5,259 research outputs found

    Integrated quantized electronics: a semiconductor quantized voltage source

    Full text link
    The Josephson effect in superconductors links a quantized output voltage Vout = f \cdot(h/2e) to the natural constants of the electron's charge e, Planck's constant h, and to an excitation frequency f with important applications in electrical quantum metrology. Also semiconductors are routinely applied in electrical quantum metrology making use of the quantum Hall effect. However, despite their broad range of further applications e.g. in integrated circuits, quantized voltage generation by a semiconductor device has never been obtained. Here we report a semiconductor quantized voltage source generating quantized voltages Vout = f\cdot(h/e). It is based on an integrated quantized circuit of a single electron pump operated at pumping frequency f and a quantum Hall device monolithically integrated in series. The output voltages of several \muV are expected to be scalable by orders of magnitude using present technology. The device might open a new route towards the closure of the quantum metrological triangle. Furthermore it represents a universal electrical quantum reference allowing to generate quantized values of the three most relevant electrical units of voltage, current, and resistance based on fundamental constants using a single device.Comment: 15 pages, 3 figure

    Novel nanocomposite automotive temperature sensing technology

    Get PDF
    In recent years, automotive emissions legislation has been introduced and is rapidly becoming more stringent. With alternative vehicular propulsion methods far from becoming mainstream reality, leading automotive providers have intensified efforts in the direction of reducing the harmful footprint of their products. This is being accomplished via smaller, more optimally designed internal-combustion engines. A crucial means to that end is exhaust gas temperature monitoring and control. To enable such control, a mass-produced sensor, capable of operating reliably in the harsh automotive combustion environment, comprising a broad spectrum of high temperatures, severe shocks and a chemically aggressive ambient, has been used widely in the past decade, with performance demands growing constantly in line with advances in engine performance. This paper presents a technology overview of the potential of novel nano composite sensor design and manufacture using materials in an innovative way towards industrialising such a sensing solution. The presented sensor design implements the state-of-the-art in thick and thin film technology incorporating nano materials for improved strength, fabrication and performance properties

    A terahertz grid frequency doubler

    Get PDF
    We present a 144-element terahertz quasi-optical grid frequency doubler. The grid is a planar structure with bow-tie antennas as a unit cell, each loaded with a planar Schottky diode. The maximum output power measured for this grid is 24 mW at 1 THz for 3.1-μs 500-GHz input pulses with a peak input power of 47 W. An efficiency of 0.17% for an input power of 6.3 W and output power of 10.8 mW is measured. To date, this is the largest recorded output power for a multiplier at terahertz frequencies. Input and output tuning curves are presented and an output pattern is measured and compared to theory

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network

    Silicon solar cell efficiency improvement: Status and outlook

    Get PDF
    Efficiency and operating life is an economic attribute in silicon solar cells application. The efficiency improvements made during the 30 year existence of the silicon solar cells, from about 6% efficiency at the beginning to 19% in the most recent experimental cells is illustrated. In the more stationary periods, the effort was oriented towards improving radiation resistance and yields on the production lines, while, in other periods, the emphasis was on reaching new levels of efficiency through better cell design and improved material processing. First results were forthcoming from the recent efforts. Considerably more efficiency advancement in silicon solar cells is expected, and the anticipated attainment of efficiencies significantly above 20% is discussed. Major advances in material processing and in the resulting material perfection are required

    Solid immersion lens applications for nanophotonic devices

    Get PDF
    Solid immersion lens (SIL) microscopy combines the advantages of conventional microscopy with those of near-field techniques, and is being increasingly adopted across a diverse range of technologies and applications. A comprehensive overview of the state-of-the-art in this rapidly expanding subject is therefore increasingly relevant. Important benefits are enabled by SIL-focusing, including an improved lateral and axial spatial profiling resolution when a SIL is used in laser-scanning microscopy or excitation, and an improved collection efficiency when a SIL is used in a light-collection mode, for example in fluorescence micro-spectroscopy. These advantages arise from the increase in numerical aperture (NA) that is provided by a SIL. Other SIL-enhanced improvements, for example spherical-aberration-free sub-surface imaging, are a fundamental consequence of the aplanatic imaging condition that results from the spherical geometry of the SIL. Beginning with an introduction to the theory of SIL imaging, the unique properties of SILs are exposed to provide advantages in applications involving the interrogation of photonic and electronic nanostructures. Such applications range from the sub-surface examination of the complex three-dimensional microstructures fabricated in silicon integrated circuits, to quantum photoluminescence and transmission measurements in semiconductor quantum dot nanostructures

    Whatever happened to silicon carbide

    Get PDF
    The progress made in silicon carbide semiconductor devices in the 1955 to 1975 time frame is examined and reasons are given for the present lack of interest in the material. Its physical and chemical properties and methods of preparation are discussed. Fabrication techniques and the characteristics of silicon carbide devices are reviewed. It is concluded that a combination of economic factors and the lack of progress in fabrication techniques leaves no viable market for SiC devices in the near future

    Nanoscale, Phonon-Coupled Calorimetry with Sub-Attojoule/Kelvin Resolution

    Get PDF
    We have developed an ultrasensitive nanoscale calorimeter that enables heat capacity measurements upon minute, externally affixed (phonon-coupled) samples at low temperatures. For a 5 s measurement at 2 K, we demonstrate an unprecedented resolution of ΔC ~ 0.5 aJ/K (~36 000 k_B). This sensitivity is sufficient to enable heat capacity measurements upon zeptomole-scale samples or upon adsorbates with sub-monolayer coverage across the minute cross sections of these devices. We describe the fabrication and operation of these devices and demonstrate their sensitivity by measuring an adsorbed ^4He film with optimum resolution of ~3 × 10^(-5) monolayers upon an active surface area of only ~1.2 × 10^(-9) m^2
    corecore