1,223 research outputs found

    Non-equilibrium phase transitions in biomolecular signal transduction

    Full text link
    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework

    Pathway-Based Genomics Prediction using Generalized Elastic Net.

    Get PDF
    We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach

    Phenotype-driven identification of epithelial signalling clusters

    Get PDF
    In metazoans, epithelial architecture provides a context that dynamically modulates most if not all epithelial cell responses to intrinsic and extrinsic signals, including growth or survival signalling and transforming oncogene action. Three-dimensional ( 3D) epithelial culture systems provide tractable models to interrogate the function of human genetic determinants in establishment of context-dependency. We performed an arrayed genetic shRNA screen in mammary epithelial 3D cultures to identify new determinants of epithelial architecture, finding that the key phenotype impacting shRNAs altered not only the data population average but even more noticeably the population distribution. The broad distributions were attributable to sporadic gene silencing actions by shRNA in unselected populations. We employed Maximum Mean Discrepancy concept to capture similar population distribution patterns and demonstrate here the feasibility of the test in identifying an impact of shRNA in populations of 3D structures. Integration of the clustered morphometric data with protein-protein interactions data enabled hypothesis generation of novel biological pathways underlying similar 3D phenotype alterations. The results present a new strategy for 3D phenotype-driven pathway analysis, which is expected to accelerate discovery of context-dependent gene functions in epithelial biology and tumorigenesis.Peer reviewe

    Deep Reinforcement Learning for Control of Probabilistic Boolean Networks

    Full text link
    Probabilistic Boolean Networks (PBNs) were introduced as a computational model for the study of complex dynamical systems, such as Gene Regulatory Networks (GRNs). Controllability in this context is the process of making strategic interventions to the state of a network in order to drive it towards some other state that exhibits favourable biological properties. In this paper we study the ability of a Double Deep Q-Network with Prioritized Experience Replay in learning control strategies within a finite number of time steps that drive a PBN towards a target state, typically an attractor. The control method is model-free and does not require knowledge of the network's underlying dynamics, making it suitable for applications where inference of such dynamics is intractable. We present extensive experiment results on two synthetic PBNs and the PBN model constructed directly from gene-expression data of a study on metastatic-melanoma

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research

    PhenoLink - a web-tool for linking phenotype to ~omics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains

    Get PDF
    Contains fulltext : 109042.pdf (publisher's version ) (Open Access)BACKGROUND: Linking phenotypes to high-throughput molecular biology information generated by ~omics technologies allows revealing cellular mechanisms underlying an organism's phenotype. ~Omics datasets are often very large and noisy with many features (e.g., genes, metabolite abundances). Thus, associating phenotypes to ~omics data requires an approach that is robust to noise and can handle large and diverse data sets. RESULTS: We developed a web-tool PhenoLink (http://bamics2.cmbi.ru.nl/websoftware/phenolink/) that links phenotype to ~omics data sets using well-established as well new techniques. PhenoLink imputes missing values and preprocesses input data (i) to decrease inherent noise in the data and (ii) to counterbalance pitfalls of the Random Forest algorithm, on which feature (e.g., gene) selection is based. Preprocessed data is used in feature (e.g., gene) selection to identify relations to phenotypes. We applied PhenoLink to identify gene-phenotype relations based on the presence/absence of 2847 genes in 42 Lactobacillus plantarum strains and phenotypic measurements of these strains in several experimental conditions, including growth on sugars and nitrogen-dioxide production. Genes were ranked based on their importance (predictive value) to correctly predict the phenotype of a given strain. In addition to known gene to phenotype relations we also found novel relations. CONCLUSIONS: PhenoLink is an easily accessible web-tool to facilitate identifying relations from large and often noisy phenotype and ~omics datasets. Visualization of links to phenotypes offered in PhenoLink allows prioritizing links, finding relations between features, finding relations between phenotypes, and identifying outliers in phenotype data. PhenoLink can be used to uncover phenotype links to a multitude of ~omics data, e.g., gene presence/absence (determined by e.g.: CGH or next-generation sequencing), gene expression (determined by e.g.: microarrays or RNA-seq), or metabolite abundance (determined by e.g.: GC-MS)
    corecore