4,090 research outputs found

    Novel nanocomposite automotive temperature sensing technology

    Get PDF
    In recent years, automotive emissions legislation has been introduced and is rapidly becoming more stringent. With alternative vehicular propulsion methods far from becoming mainstream reality, leading automotive providers have intensified efforts in the direction of reducing the harmful footprint of their products. This is being accomplished via smaller, more optimally designed internal-combustion engines. A crucial means to that end is exhaust gas temperature monitoring and control. To enable such control, a mass-produced sensor, capable of operating reliably in the harsh automotive combustion environment, comprising a broad spectrum of high temperatures, severe shocks and a chemically aggressive ambient, has been used widely in the past decade, with performance demands growing constantly in line with advances in engine performance. This paper presents a technology overview of the potential of novel nano composite sensor design and manufacture using materials in an innovative way towards industrialising such a sensing solution. The presented sensor design implements the state-of-the-art in thick and thin film technology incorporating nano materials for improved strength, fabrication and performance properties

    A terahertz grid frequency doubler

    Get PDF
    We present a 144-element terahertz quasi-optical grid frequency doubler. The grid is a planar structure with bow-tie antennas as a unit cell, each loaded with a planar Schottky diode. The maximum output power measured for this grid is 24 mW at 1 THz for 3.1-ÎĽs 500-GHz input pulses with a peak input power of 47 W. An efficiency of 0.17% for an input power of 6.3 W and output power of 10.8 mW is measured. To date, this is the largest recorded output power for a multiplier at terahertz frequencies. Input and output tuning curves are presented and an output pattern is measured and compared to theory

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network

    An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    Get PDF
    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Chapter Managing Heat Transfer Issues in Thermoelectric Microgenerators

    Get PDF
    This chapter deals with heat transfer challenges in the microdomain. It focuses on practical issues regarding this matter when attempting the fabrication of small footprint thermoelectric generators (ÎĽTEGs). Thermoelectric devices are designed to bridge a heat source (e.g. hot surface) and a heat sink (e.g. ambient) assuring that a significant fraction of the available temperature difference is captured across the active thermoelectric materials. Coexistence of those contrasted temperatures in small devices is challenging. It requires careful decisions about the geometry and the intrinsic thermal properties of the materials involved. The geometrical challenges lead to micromachined architectures, which silicon technologies provide in a controlled way, but leading to fragile structures, too. In addition, extracting heat from small systems is problematic because of the high thermal resistance associated to heat exchanged by natural convection between the surrounding air and small bare surfaces. Forced convection or the application of a cold finger clearly shows the usefulness of assembling a heat exchanger in a way that is effective and compliant with the mechanical constraints of micromachined devices. Simulations and characterization of fabricated structures illustrate the effectiveness of this element integration and its impact on the trade-off between electrical and thermal behavior of the active materials in device performance

    High altitude solar power platform

    Get PDF
    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course

    Comparative Study of Power Semiconductor Devices in a Multilevel Cascaded H-Bridge Inverter

    Get PDF
    This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET and IGBT modeling tools in Saber® were extensively utilized to create the models of the power devices used in the simulations. The inverter system is also analyzed using Saber-Simulink cosimulation method to feed control signals from Simulink into Saber. The results in this investigation show better performances using a SiC MOSFET-based grid-connected BESS inverter with a better return of investment

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Impact of Film Thickness and Thermal Treatment on the Excellent Surface Passivation of c-Si by ALD Al2O3 for Solar Cell Applications

    Get PDF
    The surface passivation of c-Si by atomic layer deposited (ALD) Al2O3 has recently gained considerable interest after extremely low surface recombination velocities (<10 cm/s) have been reported for low resistivity n- and p-type c-Si wafers [1]. The incorporation of an Al2O3 film for boron doped emitter passivation led to enhanced efficiencies of 23.2% for n-type c-Si solar cells [2]. From the cumulative research, various questions related to the thermal stability and other processing aspects of the Al2O3 films appeared. In this contribution we will show that a decrease of film thickness down to ~5 nm does not compromise the passivation quality, enabling a straightforward reduction of deposition time and providing freedom in the design of optimal front passivation/antireflection schemes. To activate the Al2O3 surface passivation a post-deposition anneal is required, but also the thermal budget during the plasma enhanced chemical vapor deposition of an a-SiNx:H capping layer was found sufficient to activate the passivation. Although an anneal effect can be observed in a large temperature range (~350 - ~600oC) the optimal post-deposition anneal temperature window was found to be much smaller. Within the optimum temperature range, the largest anneal effect was observed to take place during the first minutes of the process. For the successful implementation of Al2O3 in conventional screen printed solar cells, thermal stability is required. In this paper we demonstrate the relative stability of Al2O3 and Al2O3/a-SiNx:H passivation/antireflection stacks against an industrial "firing" process reaching temperatures > 800oC. Although the minority carrier lifetime was found to decrease during the firing process, values in excess of 1 ms were obtained on 2 O cm n-Si wafers after firing. These lifetimes suggest that surface recombination will not likely be the efficiency limiting step for solar cells that combine Al2O3 passivation and screen printed metallization as recombination in the metalized area will be dominant. The findings in this paper demonstrate the suitability of thin ALD-synthesised Al2O3 passivation films for large scale photovoltaic applications. [1] B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 044903 2008 [2] J. Bennick, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, O. Schultz, S. Glunz, Appl. Phys. Lett. 92, 253504 (2008
    • …
    corecore