial Basis 

Function networks to the reconstruction of motor vibration using measurements of 

one phase of the motor current. 

Achievement 6: 

Demonstrated the possibility a condition monitoring method based on the motor 

current for reconstruction of motor vibration was delivered in chapter seven. It is 

proved feasible to reconstruct motor vibration effectively by using the current signal 

from one phase of the motor supply. This method is of high precision and good 

repeatability. This is a non-invasive technique which can open new possibilities for 

performing necessary diagnostics and making checks on induction motors without 

laborious and expensive investigations that are truly rigorous only in laboratory 

conditions. The method has been tested by statistical analysis and shows a good 

agreement with the widely used approach that entails making on-motor vibration 

measurements. 
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This application to motor modelling and motor vibration waveform reconstruction 

has utilized the ability of a RBF to classify a complicated nonlinear system in a 

succinct manner. Using the RBF network, the motor vibration process is described as 

a non-parametric model. 

It is suggested that it is simpler and easier to reconstruct the vibration signal from the 

motor current than to use vibration sensors that may be intrusive, difficult to place, 

expensive and subject to attack when in corrosive environments. It has been 

demonstrated that the proposed method detects induction motor faults and the status 

of the induction motor can be estimated with a reasonable degree of accuracy. 

Objective 7: 

Apply a method of determining the operating PF of the IM using only the measured 

current and the manufacturer’s data available from the nameplate and/or datasheet to 

detect, diagnose and assess the relative fault severity of the seeded faults 

Achievement 7: 

An innovative, non-intrusive, accurate and reliable method for the early detection 

and diagnosis of faults in an induction motor (IM) using an enhanced power 

parameter measurement technique was presented in chapter eight. It is argued, and 

initial results suggest that it is more effective to monitor the operating power factor 

(PF) of the IM which provides better protection under-load. Traditionally, to estimate 

the PF would require both voltage and the current measurements in order to apply the 

displacement power factor method. The novelty method determines the operating PF 

of the IM using only measured current and supplied manufacturer’s data. 

Experimental results confirm that the PF can be used successfully for IM fault 

diagnosis and is promising also for assessing fault severity. The suggested method 



216 

offers an inexpensive, reliable and non-intrusive and CM tool which can be used 

with real-time systems.  

9.3 Conclusions 

9.3.1 Basic techniques 

Most fault diagnostic techniques are intended to identify early faults in three phase 

induction motor. This study presents one phase current and vibration based fault 

detection and diagnosis techniques for an induction motor using statistical 

parameters. Both modelling of the induction motor and implementation of a practical 

vibration measurement system were employed.  Advanced signal processing methods 

were used to extract features from the experimental data collected.  

Statistical parameters may be used on their own for fault detection; however, their 

sensitivity has been shown to be poor for small fault conditions. They did not change 

or create a trend that would indicate failure in the early stages of faults. A rising 

trend was observed though in severe faults with larger fault (Chapter 5). 

The statistical parameters were unable to provide any reliable diagnostic information 

when the failure modes were a cracked tooth and local wear. This suggests that they 

are not very sensitive to these types of faults (Chapter 5). 

Comparatively, the spectrum can be used in fault detections more reliably than time 

statistical parameters with respect to fault sensitivity. However, it too was also 

unable to indicate fault symptoms sufficiently early (Chapter 5). 

9.3.2 Joint time-frequency techniques 

In terms of sensitivity and early fault revelation, all time-frequency methods were 

more reliable and descriptive to indicate the fault symptoms. Due to the joint ability 

of illustrating both time and frequency information together with time-frequency 
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localisation capability, there was enhancement of the sensitivity of these techniques 

to the early detection of faults. For instance, all two different faults were detected by 

the time-frequency methods in earlier stages than with conventional techniques 

(Chapter 6). The short- time Fourier transform (STFT), Wigner Ville distribution 

(WVD) and wavelet transform (WT) and were applied to the measurement data. 

The limitation of these techniques can be summarized as: 

1. With the STFT the smaller the window the less information it contains, there 

comes a limit below which the information is so diminished the STFT 

becomes ineffective. 

2. The WVD is nonlinear because the time-shifted analytical signal is multiplied 

by its complex conjugate. The consequent uncertainties can make 

interpretation of WVD results difficult.  

Amongst the time-frequency methods, the discrete wavelet transform was not only 

computationally less time consuming, but it was also more capable of revealing fault 

symptoms at an earlier stage than the STFT and the WVD 

9.3.3 Validation of the proposed processing techniques 

Vibration measurement is widely used for diagnosing the condition of rotating 

machinery; but sometimes direct measurement can be difficult and expensive in 

remote or locations that are challenging to access, in harsh environments and where 

it is expensive to install sensors close to the machine Therefore, selected alternative 

approaches were investigated by the author to obtain a method to reconstruction 

vibration waveform from easy parameter measurement as phase current.  

The relationship between driver’s current signature (DCS) and its vibration signature 

(DVS) is found by calculating the magnitude of the square of the coherence and 



218 

phase coherence parameters in a certain frequency band using a continuous wavelet 

transform (CWT).  Using a non-parametric approach to performing reconstruction 

signal based on the true data obtained. The ability to predict without relaying on 

assumptions such as those on system physics properties avoids the potentially large 

errors brought about by making incorrect assumptions about those properties, 

 The radial base function was used to reconstruction vibration waveform from 

current measure. This method is of high precision and good repeatability. This is a 

non-invasive technique which can open new possibilities for performing necessary 

diagnostics and making checks on induction motors without laborious and expensive 

investigations that are truly rigorous only in laboratory conditions. The method has 

been tested by statistical analysis and shows a good agreement 

Based on the above observations and findings, it is concluded that the proposed 

method detects induction motor faults and the status of the induction motor can be 

estimated with a reasonable degree of accuracy. 

9.4 Future work 

The results presented in this work have shown the effectiveness of various 

techniques in study of an induction motor. The author thinks further investigations 

should be performed in the different fields of motor diagnostics. Future work can be 

carried out in two aspects of induction motor condition monitoring. One is improving 

and exploiting further in the fields of diagnostic methods which include both the 

signal and model based techniques. The other one is to perform more tests and 

experiments in motors. Suggestions for future research directions are summarised 

below:  
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9.4.1 Investigation in Experimental Aspects: 

a. Use a different size of motors.  

b. Simulate and seed other types of common failure modes; e.g. bearing, stator 

fault, air gap eccentricity. In this work, each fault was simulated individually 

(one fault at a time) .Future work can explore simultaneous faults and faults 

combining e.g. phase imbalance and broken rotor bar together. 

9.4.2 Diagnostic Techniques related 

c. In most advanced diagnostic techniques, time averaged signals are usually 

used instead of raw signals. Although the time averaging technique is well 

established and straightforward, the quality of results from advance 

diagnostic techniques depends upon the accuracy of the time averaged 

signals. There is a need for more study in this field. 

d. In using a wavelet transform, different wavelets have different impacts in 

revealing fault features. It would be more complementary if some criteria 

could be established with regard to which types of wavelets are more suitable 

for certain types of non-stationary events. One type wavelet have been 

studied in this work. Therefore, enhancement of fault features in wavelet 

analysis should be investigated by using different wavelets. 

e. Apply empirical mode decomposition based techniques for different types of 

induction motor faults. 

f. Investigate the effectiveness of a smoothed pseudo Wigner-Ville distribution 

based technique for other condition monitoring applications.   . 
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g. The analysis carried out in this research was based upon visual observation. 

Further work should concentrate on automatic recognition and identification 

of faults, such as neural network and data clustering techniques.   

h. In this work, the detection of a fault has been reported. Other fault related 

issues, such as quantification of the severity of the fault, estimation of the 

remaining life also has a practical importance in an induction motor 

applications. Therefore, future research should focus on this aspect of motor 

studies. 

9.4.3 Reconstruction signal method related 

i. In this work motor vibration waveform reconstruction has exemplified the 

ability of a RBF to typify a complicated nonlinear system in a succinct 

manner. Using  an other types of neural  network should be investigated  

j. Develop other type signal-based condition monitoring and fault diagnosis 

method for induction motor. The mathematical relationships between the 

current and the voltage harmonics have to be studied. Both these harmonics 

are complementary, in the sense that, in voltage source drives, the current 

harmonics dominate and in current source drives, voltage harmonics may 

dominate. Hence, diagnostic schemes that utilise the fault information in both 

the current and voltage may provide a more reliable indication of motor fault 

and should be investigated further. 

9.4.5 Power factor Diagnostic Technique related 

k. In this work, the detection of two faults namely phase imbalance and rotor 

bar broken; by PF method has been reported. Other faults to be seeded to 

investigated their effect on power factor.  
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