98,299 research outputs found

    The Open Practises E-Science Network (OPEN)

    Get PDF
    A grant proposal submitted for support to fund a research network focussed on identifying and dealing with the practical issues of enabling open practise in research. The text of the proposal was written by a large number of people and coordinated by Cameron Neylon

    EGI: anOpen e-Infrastructure Ecosystem for the Digital European Research Area

    Get PDF
    Bringing the digital European Research Area (ERA) online means modernising Europe’s research infrastructure by promoting open science through the availability, accessibility and reuse of scientific data and results, the use of web- based tools that facilitate scientific collaboration and ensuring public access to research. As the European Grid Infrastructure (EGI) is the largest European distributed computing infrastructure providing 24/7 access to large scale computing, storage and data resources through a federation of national resource providers, it allows scientists from all disciplines to make the most out of the latest computing technologies for the benefit of their research. This paper describes the methodology and approach for defining EGI’s role in bringing this digital ERA online. The work presented defines the roles and functions of EGI as an open ICT ecosystem, required service redesign, the added value of EGI for the European research communities and demonstrates the role that EGI plays in contributing to the Europe 2020 strategy for social-economic impact

    Knowledge in the dark: scientific challenges and ways forward

    Get PDF
    A key dimension of our current era is Big Data, the rapid rise in produced data and information; a key frustration is that we are nonetheless living in an age of ignorance, as the real knowledge and understanding of people does not seem to be substantially increasing. This development has critical consequences, for example it limits the ability to find and apply effective solutions to pressing environmental and socioeconomic challenges. Here, we propose the concept of “knowledge in the dark”—or short: dark knowledge—and outline how it can help clarify key reasons for this development: (i) production of biased, erroneous, or fabricated data and information; (ii) inaccessibility and (iii) incomprehensibility of data and information; and (iv) loss of previous knowledge. Even in the academic realm, where financial interests are less pronounced than in the private sector, several factors lead to dark knowledge, that is they inhibit a more substantial increase in knowledge and understanding. We highlight four of these factors—loss of academic freedom, research biases, lack of reproducibility, and the Scientific tower of Babel—and offer ways to tackle them, for example establishing an international court of arbitration for research and developing advanced tools for research synthesis

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information
    corecore