23 research outputs found

    Rainbow Hamilton cycles in random regular graphs

    Full text link
    A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n tends to infinity, provided d is at least 8.Comment: 16 page

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Matchings in Random Biregular Bipartite Graphs

    Get PDF
    We study the existence of perfect matchings in suitably chosen induced subgraphs of random biregular bipartite graphs. We prove a result similar to a classical theorem of Erdos and Renyi about perfect matchings in random bipartite graphs. We also present an application to commutative graphs, a class of graphs that are featured in additive number theory.Comment: 30 pages and 3 figures - Latest version has updated introduction and bibliograph

    Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems

    Get PDF
    Friedland's Lower Matching Conjecture asserts that if GG is a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices, and mk(G)m_k(G) denotes the number of matchings of size kk, then mk(G)(nk)2(dpd)n(dp)(dp)np,m_k(G)\geq {n \choose k}^2\left(\frac{d-p}{d}\right)^{n(d-p)}(dp)^{np}, where p=knp=\frac{k}{n}. When p=1p=1, this conjecture reduces to a theorem of Schrijver which says that a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices has at least ((d1)d1dd2)n\left(\frac{(d-1)^{d-1}}{d^{d-2}}\right)^n perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching Conjecture, namely he proved that lnmk(G)v(G)12(pln(dp)+(dp)ln(1pd)2(1p)ln(1p))+ov(G)(1).\frac{\ln m_k(G)}{v(G)}\geq \frac{1}{2}\left(p\ln \left(\frac{d}{p}\right)+(d-p)\ln \left(1-\frac{p}{d}\right)-2(1-p)\ln (1-p)\right)+o_{v(G)}(1). In this paper, we prove the Lower Matching Conjecture. In fact, we will prove a slightly stronger statement which gives an extra cpnc_p\sqrt{n} factor compared to the conjecture if pp is separated away from 00 and 11, and is tight up to a constant factor if pp is separated away from 11. We will also give a new proof of Gurvits's and Schrijver's theorems, and we extend these theorems to (a,b)(a,b)--biregular bipartite graphs
    corecore