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LOWER MATCHING CONJECTURE, AND A NEW PROOF OF

SCHRIJVER’S AND GURVITS’S THEOREMS

PÉTER CSIKVÁRI

Abstract. Friedland’s Lower Matching Conjecture asserts that if G is a d–regular
bipartite graph on v(G) = 2n vertices, and mk(G) denotes the number of matchings
of size k, then

mk(G) ≥
(

n

k

)2(
d− p

d

)n(d−p)

(dp)np,

where p = k
n
. When p = 1, this conjecture reduces to a theorem of Schrijver which

says that a d–regular bipartite graph on v(G) = 2n vertices has at least
(

(d− 1)d−1

dd−2

)n

perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching
Conjecture, namely he proved that

lnmk(G)

v(G)
≥ 1

2

(

p ln

(

d

p

)

+ (d− p) ln
(

1− p

d

)

− 2(1− p) ln(1− p)

)

+ ov(G)(1).

In this paper, we prove the Lower Matching Conjecture. In fact, we will prove
a slightly stronger statement which gives an extra cp

√
n factor compared to the

conjecture if p is separated away from 0 and 1, and is tight up to a constant factor
if p is separated away from 1. We will also give a new proof of Gurvits’s and
Schrijver’s theorems, and we extend these theorems to (a, b)–biregular bipartite
graphs.

1. Introduction

Throughout this paper we use standard terminology, but the second paragraph of
Section 2 might help the Reader in case of a concept undefined in the Introduction.

One of the best known theorem concerning the number of perfect matchings of a
d–regular graph is due to A. Schrijver and M. Voorhoeve.

Theorem 1.1 (A. Schrijver [25] for general d, M. Voorhoeve [27] for d = 3). Let
G be a d–regular bipartite graph on 2n vertices and let pm(G) denote the number of
perfect matchings of G. Then

pm(G) ≥
(

(d− 1)d−1

dd−2

)n

.

There are two different proofs of Theorem 1.1. The original one is due to A.
Schrijver [25], and another proof using stable polynomials is due to L. Gurvits [13],
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for a beautiful account to this proof see [18]. In this paper we will give a third proof
of this theorem which is essentially different from the previous ones.

In [9], S. Friedland, E. Krop and K. Markström, conjectured a possible general-
ization of this theorem which extends Schrijver’s theorem to any size of matchings.
This conjecture became known as Friedland’s Lower Matching Conjecture:

Conjecture 1.2 (Friedland’s Lower Matching Conjecture [9]). Let G be a d–regular
bipartite graph on v(G) = 2n vertices, and let mk(G) denote the number of matchings
of size k, then

mk(G) ≥
(

n

k

)2(
d− p

d

)n(d−p)

(dp)np,

where p = k
n
.

They also proposed an asymptotic version of this conjecture which was later proved
by L. Gurvits in [14].

Theorem 1.3 (L. Gurvits [14]). Let G be a d–regular bipartite graph on v(G) = 2n
vertices, and let mk(G) denote the number of matchings of size k, then

lnmk(G)

v(G)
≥ 1

2

(

p ln

(

d

p

)

+ (d− p) ln
(

1− p

d

)

− 2(1− p) ln(1− p)

)

+ ov(G)(1),

where p = k
n
.

When p = 1 this result almost reduces to Schrijver’s theorem, but Gurvits used this
special case to establish the general case. More precisely, Gurvits used the following
result of Schrijver: let A = (aij) be a doubly stochastic matrix, and Ã = (ãij), where

ãij = aij(1− aij), then the permanent of Ã satisfies the inequality

Per(Ã) ≥
∏

i,j

(1− aij).

Note that Gurvits [14] proved an effective version of Theorem 1.3, but for our purposes
any ov(G)(1) term would suffice, as we will "vanish" it. More details on Gurvits’s
results can be found at Remark 3.3.

It is worth introducing some notation for the function appearing in Theorem 1.3,
and with some foresight we introduce another function with parameters a, b which
will be important for us when we study (a, b)–biregular graphs.

Definition 1.4. Let 0 ≤ q ≤ 1 and

H(q) = −(q ln(q) + (1− q) ln(1− q))

with the usual convention that H(0) = H(1) = 0. Furthermore, for a positive integer
d and 0 ≤ p ≤ 1 let

Gd(p) =
1

2

(

p ln

(

d

p

)

+ (d− p) ln
(

1− p

d

)

− 2(1− p) ln(1− p)

)

,

and for positive integers a and b, let

Ga,b(p) =
a

a + b
H

(

a+ b

2a
p

)

+
b

a+ b
H

(

a+ b

2b
p

)

+
1

2
p ln(ab)− ab

a+ b
H

(

a + b

2ab
p

)

,

where 0 ≤ p ≤ min( 2a
a+b

, 2b
a+b

).
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Note that one can rewrite Ga,b(p) as follows:

Ga,b(p) =
1

2

(

p · ln
(

2ab

(a+ b)p

)

+

(

2ab

a+ b
− p

)

· ln
(

1− a+ b

2ab
p

)

−

−
(

2a

a + b
− p

)

· ln
(

1− a+ b

2a
p

)

−
(

2b

a+ b
− p

)

· ln
(

1− a+ b

2b
p

))

.

From this form it is clear that for a = b = d, we have Gd(p) = Ga,b(p). Later it will
turn out that Gd(p) is the so-called entropy function of the infinite d–regular tree Td,
and Ga,b(p) is the entropy function of the infinite (a, b)–biregular tree Ta,b.

To show the connection between Conjecture 1.2 and Theorem 1.3, let us introduce
one more parameter. Let p = k

n
, and let pµ be the probability that a random variable

with distribution Binomial(n, p) takes its mean value µ = k. In other words,

pµ =

(

n

k

)

pk(1− p)n−k.

With this new notation the function appearing in Conjecture 1.2 is
(

n

k

)2(
d− p

d

)n(d−p)

(dp)np = p2µ exp(2nGd(p)).

Hence Conjecture 1.2 claims that

mk(G) ≥ p2µ exp(2nGd(p)).

It turns out that a slightly stronger statement is true.

Theorem 1.5. Let G be a d–regular bipartite graph on v(G) = 2n vertices, and let
mk(G) denote the number of matchings of size k. Furthermore, let p = k

n
, and pµ be

the probability that a random variable with distribution Binomial(n, p) takes its mean
value µ = k. Then

mk(G) ≥ pµ exp(2nGd(p)).

In particular, Conjecture 1.2 holds true. Furthermore, for every 0 ≤ k < n there
exists a d–regular bipartite graph G on 2n vertices such that

mk(G) ≤
√

1− p/d

1− p
· pµ exp(2nGd(p)).

Note that pµ ≈ 1√
2πp(1−p)n

, this means that if p is separated away from 0 and 1,

then we can obtain an extra cp
√
n factor compared to Conjecture 1.2. Also note that

pµ ≥ 1
n+1

≥ 1
2n

always holds true. This inequality might be easier to handle in some
cases.

We will practically show that Theorem 1.3 implies Conjecture 1.2. The idea of the
proof of Theorem 1.5 is to convert Gurvits’s theorem to a statement on analytical
functions arising from statistical mechanics. Then tools from analysis and probability
theory together with a simple observation will enable us to replace the term ov(G)(1) in
Gurvits’s theorem with an effective one which is slightly better than the corresponding
term in the original Gurvits’s theorem (see Remark 3.3).

We offer one more theorem for d–regular bipartite graphs.
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Theorem 1.6. Let G be a d–regular bipartite graph on v(G) = 2n vertices, and let
mk(G) denote the number of matchings of size k. Let 0 ≤ p ≤ 1, then

n
∑

k=0

mk(G)
(p

d

(

1− p

d

))k

(1− p)2(n−k) ≥
(

1− p

d

)nd

.

When p = 1, Theorem 1.6 immediately gives back Theorem 1.1. Indeed, when p = 1
only the term mn(G)

(

1
d

(

1− 1
d

))n
does not vanish on the left hand side, because of

the term (1− p)2(n−k), and we get that

mn(G)

(

1

d

(

1− 1

d

))n

≥
(

1− 1

d

)nd

which is equivalent with

mn(G) ≥
(

(d− 1)d−1

dd−2

)n

.

As we mentioned Theorem 1.3 implies Theorem 1.5, but the main goal of this paper
is to give a new proof of Gurvits’s and Schrijver’s theorems with a novel method.
This method will be used to prove Theorem 1.6 too. This new proof shows that
the extremal graph is in some sense the d–regular infinite tree. Indeed, we will
show that the function on the right hand side of Theorem 1.3 is nothing else than
the so-called entropy function of the d–regular infinite tree; the entropy functions
of finite and infinite graphs will be introduced in Section 2. It means that for a
deeper understanding of these theorems, one needs to step out from the universe of
finite graphs. We will do it by the recently developed theory of Benjamini–Schramm
convergence of bounded degree graphs. This new technique also enables us to extend
these theorems to (a, b)–biregular bipartite graphs.

Theorem 1.7. Let G = (A,B,E) be an (a, b)–biregular bipartite graph on v(G)
vertices such that every vertex in A has degree a, and every vertex in B has degree b.
Assume that a ≥ b, i. e., |A| ≤ |B|. Let mk(G) denote the number of matchings of
size k, and p = 2k

v(G)
. Furthermore, let q = a+b

2b
p, and let pµ be the probability that a

random variable with distribution Binomial(|A|, q) takes its mean value µ = k. Then

mk(G) ≥ pµ exp(v(G) ·Ga,b(p)).

Note that if k = |A|, then pµ = 1, and pµ ≥ 1
|A|+1

≥ 1
v(G)

holds true for any p.

One can view Theorem 1.7 and the other results as extremal graph theoretic prob-
lems where one seeks for the extremal value of a certain graph parameter p(G) in a
given family G of graphs. In extremal graph theory it is a classical idea to try to find
some graph transformation ϕ such that p(G) ≤ p(ϕ(G)) (or p(G) ≥ p(ϕ(G))), and
ϕ(G) ∈ G for every G ∈ G. Then we apply this transformation as long as we can, and
when we stop then we know that the extremal graph must be in a special subfamily of
G, where the optimization problem can be solved easily. See for instance the proof of
Turán’s theorem using Zykov’s symmetrization [28]. In our case, the transformation
ϕ will be simply any 2-lift of the graph (see Definition 4.1). The new ingredient in
our proof is that the sequence of graphs obtained by applying repeatedly the 2-lifts
will not stabilize, but instead converge to the infinite biregular tree. In fact, most of
our work is related to the graph convergence part, and not the graph transformation
part.



NEW PROOF OF SCHRIJVER’S AND GURVITS’S THEOREMS 5

This paper is organized as follows. In the next section we introduce all the
necessary tools including the density function p(G, t), the entropy function λG(p),
the Benjamini–Schramm convergence, and the computation of the entropy function
of the infinite biregular tree. In this section we also give various results on the number
of matchings of random (bi)regular graphs which shows the tightness of our results.
In particular, we prove the second half of Theorem 1.5 here. In Section 3 we show
that Gurvits’s theorem is equivalent with certain (effective) statement on the entropy
function. In Section 4 we give the new proof of Schrijver’s and Gurvits’s theorem
together with the main part of the proof of Theorem 1.7. In Section 5 we deduce
Theorem 1.5 from the new version of Gurvits’s theorem, we prove Theorem 1.6, and
we also finish the proof of Theorem 1.7.

Some advice how to read this paper. This paper is occasionally a bit tech-
nical, especially Section 2. In order to make it easier to read this paper we roughly
summarize this paper and give a road map for the first reading. Assuming that the
Reader is mainly interested in the proof of Theorem 1.5 we first give an idea how the
proof works.

Assume that p(G) is some graph parameter related to matchings and it is normal-
ized in such a way that we can compare graphs on different sizes, in particular it
makes sense to compare two d–regular graphs. For instance

p(G) =
ln pm(G)

v(G)

is such a graph parameter. We will prove that for a bipartite d–regular graph we
have

p(G) ≥ p(Td),

where p(Td) apriori does not make sense, but can be defined as a limit limi→∞ p(Hi),
where Hi is a sequence of graphs "converging locally" to Td. The plan is the following:
we define a sequence of graphs Gi such that G = G0 and

p(G) = p(G0) ≥ p(G1) ≥ p(G2) ≥ p(G3) ≥ . . .

and
lim
i→∞

p(Gi) = p(Td).

This clearly gives that
p(G) ≥ p(Td).

A technical difficulty arises from the fact it is not really convenient to work with
the parameter

q(G) =
lnmk(G)

v(G)
.

Instead we use the entropy function λG(p) which is strongly related to the parameter
q(G), but is more amenable to any analysis. So λG(p) will play the role of p(G). Of
course, we need some tools to transfer our knowledge from λG(p) to q(G), but it is
again just a technical problem.

So by keeping in mind our very simple plan and our techincal difficulty we suggest
the following road map for the first reading: (1) first read the alternative definition
of λG(p), Remark 2.2, this is a definition which is easy to understand, then take
a quick look at its properties, Proposition 2.1 without reading its proof, (2) read
the definition of Benjamini–Schramm convergence, Definition 2.5 and Example 2.7,
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(3) jump to Section 4, read it only till the proof of Theorem 1.1 and 1.3 (4) finally
read Section 5. We believe that only reading this core of the paper will give a good
impression of the content of this paper and the novel method applied in this paper.

Let us mention that if the Reader is familiar with Gurvits’s result, Theorem 1.3
and only wants to know how one can derive Theorem 1.5 from it then after step (1)
in the above plan one can jump immediately to Section 3 and then Section 5.

2. Preliminaries and basic notions

This section is mostly reproduced from the paper [2]. We could have simply cited
this paper, but for the sake of the convenience of the Reader, we also included the
proofs.

Throughout the paper, G denotes a finite graph with vertex set V (G) and edge
set E(G). The number of vertices is denoted by v(G). The degree of a vertex is
the number of its neighbors. A graph is called d–regular if every vertex has degree
exactly d. A cycle C is a sequence of vertices v1, v2, . . . , vk such that vi 6= vj if i 6= j
and (vi, vi+1) ∈ E(G) for i = 1, . . . , k, where vk+1 = v1. The length of the cycle is
k in this case. A k–matching is a set of edges {e1, . . . , ek} such that for any i and
j, the vertex set of ei and ej are disjoint, in other words, e1, . . . , ek cover 2k vertices
together. A perfect matching is a matching which covers every vertices. A graph
is called bipartite if the vertices can be colored with two colors such that all edges
connect two vertices of different colors. The standard notation for bipartite graph is
G = (A,B,E), where A and B denote the vertex sets corresponding to the two color
classes.

Let G = (V,E) be a finite graph on v(G) vertices, and mk(G) denotes the number
of k-matchings (m0(G) = 1). Let t be a non-negative real number; in statistical
mechanics it is called the activity. Let

M(G, t) =

⌊v(G)/2⌋
∑

k=0

mk(G)tk,

and

µ(G, x) =

⌊v(G)/2⌋
∑

k=0

(−1)kmk(G)xv(G)−2k .

We call M(G, t) the matching generating function1 , µ(G, x) the matching polynomial
[16, 10, 11]. Clearly, they encode the same information. Let

p(G, t) =
2t · d

dt
M(G, t)

v(G) ·M(G, t)
,

and

F (G, t) =
lnM(G, t)

v(G)
− 1

2
p(G, t) ln(t).

We will call p(G, t) the density function. Note that there is a natural interpretation of
p(G, t). Assume that we choose a random matching M with probability proportional
to t|M |. Then the expected number of vertices covered by a random matching is
p(G, t) · v(G).

1In statistical mechanics, it is called the partition function of the monomer-dimer model.
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Let

p∗(G) =
2ν(G)

v(G)
,

where ν(G) denotes the number of edges in the largest matching. If G contains a
perfect matching, then clearly p∗ = 1. The function p = p(G, t) is a strictly monotone
increasing function which maps [0,∞) to [0, p∗), where p∗ = p∗(G). Therefore, its
inverse function t = t(G, p) maps [0, p∗) to [0,∞). (If G is clear from the context,
then we simply write t(p) instead of t(G, p).) Let

λG(p) = F (G, t(p))

if p < p∗, and λG(p) = 0 if p > p∗. Note that we have not defined λG(p
∗) yet. We

define it as a limit:
λG(p

∗) = lim
pրp∗

λG(p).

We will show that this limit exists, see part (c) of Proposition 2.1. We will call λG(p)
the entropy function of the graph G.

The intuitive meaning of λG(p) is the following. Assume that we want to count
the number of matchings covering p fraction of the vertices. Let us assume that it
makes sense: p = 2k

v(G)
, and so we wish to count mk(G). Then

λG(p) ≈
lnmk(G)

v(G)
.

The more precise formulation of this statement will be given in Proposition 2.1.

Proposition 2.1. [2] Let G be a finite graph.
(a) Let rG be the union of r disjoint copies of G. Then

λG(p) = λrG(p).

(b) If p < p∗, then
d

dp
λG(p) = −1

2
ln t(p).

(c) The limit
λG(p

∗) = lim
pրp∗

λG(p)

exists.
(d) Let k ≤ ν(G) and p = 2k

v(G)
. Then

∣

∣

∣

∣

λG(p)−
lnmk(G)

v(G)

∣

∣

∣

∣

≤ ln v(G)

v(G)
.

(e) Let k = ν(G), then for p∗ = 2k
v(G)

we have

λG(p
∗) =

lnmk(G)

v(G)
.

In particular, if G contains a perfect matching then,

λG(1) =
ln pm(G)

v(G)
.

(f) If for some function f(p) we have

λG(p) ≥ f(p) + ov(G)(1)
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for all graphs G, then
λG(p) ≥ f(p).

(g) If for some graphs G1 and G2 we have

lnM(G1, t)

v(G1)
≥ lnM(G2, t)

v(G2)

for every t ≥ 0, then
λG1(p) ≥ λG2(p)

for every 0 ≤ p ≤ 1.

Remark 2.2. Part (a) and (d) of Proposition 2.1 together suggest an alternative
definition for the entropy function λG(p) for p < p∗: let (kr) be a sequence of integers
such that

lim
r→∞

2kr
rv(G)

= p

then

λG(p) = lim
r→∞

lnmkr(rG)

rv(G)
.

In general when we have an infinite graph L, say Zd, then it is a natural idea to
consider a graph sequence Gi converging to L and and to take a sequence (ki) such
that

lim
i→∞

2ki
v(Gi)

= p

then to consider

λL(p) = lim
i→∞

lnmki(Gi)

v(Gi)
.

In this sense, this alternative definition is nothing else than to consider the "G-
lattice", infinitely many disjoint copies of G and approximate it with Gi = iG, the
union of i copies of G.

This alternative definition is much more natural, especially from a statistical phys-
ical point of view. On the other hand, this definition is hard to work with.

We will need some preparation to prove Proposition 2.1. Among many others we
will need the following fundamental theorem about the matching polynomial.

Theorem 2.3 (Heilmann and Lieb [16]). The zeros of the matching polynomial
µ(G, x) are real, and if the largest degree D of G is greater than 1, then all zeros
lie in the interval [−2

√
D − 1, 2

√
D − 1].

We will also use the following theorem of Darroch.

Lemma 2.4 (Darroch’s rule [6]). Let P (x) =
∑n

k=0 akx
k be a polynomial with only

positive coefficients and real zeros. If

k − 1

n− k + 2
<

P ′(1)

P (1)
< k +

1

k + 2
,

then k is the unique number for which ak = max(a1, a2, . . . , an). If, on the other
hand,

k +
1

k + 2
<

P ′(1)

P (1)
< k + 1− 1

n− k + 1
,

then either ak or ak+1 is the maximal element of a1, a2, . . . , an.
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Proof of Proposition 2.1. (a) Note that

M(rG, t) = M(G, t)r

implying that p(rG, t) = p(G, t) and λrG(p) = λG(p).

(b) Since

λG(p) =
lnM(G, t)

v(G)
− 1

2
p · ln(t)

we have

dλG(p)

dp
=

(

1

v(G)
·

d
dt
M(G, t)

M(G, t)
· dt
dp

− 1

2

(

ln(t) + p · 1
t
· dt
dp

)

)

= −1

2
ln(t),

since
1

v(G)
·

d
dt
M(G, t)

M(G, t)
=

p

2t

by definition.

(c) From d
dp
λG(p) = −1

2
ln t(p) we see that for p > p(G, 1), the function λG(p) is

monotone decreasing. (We can also see that λG(p) is a concave-down function.)
Hence

lim
pրp∗

λG(p) = inf
p>p(G,1)

λG(p).

(d) First, let us assume that k < ν(G). In case of k = ν(G), we will slightly modify
our argument. Let t = t(G, p) be the value for which p = p(G, t). The polynomial

P (G, x) = M(G, tx) =

n
∑

j=0

mj(G)tjxj

considered as a polynomial in variable x, has only real zeros by Theorem 2.3. Note
that

k =
pv(G)

2
=

P ′(G, 1)

P (G, 1)
.

Darroch’s rule says that in this case mk(G)tk is the unique maximal element of the
coefficient sequence of P (G, x). In particular

M(G, t)

v(G)
≤ mk(G)tk ≤ M(G, t).

Hence

λG(p)−
ln v(G)

v(G)
≤ lnmk(G)

v(G)
≤ λG(p).

Hence in case of k < ν(G), we are done.

If k = ν(G), then let p be arbitrary such that

k − 1

2
<

pv(G)

2
< k.

Again we can argue by Darroch’s rule as before that

λG(p)−
ln v(G)

v(G)
≤ lnmk(G)

v(G)
≤ λG(p).
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Since this is true for all p sufficiently close to p∗ = 2ν(G)
v(G)

and

λG(p
∗) = lim

pրp∗
λG(p),

we have
∣

∣

∣

∣

λG(p
∗)− lnmk(G)

v(G)

∣

∣

∣

∣

≤ ln v(G)

v(G)

in this case too.

(e) By part (a) we have λrG(p) = λG(p). Note also that if k = ν(G), then mrk(rG) =
mk(G)r. Applying the bound from part (d) to the graph rG, we obtain that

∣

∣

∣

∣

λG(p
∗)− lnmk(G)

v(G)

∣

∣

∣

∣

≤ ln v(rG)

v(rG)
.

Since

ln v(rG)

v(rG)
→ 0

as r → ∞, we get that

λG(p
∗) =

lnmk(G)

v(G)
.

(f) This is again a trivial consequence of λrG(p) = λG(p).

(g) From the assumption it follows that for the relative sizes of the largest matchings,

we have ν(G1)
v(G1)

≥ ν(G2)
v(G2)

, and if ν(G1)
v(G1)

= ν(G2)
v(G2)

, then

lnmν(G1)(G1)

v(G1)
≥ lnmν(G2)(G2)

v(G2)
.

So the statement is trivial if p ≥ 2ν(G2)
v(G2)

. So we can assume that 0 ≤ p < 2ν(G2)
v(G2)

. Let

us consider the minimum of the function λG1(p) − λG2(p) on the interval [0, 2ν(G2)
v(G2)

].

This minimum is either attained at some endpoints or inside the interval at a point
where the derivative is 0. Note that λG1(0) = λG1(0) = 0. According to the part (b),
the derivative of λG1(p)− λG2(p) is

−1

2
ln t(G1, p) +

1

2
ln t(G2, p).

If it is 0 at p0 then t(G1, p0) = t(G2, p0), but then with the notation t = t(G1, p0) =
t(G2, p0) we have

λG1(p0) =
lnM(G1, t)

v(G1)
− 1

2
p0 ln(t) ≥

lnM(G2, t)

v(G2)
− 1

2
p0 ln(t) = λG2(p0).

So at every possible minimum of λG1(p)− λG2(p), the function is non-negative. So it
is non-negative everywhere. �
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2.1. Benjamini–Schramm convergence and the entropy function. In this part
we extend the definition of the function λG(p) for infinite lattices L, more precisely
to certain random rooted graphs.

Definition 2.5. Let L be a probability distribution on (infinite) rooted graphs; we
will call L a random rooted graph. For a finite rooted graph α and a positive integer
r, let P(L, α, r) be the probability that the r-ball centered at a random root vertex
chosen from the distribution L is isomorphic to α.

For a finite graph G, a finite rooted graph α and a positive integer r, let P(G,α, r) be
the probability that the r-ball centered at a uniform random vertex of G is isomorphic
to α.

We say that a sequence (Gi) of bounded degree graphs is Benjamini–Schramm
convergent if for all finite rooted graphs α and r > 0, the probabilities P(Gi, α, r)
converge. Furthermore, we say that (Gi) Benjamini-Schramm converges to L, if for
all positive integers r and finite rooted graphs α, P(Gi, α, r) → P(L, α, r).

Note that Benjamini–Schramm convergence is also called local convergence. This
refers to the fact that the finite graphs Gi look locally more and more like the infinite
graph L.

Example 2.6. Let us consider a sequence of boxes in Zd where all sides converge to
infinity. This will be a Benjamini–Schramm convergent graph sequence since for every
fixed r, we will pick a vertex which at least r-far from the boundary with probability
converging to 1. For all these vertices we will see the same neighborhood. This
also shows that we can impose arbitrary boundary condition, for instance periodic
boundary condition means that we consider the sequence of toroidal boxes. Boxes and
toroidal boxes will be Benjamini–Schramm convergent even together, and converges
to a distribution which is a rooted Z

d with probability 1.

Example 2.7. Recall that a k-cycle of a graph H is a sequence of vertices v1, . . . , vk
such that vi 6= vj if i 6= j, and (vi, vi+1) ∈ E(H) for 1 ≤ i ≤ k, where vk+1 = v1. For
a graph H , let g(H) be the length of the shortest cycle in H , this is called the girth
of the graph.

Let (Gi) be a sequence of d–regular graphs such that g(Gi) → ∞, then (Gi)
Benjamini–Schramm converges to the rooted d–regular infinite tree Td. Note that if
in a finite graph G the shortest cycle has length at least 2k+1 then the k-neighborhood
of any vertex looks like the k-neighborhood of any vertex of an infinite d–regular tree.

Let (Gi) be a sequence of (a, b)-biregular graphs such that g(Gi) → ∞, then (Gi)
Benjamini–Schramm converges to the following distribution: with probability a

a+b
it is

the infinite (a, b)–biregular tree Ta,b with root vertex of degree b, and with probability
b

a+b
it is the infinite (a, b)–biregular tree Ta,b with root vertex of degree a. With slight

abuse of notation we will denote this random rooted tree with Ta,b as well.

Remark 2.8. Not every random rooted graph can be obtained as a limit of Benjamini–
Schramm convergent finite graphs. A necessary condition is that the random rooted
graph has to be unimodular, this is a certain reversibility property of a random rooted
graph. On the other hand, it is not known that every unimodular random graph can
be obtained as a limit of Benjamini–Schramm convergent finite graphs. This is the
famous Aldous–Lyons problem. The interested Reader can consult with the book
[21].
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The following theorem was known in many cases for thermodynamic limit in statis-
tical mechanics. We also note that a modification of the algorithm ‘CountMATCH-
INGS’ in [4] yields an alternative proof of part (a) and (b) of this theorem.

Theorem 2.9. [2] Let (Gi) be a Benjamini–Schramm convergent graph sequence of
bounded degree graphs. Then the sequences of functions
(a)

p(Gi, t),

(b)

lnM(Gi, t)

v(Gi)

converge to strictly monotone increasing continuous functions on the interval [0,∞).
Let p0 be real number between 0 and 1 such that p∗(Gi) ≥ p0 for all n. Then
(c)

t(Gi, p),

(d)

λGi
(p)

are convergent for all 0 ≤ p < p0.

Remark 2.10. We mention that H. Nguyen and K. Onak [22], and independently
G. Elek and G. Lippner [8] proved that for a Benjamini–Schramm convergent graph
sequence (Gi), the following limit exits:

lim
n→∞

p∗(Gi).

(Recall that p∗(Gi) =
2ν(Gi)
v(Gi)

.)

To prove Theorem 2.9, we need some preparation. We essentially repeat the argu-
ment of the paper [1].

The following theorem deals with the behavior of the matching polynomial in
Benjamini–Schramm convergent graph sequences. The matching measure was intro-
duced in the paper [1]:

Definition 2.11. The matching measure of a finite graph is defined as

ρG =
1

v(G)

∑

zi: µ(G,zi)=0

δ(zi),

where δ(s) is the Dirac-delta measure on s, and we take every zi into account with
its multiplicity.

In other words, the matching measure is the probability measure of uniform distri-
bution on the zeros of µ(G, x).

Theorem 2.12 ([1, 2]). Let (Gi) be a Benjamini–Schramm convergent bounded degree
graph sequence. Let ρGi

be the matching measure of the graph Gi. Then the sequence
(ρGi

) is weakly convergent, i. e., there exists some measure ρL such that for every
bounded continuous function f , we have

lim
i→∞

∫

f(z) dρGi
(z) =

∫

f(z) dρL(z).
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Remark 2.13. This theorem was first proved in [1]. The proof given there relied
on a general result on graph polynomials given in the paper [5]. To make this paper
as self-contained as possible we sketch here a slightly different proof outlined in a
remark of [1].

Proof. For a graph G let S(G) denote the multiset of zeros of the matching polynomial
µ(G, x), and

pk(G) =
∑

λ∈S(G)

λk.

Then pk(G)/v(G) can be rewritten in terms of the measure ρG as follows:

pk(G)

v(G)
=

∫

zk dρG(z).

It is known that pk(G) counts the number of closed tree-like walks of length k in the
graph G: see chapter 6 of [10]. Without going into the details of the description of
‘tree-like walks’; we only use the fact that these are special type of walks, consequently
we can count them by knowing all k-balls centered at the vertices of the graph G.
Let TW (α) denote the number of closed tree-like walks starting at the root of α, and
let Nk denote the set of k-neighborhoods α. The size of Nk is bounded by a function
of k and the largest degree of the graph G. Furthermore, let Nk(G,α) denote the
number of vertices of G for which the k-neighborhood of the vertex is isomorphic to
α. Then

pk(G) =
∑

α∈Nk

Nk(G,α) · TW (α).

Therefore
pk(G)

v(G)
=
∑

α∈Nk

P(G,α, k) · TW (α).

Hence, if (Gi) is Benjamini–Schramm convergent then for every fixed k, the sequence

pk(Gi)

v(Gi)
=

∫

zk dρGi
(z)

is convergent. Clearly, this implies that for every polynomial q(z), the sequence
∫

q(z) dρGi
(z)

is convergent.
Assume that D is a general upper bound for all degrees of all graphs Gi. Then

all zeros of µ(Gi, x) lie in the interval [−2
√
D − 1, 2

√
D − 1]. Since every continuous

function can be uniformly approximated by a polynomial on a bounded interval, we
obtain that the sequence (ρGi

) is weakly convergent. �

Now we are ready to prove Theorem 2.9.

Proof of Theorem 2.9. First we prove part (a) and (b). For a graph G let S(G) denote
the set of zeros of the matching polynomial µ(G, x), then

M(G, t) =
∏

λ∈S(G)
λ>0

(1 + λ2t) =
∏

λ∈S(G)

(1 + λ2t)1/2.
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Then

lnM(G, t) =
∑

λ∈S(G)

1

2
ln
(

1 + λ2t
)

.

By differentiating both sides with respect to t we get that

d
dt
M(G, t)

M(G, t)
=
∑

λ∈S(G)

1

2

λ2

1 + λ2t
.

Hence

p(G, t) =
2t · d

dt
M(G, t)

v(G) ·M(G, t)
=

1

v(G)

∑

λ∈S(G)

λ2t

1 + λ2t
=

∫

tz2

1 + tz2
dρG(z).

Similarly,

lnM(G, t)

v(G)
=

1

v(G)

∑

λ∈S(G)

1

2
ln
(

1 + λ2t
)

=

∫

1

2
ln
(

1 + tz2
)

dρG(z).

Since (Gi) is Benjamini–Schramm convergent bounded degree graph sequence, the
sequence (ρGi

) weakly converges to some ρL by Theorem 2.12. Since both functions

tz2

1 + tz2
and

1

2
ln
(

1 + tz2
)

are continuous, we immediately obtain that

lim
n→∞

p(Gi, t) =

∫

tz2

1 + tz2
dρL(z),

and

lim
n→∞

lnM(Gi, t)

v(Gi)
=

∫

1

2
ln
(

1 + tz2
)

dρL(z).

Note that both functions

tz2

1 + tz2
and

1

2
ln
(

1 + tz2
)

are strictly monotone increasing continuous functions in the variable t. Thus their
integrals are also strictly monotone increasing continuous functions.

To prove part (c), let us introduce the function

p(L, t) =

∫

tz2

1 + tz2
dρL(z).

We have seen that p(L, t) is a strictly monotone increasing continuous function, and
limi→∞ p(Gi, t) = p(L, t). Since for all Gi, p

∗(Gi) ≥ p0, we have limt→∞ p(Gi, t) ≥ p0
for all i. This means that limt→∞ p(L, t) ≥ p0. Hence we can consider the inverse
function of p(L, t) which maps [0, p0) into [0,∞), let us call it t(L, p). We show that

lim
i→∞

t(Gi, p) = t(L, p)

pointwise for p < p0. Assume by contradiction that this is not the case. This means
that for some p1, there exists an ε and an infinite sequence ni for which

|t(L, p1)− t(Gni
, p1)| ≥ ε.
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We distinguish two cases according to
(i) there exists an infinite sequence (ni) for which

t(Gni
, p1) ≥ t(L, p1) + ε,

or (ii) there exists an infinite sequence (ni) for which

t(Gni
, p1) ≤ t(L, p1)− ε.

In the first case, let t1 = t(L, p1), t2 = t1+ε and p2 = p(L, t2). Clearly, p2 > p1. Note
that

t(Gni
, p1) ≥ t(L, p1) + ε = t2

and p(Gni
, t) are monotone increasing functions, thus

p(Gni
, t2) ≤ p(Gni

, t(Gni
, p1)) = p1 = p2 − (p2 − p1) = p(L, t2)− (p2 − p1).

This contradicts the fact that

lim
ni→∞

p(Gni
, t2) = p(L, t2).

In the second case, let t1 = t(L, p1), t2 = t1 − ε and p2 = p(L, t2). Clearly, p2 < p1.
Note that

t(Gni
, p1) ≤ t(L, p1)− ε = t2

and p(Gni
, t) are monotone increasing functions, thus

p(Gni
, t2) ≥ p(Gni

, t(Gni
, p1)) = p1 = p2 + (p1 − p2) = p(L, t2) + (p1 − p2).

This again contradicts the fact that

lim
n→∞

p(Gni
, t2) = p(L, t2).

Hence limi→∞ t(Gi, p) = t(L, p).

Finally, we show that λGi
(p) converges for all p. Let t = t(L, p), and

λL(p) = lim
i→∞

lnM(Gi, t)

v(Gi)
− 1

2
p ln(t).

Note that

λGi
(p) =

lnM(Gi, ti)

v(Gi)
− 1

2
p ln(ti),

where ti = t(Gi, p). We have seen that limi→∞ ti = t. Hence it is enough to prove
that the functions

lnM(Gi, u)

v(Gi)

are equicontinuous. Let us fix some positive u0 and let

R(u0, u) = max
z∈[−2

√
D−1,2

√
D−1]

∣

∣

∣

∣

1

2
ln
(

1 + u0z
2
)

− 1

2
ln
(

1 + uz2
)

∣

∣

∣

∣

.

Clearly, if |u− u0| ≤ δ for some sufficiently small δ, then R(u0, u) ≤ ε, and
∣

∣

∣

∣

lnM(Gi, u)

v(Gi)
− lnM(Gi, u0)

v(Gi)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

1

2
ln
(

1 + u0z
2
)

dρGi
(z)−

∫

1

2
ln
(

1 + uz2
)

dρGi
(z)

∣

∣

∣

∣

≤

≤
∫
∣

∣

∣

∣

1

2
ln
(

1 + u0z
2
)

− 1

2
ln
(

1 + uz2
)

∣

∣

∣

∣

dρGi
(z) ≤

∫

R(u, u0) dρGi
(z) ≤ ε.

This completes the proof of the convergence of λGi
(p). �
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Now it is easy to define these functions for those random rooted graphs which can
be obtained as a Benjamini–Schramm limit of finite graphs.

Definition 2.14. Let L be a random rooted graph which can be obtained as a limit
of Benjamini–Schramm limit of finite graphs (Gi) of bounded degree. Assume that
p∗(Gi) ≥ p0 for all n. Let

p(L, t) = lim
n→∞

p(Gi, t),

F (L, t) = lim
n→∞

lnM(Gi, t)

v(Gi)

for all t ≥ 0, and
t(L, p) = lim

n→∞
t(Gi, p),

λL(p) = lim
n→∞

λGi
(p)

for all p < p0. Finally, let
λL(p0) = lim

pրp0
λL(p).

Note that the functions p(L, t), F (L, t), t(L, p) and λL(p) are well-defined in the
sense that if the sequences (Gi) and (Hi) both Benjamini–Schramm converge to L
such that p∗(Gi), p

∗(Hi) ≥ p0 for all i, then they define the same functions on [0,∞) or
[0, p0]. Indeed, we can consider the two sequences together and apply Theorem 2.9 to
obtain that the limits do not depend on the choice of the sequence. From the proof of
Theorem 2.9, we also see that p(L, t) and F (L, t) can be expressed as integrals along
a certain measure ρL.

2.2. Entropy and density function of the infinite d–regular tree Td. In this
section we give the entropy and density functions of the d–regular and (a, b)-biregular
trees.

Theorem 2.15. Let Td be the infinite d–regular tree. Then
(a)

p(Td, t) =
2d2t+ d− d ·

√

1 + 4(d− 1)t

2d2t+ 2
.

(b)
∫

1

2
ln(1 + tz2) dρTd

(z) =
1

2
lnSd(t),

where

Sd(t) =
1

η2t

(

d− 1

d− ηt

)d−2

,

where

ηt =

√

1 + 4(d− 1)t− 1

2(d− 1)t
.

(c)

t(Td, p) =
p(d− p)

d2(1− p)2
.

(d)

λTd
(p) = Gd(p) =

1

2

(

p ln

(

d

p

)

+ (d− p) ln
(

1− p

d

)

− 2(1− p) ln(1− p)

)

.
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Theorem 2.16. Let Ta,b be the infinite (a, b)-biregular tree. Then for 0 ≤ p ≤
min( 2a

a+b
, 2b
a+b

) we have
(a)

p(Ta,b, t) =
2abt + 2ab

a+b
− 2ab

a+b

√

1 + (2a+ 2b− 4)t+ (a− b)2t2

2abt + 2
.

(b)

t(Ta,b, p) =
a + b

2ab

p
(

1− a+b
2ab

p
)

(

1− a+b
2a

p
) (

1− a+b
2b

p
) .

(c)

λTa,b
(p) = Ga,b(p) =

a

a + b
H

(

a+ b

2a
p

)

+
b

a+ b
H

(

a+ b

2b
p

)

+
1

2
p ln(ab)− ab

a + b
H

(

a + b

2ab
p

)

,

where H(q) = −(q ln(q) + (1− q) ln(1− q)).

There are two essentially different proofs for Theorem 2.15 and 2.16. We detail the
first proof, and in the next subsection we sketch a second incomplete one.

The first proof of Theorem 2.15 and 2.16 roughly follows the arguments of Section 4
of [1]. For an (infinite) tree, the spectral measure and the matching measure coincide.
This can be proved via Lemma 4.2 of [1], or an even simpler proof is that for trees,
the number of closed walks and the number of closed tree-like walks are the same, so
the moment sequences of the spectral measure and the matching measure coincide
and since they are supported on a bounded interval, they must be the same measure.
For the d–regular tree Td, this is the Kesten-McKay measure given by the density
function

fd(x) =
d
√

4(d− 1)− x2

2π(d2 − x2)
χ[−2

√
d−1,2

√
d−1].

For the (a, b)–biregular infinite tree, the matching or spectral measure ρTa,b
is given

by

dρTa,b
=

|a− b|
a+ b

δ0+
ab
√

−(x2 − ab+ (s− 1)2)(x2 − ab+ (s+ 1)2)

π(a+ b)(ab − x2)|x| χ{|√a−1−
√
b−1|≤|x|≤√

a−1+
√
b−1}d x,

where s =
√

(a− 1)(b− 1). As a next step one might try to compute the integral of
the functions

tz2

1 + tz2
and

1

2
ln
(

1 + tz2
)

to obtain p(Ta,b, t) and F (Ta,b, t). We will slightly modify this argument to simplify it.
Our modification yields that we do not need to compute these integrals, we can work
directly with the moment sequences which are simply the number of closed walks
in the corresponding trees. More precisely, in Ta,b we have to weight the number of
closed walks starting and ending at a root vertex of degree a with weight b

a+b
, and the

number of closed walks starting and ending at a root vertex of degree b with weight
a

a+b
.

First of all, we need the following lemma on the number of closed walks of Ta,b.
The current author is completely sure that it is well-known, but since we were not
able to find any reference, we give its proof.
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Lemma 2.17. Let W a
j and W b

j be the number of closed walks of length j starting and
returning to a root vertex of Ta,b of degree a, and of degree b, respectively. Then the
generating function

Ga(z) :=
∞
∑

j=0

W a
j z

j =
1

1− az2Fb(z)
,

where

Fb(z) =
1 + (b− a)z2 −

√

1− (2a+ 2b− 4)z2 + (b− a)2z4

2(a− 1)z2
.

Similarly,

Gb(z) :=

∞
∑

j=0

W b
j z

j =
1

1− bz2Fa(z)
,

where

Fa(z) =
1 + (a− b)z2 −

√

1− (2a+ 2b− 4)z2 + (b− a)2z4

2(b− 1)z2
.

Proof. Let us consider the rooted tree T
a
a,b, where the only difference compared to

Ta,b that the root vertex has degree a − 1 and not a. Similarly, let the rooted tree
Tb
a,b be the tree where the only difference compared to Ta,b that the root vertex has

degree b − 1 and not b. Let W
a

j be the number of closed walks of length j starting

and returning to the root vertex Ta
a,b. Furthermore, let U

a

j be the number of closed
walks of length j starting and returning to the root vertex Ta

a,b such that the walk
only visits the root at the beginning and at the end, and the walk has length at least

2, so it is different form the empty walk. We can similarly define W
b

j and U
b

j . Let

Fa(z) =

∞
∑

j=0

W
a

jz
j and, Fb(z) =

∞
∑

j=0

W
b

jz
j ,

and

Ra(z) =

∞
∑

j=1

U
a

jz
j and, Rb(z) =

∞
∑

j=1

U
b

jz
j .

First of all,

Fa(z) = 1 +Ra(z) +Ra(z)
2 +Ra(z)

3 + · · · = 1

1−Ra(z)
,

since every closed walk can be decomposed uniquely to walks which visit the root
only at the beginning and at the end. Similarly,

Fb(z) =
1

1− Rb(z)
.

Finally,

Ra(z) = (a− 1)z2Fb(z) and similarly, Rb(z) = (b− 1)z2Fa(z),

since every closed walk which visits the root only at the beginning and at the end
can be decomposed in the following way: we erase the first and last step (we can
choose this a − 1 different ways in Ta

a,b), and we get a closed walk in Tb
a,b. Solving

these equation we get that

Fa(z) =
1 + (b− a)z2 −

√

1− (2a+ 2b− 4)z2 + (b− a)2z4

2(b− 1)z2
,
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Fb(z) =
1 + (a− b)z2 −

√

1− (2a+ 2b− 4)z2 + (b− a)2z4

2(a− 1)z2
,

Ra(z) =
1

2

(

1 + (a− b)z2 −
√

1− (2a+ 2b− 4)z2 + (b− a)2z4
)

,

Rb(z) =
1

2

(

1 + (b− a)z2 −
√

1− (2a + 2b− 4)z2 + (b− a)2z4
)

.

(Note that at some point, we have to solve a quadratic equation, and we can choose
only the minus sign, because of the evaluation of the generating function at the value
z = 0.)

Now let us turn back to the original problem. Let Ua
j be the number of closed

walks of length j starting and returning to the root vertex Ta,b of degree a such that
the walk only visits the root at the beginning and at the end, and the walk has length
at least 2, so it is different form the empty walk. We define U b

j similarly. Let

Ga(z) =

∞
∑

j=0

W a
j z

j and, Gb(z) =

∞
∑

j=0

W b
j z

j ,

and

Ha(z) =

∞
∑

j=1

Ua
j z

j and, Hb(z) =

∞
∑

j=1

U b
j z

j .

As before,

Ga(z) =
1

1−Ha(z)
and, Gb(z) =

1

1−Hb(z)
.

Finally,
Ha(z) = az2Fb(z) and similarly, Rb(z) = bz2Fa(z)

since every closed walk which visits the root only at the beginning and at the end can
be decomposed in the following way: we erase the first and last step (we can choose
this a different ways in Ta,b), and we get a closed walk in Tb

a,b. Hence

Ga(z) =
1

1− az2Fb(z)
and, Gb(z) =

1

1− bz2Fa(z)
.

�

Proof of Theorem 2.15 and 2.16. Since Theorem 2.15 is a special case of Theorem 2.16,
we will concentrate on the proof of the latter theorem. We only need to work with
part (a), since then part (b) follows immediately and part (c) follows from part (b)
using

d

dp
λTa,b

(p) = −1

2
ln t(Ta,b, p).

These are routine computations which we left to the Reader.
To prove part (a), first let us assume that |t| < 1

4(max(a,b)−1)
. Note that for such a

t, all subsequent series are converging. Then

p(Ta,b, t) =

∫

tu2

1 + tu2
dρTa,b

(u) =

∫ ∞
∑

j=1

(−1)j+1tju2j dρTa,b
(u) =

=

∞
∑

j=1

(−1)j+1tj
∫

u2j dρTa,b
(u).
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Note that
∫

u2j dρTa,b
(u) =

b

a+ b
W a

2j +
a

a+ b
W b

2j .

Hence

p(Ta,b,−z2) = 1−
(

b

a + b
Ga(z) +

a

a+ b
Gb(z)

)

.

After some calculation we get that

p(Ta,b, t) =
2abt + 2ab

a+b
− 2ab

a+b

√

1 + (2a + 2b− 4)t+ (a− b)2t2

2abt + 2

for |t| < 1
4(max(a,b)−1)

. On the other hand, both functions appearing in the previous

equation are holomorhic in the region {t | |ℑ(t)| ≤ ℜ(t)}, so they must be the same
everywhere in this region. �

2.3. Random graphs. The goal of this subsection is twofold. On the one hand, we
show that Theorem 1.5 and 1.7 are quite precise, for instance if p is separated away
from 1 then Theorem 1.5 is the best possible up to a constant factor. On the other
hand, we also would like to show a connection between random (bi)regular random
graphs and the entropy function of an infinite (bi)regular tree.

An alternative way to obtain Theorem 2.15 and 2.16 is the following. We can use
Theorem 2.9 to obtain the required functions by choosing an appropriate Benjamini–
Schramm convergent graph sequence. It turns out that it is sufficient to consider
random d–regular or (a, b)-biregular bipartite graphs. Indeed, one can compute the
expected number of k-matchings of a random d–regular or (a, b)-biregular bipartite
graphs quite easily. Such a computation was carried out in [3, 9, 26, 12] for d–regular
bipartite graphs and it easily generalizes to (a, b)-biregular bipartite graphs. We also
note that a random (a, b)-biregular bipartite graph contains very small number of
short cycles. This is a classical result for random regular graphs, but it is also known
for biregular bipartite graphs [7].

First of all, let us specify which biregular random graph model we use. Let the
vertex set of the random graph be V ∪ W , where V = {v1, . . . , van} and W =
{w1, . . . , wbn}. Let us consider two random partition of the set {1, . . . , abn}, the
first one P1 = {A1, . . . , Aan} where each set has size b, and a second one P2 =
{B1, . . . , Bbn} where each set has size a. Then for every k ∈ {1, . . . , abn} connect vi
and wj if k ∈ Ai ∩ Bj . This is the configuration model. Note that this model allows
multiple edges, but it is not a problem for us. In the special case when a = b = d we
can choose V and W to be of size n. The following theorem was proved in [9].

Theorem 2.18. [9] Let G be chosen from the set of labelled d–regular bipartite graphs
on v(G) = 2n vertices according to the configuration model. Then

Emk(G) =

(

n

k

)2

d2k
1
(

dn
k

) .

The corollary of this theorem is the second part of Theorem 1.5.

Corollary 2.19. Let p = k
n
. There exists a d–regular bipartite graph G on 2n vertices

such that

mk(G) ≤
√

1− p/d

1− p
· pµ · exp(2nGd(p)).
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Proof. We will show that

E =

(

n

k

)2

d2k
1
(

dn
k

) ≤
√

1− p/d

1− p
· pµ · exp(2nGd(p)).

Note that

E =

(

n

k

)2

d2k
1
(

dn
k

) =

(

n
k

)

(

dn
k

)d2k
(

n

k

)

=

(

n
k

)

(

dn
k

)d2k · pµ
pk(1− p)n−k

.

For the first term we use Stirling’s formula. Let Θm be defined by the following form
of Stirling’s formula:

m! =
√
2πm

(m

e

)m

eΘm .

It is known (see [24]) that

1

12m+ 1
≤ Θm ≤ 1

12m
.

Then

E =
1

√

2π k(n−k)
n

eΘn−Θk−Θn−k

√

2π
k(dn− k)

dn
e−Θdn+Θk+Θdn−k · pµ · exp(2nGd(p)) =

=

√

1− p/d

1− p
eΘn−Θn−k−Θdn+Θdn−k · pµ · exp(2nGd(p)).

Thus we only need to show that

Θn −Θn−k −Θdn +Θdn−k ≤ 0.

This is indeed true:

Θn −Θn−k −Θdn +Θdn−k ≤
1

12n
− 1

12(n− k) + 1
− 1

12dn+ 1
+

1

12(dn− k)
=

=
−(12k − 1)

12n(12(n− k) + 1)
+

12k + 1

(12dn+ 1)(12(dn− k) + 1)
≤ 0

if d ≥ 2. �

The following lemma is a straightforward extension of the previous results to (a, b)–
biregular bipartite graphs.

Lemma 2.20. Let G be chosen from the set of labelled (a, b)–biregular bipartite graphs
on v(G) = (a + b)n vertices according to the configuration model.

(a) Then

Emk(G) = exp(v(G)(Ga,b(p) + ov(G)(1))),

where p = 2k/v(G).

(b) [7] Let c2j(G) be the number of 2j-cycles in the graph G. Then

Ec2j(G) =
((a− 1)(b− 1))j

2j
(1 + ov(G)(1)).
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Proof. (a) Note that the number of all partitions pairs (P1, P2) is

N =
(abn)!

a!bn
· (abn)!

b!an
.

The number of possible k-matchings is

Uk =

(

abn

k

)(

an

k

)(

bn

k

)

k!2.

If we fix one k-matching then we need to repartition the remaining (abn−k) elements
into sets of sizes a and a− 1, and b and b− 1. This can be done in

Vk =
(abn− k)!

(a− 1)!ka!bn−k
· (abn− k)!

(b− 1)!kb!an−k

ways. Hence

Emk(G) =
1

N
UkVk =

(

an

k

)(

bn

k

)

(ab)k
1
(

abn
k

) .

Then by the usual approximation of binomial coefficients we get that

Emk(G) = exp(v(G)(Ga,b(p) + ov(G)(1))),

where p = 2k/v(G).

(b) We can choose the possible cycles in

Tj =

(

abn

2j

)(

an

j

)(

bn

j

)

(2j − 1)!j!2

different ways. (We can choose the ’edges’, and vertices in
(

abn
2j

)(

an
j

)(

bn
j

)

ways, then we
choose an ordering on the edges, and on each vertex sets, and we connect the vertices
and ’edges’ along the orderings. Finally, we divide by (2j) since we counted each
cycles in 2j ways.) Next we need to repartition the remaining (abn − 2j) elements
into sets of sizes a and a− 2, and b and b− 2. This can be done in

Sj =
(abn− 2j)!

(a− 2)!ja!bn−j
· (abn− 2j)!

(b− 2)!jb!an−j

ways. Hence

Ec2j(G) =
1

N
TjSj =

((a− 1)(b− 1))j

2j
(1 + ov(G)(1)).

�

Part (b) of Lemma 2.20 shows that the expected number of cycles of length 2j
is bounded independently of the size of the graph. Note that the (a, b)-biregular
graph sequence (Gi) Benjamini–Schramm converges to Ta,b if for all fixed j we have
c2j(Gi) = o(v(Gi)). Note that by Markov’s inequality:

P(mk(G) > 3Emk(G)) ≤ 1

3
and, P(c2j(G) > 3gEc2j(G)) ≤ 1

3g

for j = 1, . . . , g. Hence for any large enough n and fixed g, with probability at least
1/3 we can choose a graph Gi on (a+b)n vertices such that Gi has a bounded number
of cycles of length at most 2g and mk(Gi) ≤ 3 exp(v(G)(Ga,b(p) + ov(G)(1))). This
shows that we can choose a sequence of graphs (Gi) converging to Ta,b such that

lnmk(Gi)

v(Gi)
+ ov(Gi)(1) = λGi

(p) ≤ Ga,b(p) + ov(Gi)(1).
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This implies that
λTa,b

(p) ≤ Ga,b(p).

Note that we only proved this inequality for rational p, but then it follows for all p
by continuity.

Unfortunately, with this idea we were not able to establish the inequality λTa,b
(p) ≥

Ga,b(p). The problem is the following. In principle, it can occur that a typical
random graph has much smaller (exponentially smaller) number of k-matchings than
the expected value, and a large contribution to the expected value comes from graphs
having large number of short cycles and matchings. Note that Theorem 1.7 implies
that this cannot occur, but we cannot use this result as it would result a cycle in
the proof of this theorem. Instead we propose a conjecture which would imply the
inequality λTa,b

(p) ≥ Ga,b(p).

Conjecture 2.21. There exists a constant C independently of n and k such that

Emk(G)2 ≤ C(Emk(G))2.

Note that this conjecture is known to be true for perfect matchings in regular
random graphs [3]. To show that this conjecture implies λTa,b

(p) ≥ Ga,b(p), we need
the following proposition.

Proposition 2.22. Let X be a non-negative random variable such that for some
positive constant C we have

P(X > C · EX) ≤ 1

16C
and EX2 ≤ C(EX)2.

Then

P

(

1

4
EX ≤ X ≤ CEX

)

≥ 1

2C
.

Proof. Let A = {ω | X(ω) < 1
4
EX}, B = {ω | 1

4
EX ≤ X(ω) ≤ CEX}, and

D = {ω | X(ω) > CEX}. Then
∫

A

XdP ≤ 1

4
EX.

Furthermore,

P(D) · EX2 ≥ P(D) ·
∫

D

X2dP =

∫

D

1dP ·
∫

D

X2dP ≥
(
∫

D

XdP

)2

.

Hence
1

16C
C(EX)2 ≥ P(D) · EX2 ≥

(
∫

D

XdP

)2

.

In other words,
∫

D

XdP ≤ 1

4
EX.

This implies that
∫

B

XdP ≥ 1

2
EX.

Since
∫

B

XdP ≤ P(B)CEX,

the claim of the proposition follows immediately. �
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Let us fix a positive number g, and let us call a graph typical if

c2j(G) < 16CgEc2j(G),

for j = 1, . . . , g. Note that a typical graph has bounded number of short cycles and
by Markov’s inequality, the probability that a graph is typical is at least 1 − 1

16C
.

First case: we find a typical graph G such that mk(G) > CEmk(G), then we are
done, because then λG(p) ≥ Ga,b(p) + o(1). Second case: there is no typical graph
with mk(G) > CEmk(G), then the proposition implies that the probability

P

(

1

4
Emk(G) ≤ mk(G) ≤ CEmk(G)

)

≥ 1

2C
.

Since the probability that a graph is typical is at least 1− 1
16C

, we see that there are
typical graphs for which

mk(G) ≥ 1

4
Emk(G)

implying again that λG(p) ≥ Ga,b(p) + o(1). Hence we can choose a sequence of
typical graphs to show that λTa,b

(p) ≥ Ga,b(p).
In spite of the fact that this proof did not lead to another proof of Theorem 2.16,

we feel that it was instructive to carry out these computations as they showed that
Theorem 1.5 and Theorem 1.7 are tight. This was known for perfect matchings
of d–regular random graphs [3, 26], and for matchings of arbitrary size [9]. Our
computation for biregular bipartite graphs is the natural counterpart of these results.

3. New version of Gurvits’s theorem

In this section we prove the following theorem.

Theorem 3.1. The following two statements are equivalent.

(i) For any d–regular bipartite graph G on 2n vertices, we have

lnmk(G)

v(G)
≥ Gd(p) + ov(G)(1),

where p = k
n

and mk(G) denotes the number of matchings of size k.

(ii) For any d–regular bipartite graph G, we have

λG(p) ≥ Gd(p).

Proof. First we show that (i) implies (ii). Since both functions λG(p) and Gd(p) are
continuous, it is enough to prove the claim for rational numbers p. Let p = a

b
. Let

us consider br copies of G, and let us consider the matchings of size k = ar. Then

λG(p) = λbrG(p) ≥
lnmk(brG)

v(brG)
− ln v(brG)

v(brG)
≥ Gd(p) + ov(brG)(1)−

ln v(brG)

v(brG)
.

The (first) equality follows from part (a) of Proposition 2.1, the first inequality follows
from part (d) of Proposition 2.1, the second inequality is the assumption of (i). As r
tends to infinity, the last two terms disappear, and we get that

λG(p) ≥ Gd(p).
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Next we show that (ii) implies (i).

lnmk(G)

v(G)
≥ λG(p)−

ln v(G)

v(G)
≥ Gd(p)−

ln v(G)

v(G)
.

The first inequality follows from part (d) of Proposition 2.1, the second inequality is

the assumption of (ii). Note that − ln v(G)
v(G)

= ov(G)(1). So we are done. �

Corollary 3.2. Theorem 1.3 implies that

lnmk(G)

v(G)
≥ Gd(p)−

ln v(G)

v(G)
.

Proof. See the second part of the proof of Theorem 3.1. �

Remark 3.3. L. Gurvits actually proved much stronger results than Theorem 1.3.
He proved that for all pairs of n× n matrices (P,Q), where P is nonnegative and

Q is doubly stochastic we have

ln(Per(P )) ≥
∑

1≤i,j≤n

(1−Q(i, j)) ln(1−Q(i, j))−
∑

1≤i,j≤n

Q(i, j) ln

(

Q(i, j)

P (i, j)

)

.

From this L. Gurvits deduced the following inequality: for any doubly stochastic
matrix A we have

Per(A) ≥
∏

1≤i,j≤n

(1−A(i, j))1−A(i,j) .

Next he showed that this inequality implies that for a d–regular bipartite graph G
we have

mk(G) ≥
(

1− p
d

)(1− p

d)nd (1− 1
n

)(1− 1
n)2n2(1−p)

(

p
d

)np
n−2n(1−p)((n(1− p))!)2

,

where p = k
n

as before. For fixed p ∈ (0, 1) this gives the inequality

mk(G) ≥
(

1 +O

(

1

n

))

e1−p

2πn(1− p)
exp(2nGd(p)).

Let us mention that M. Lelarge [19] was able to give new proofs to Gurvits’s results
and extending both Gurvits’s results and the results in this paper by combining the
methods of this paper together with new ideas.

4. New proof of Gurvits’s and Schrijver’s theorems

In this section we give a new proof of Gurvits’s and Schrijver’s theorems. We will
prove that for any d–regular bipartite graph G, we have

λG(p) ≥ Gd(p).

According to Theorem 3.1, this is equivalent with Gurvits’s theorem. For p = 1 we
get back Schrijver’s theorem via part (e) of Proposition 2.1. Note that the function
on the right hand side is nothing else than λTd

(p) according to Theorem 2.15.

Definition 4.1. Let G be a graph. Then H is a 2-lift of G, if V (H) = V (G)×{0, 1},
and for every (u, v) ∈ E(G), exactly one of the following two pairs are edges of
H : ((u, 0), (v, 0)) and ((u, 1), (v, 1)) ∈ E(H) or ((u, 0), (v, 1)) and ((u, 1), (v, 0)) ∈
E(H). If (u, v) /∈ E(G), then none of ((u, 0), (v, 0)), ((u, 1), (v, 1)), ((u, 0), (v, 1)) and
((u, 1), (v, 0)) are edges in H .
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Note that if G is bipartite then any 2-lift of G is bipartite too.

Lemma 4.2. Let G be a bipartite graph, and H be a 2-lift of G. Then for any k, we
have

mk(G ∪G) ≥ mk(H).

In particular, for any t ≥ 0 we have

M(G, t)2 ≥ M(H, t).

Proof. Since M(G ∪ G, t) = M(G, t)2, the inequality mk(H) ≤ mk(G ∪ G) would
indeed imply the second part of the lemma. Note that G ∪G can be considered as a
trivial 2-lift of G. Let M be a matching of a 2-lift of G. Let us consider the projection
of M to G, then it will consist of disjoint unions of cycles of even lengths (here we
use that G is bipartite!), paths and "double-edges" (i.e, when two edges project to
the same edge). Let R be the set of these configurations. Then

mk(H) =
∑

R∈R
|φ−1

H (R)|

and
mk(G ∪G) =

∑

R∈R
|φ−1

G∪G(R)|,

where φH and φG∪G are the projections from H and G ∪G to G. Note that

|φ−1
G∪G(R)| = 2k(R),

where k(R) is the number of connected components of R different from a double-edge.
On the other hand,

|φ−1
H (R)| ≤ 2k(R),

since in each component if we know the inverse image of one edge then we immediately
know the inverse images of all other edges. The only reason why there is no equality
in general is that not necessarily every cycle can be obtained as a projection of a
matching of a 2-lift: for instance, if one consider an 8-cycle as a 2-lift of a 4-cycle,
then no matching will project to the whole 4-cycle. Hence

|φ−1
H (R)| ≤ |φ−1

G∪G(R)|
and consequently,

mk(H) ≤ mk(G ∪G).

�

By part (g) of Proposition 2.1 we get the following corollary.

Corollary 4.3. If G is a bipartite graph, and H is a 2-lift of G, then λG(p) ≥ λH(p)
for every 0 ≤ p ≤ 1.

Lemma 4.4. (Nathan Linial [20]) For any graph G, there exists a graph sequence
(Gi)

∞
i=0 such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and g(Gi) → ∞, where

g(H) is the girth of the graph H, i. e., the length of the shortest cycle.

Proof. We will show that there exists a sequence (Gi) of 2-lifts such that for any k,
there exists an N(k) such that for j > N(k), the graph Gj has no cycle of length at
most k. Clearly, if H has no cycle of length at most k − 1, then any 2-lift of it has
the same property. So it is enough to prove that if H has no cycle of length at most
k− 1, then there exists an H ′ obtained from H by a sequence of 2-lifts without cycle
of length at most k. We show that if the girth g(H) = k, then there exists a lift of
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H with less number of k-cycles than H . Let X be the random variable counting the
number of k-cycles in a random 2-lift of H . Every k-cycle of H lifts to two k-cycles
or a 2k-cycle with probability 1/2 each, so EX is exactly the number of k-cycles of
H . But H ∪H has two times as many k-cycles than H , so there must be a lift with
strictly less number of k-cycles than H has. Choose this 2-lift and iterate this step
to obtain an H ′ with girth at least k + 1.

�

Corollary 4.5. (a) For any d–regular graph G, there exists a graph sequence (Gi)
∞
i=0

such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and (Gi) is Benjamini–Schramm
convergent to the d–regular infinite tree Td.

(b) For any (a, b)-biregular bipartite graph G, there exists a graph sequence (Gi)
∞
i=0

such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and (Gi) is Benjamini–Schramm
convergent to the (a, b)-biregular infinite tree Ta,b.

Proof of Theorem 1.1 and 1.3. Let 0 ≤ p < 1. Choose a graph sequence (Gi)
∞
i=0

such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and (Gi) is Benjamini–Schramm
convergent to the d–regular infinite tree Td. Then by Corollary 4.3

λG0(p) ≥ λG1(p) ≥ λG2(p) ≥ . . .

and

lim
i→∞

λGi
(p) = λTd

(p)

since Gi converges to Td (see Theorem 2.9). Hence λG(p) ≥ λTd
(p) for 0 ≤ p < 1.

Finally, for p = 1 we have

λG(1) = lim
p→1

λG(p) ≥ lim
p→1

λTd
(p) = λTd

(1).

Note that by part (e) of Proposition 2.1, the inequality λG(1) ≥ λTd
(1) is equivalent

with
ln pm(G)

v(G)
≥ 1

2
ln

(

(d− 1)d−1

dd−2

)

which completes the proof of Theorem 1.1. �

One can prove the following theorem the very same way.

Theorem 4.6. For any (a, b)-biregular bipartite graph G we have

λG(p) ≥ Ga,b(p)

for every 0 ≤ p ≤ min( a
a+b

, b
a+b

).

With the same technique one can prove the following theorem.

Theorem 4.7. Let G be a d–regular bipartite graph, and t ≥ 0. Then
∫

1

2
ln
(

1 + tz2
)

dρG(z) ≥
∫

1

2
ln
(

1 + tz2
)

dρTd
(z).

Proof. Note that

lnM(G, t)

v(G)
=

∫

1

2
ln
(

1 + tz2
)

dρG(z).
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Let us choose a graph sequence (Gi)
∞
i=0 such that G0 = G, Gi is a 2-lift of Gi−1 for

i ≥ 1, and (Gi) is Benjamini–Schramm convergent to the d–regular infinite tree Td.
By Lemma 4.2 we have

lnM(G0, t)

v(G0)
≥ lnM(G1, t)

v(G1)
≥ lnM(G2, t)

v(G2)
≥ . . .

and by the weak convergence of the measures ρGi
(see Theorem 2.12) we have

lim
i→∞

lnM(Gi, t)

v(Gi)
= lim

i→∞

∫

1

2
ln
(

1 + tz2
)

dρGi
(z) =

∫

1

2
ln
(

1 + tz2
)

dρTd
(z).

Hence
∫

1

2
ln
(

1 + tz2
)

dρG(z) ≥
∫

1

2
ln
(

1 + tz2
)

dρTd
(z).

�

Next we prove Theorem 1.6 which is a direct consequence of the previous theorem.

Proof of Theorem 1.6. We can assume that 0 ≤ p < 1, for p = 1 the claim follows
from continuity. We have seen that for t ≥ 0

lnM(G, t)

v(G)
=

∫

1

2
ln
(

1 + tz2
)

dρG ≥
∫

1

2
ln
(

1 + tz2
)

dρTd
.

Note that by Theorem 2.15 we have

1

2

∫

ln
(

1 + tz2
)

dρTd
=

1

2
lnSd(t),

where

Sd(t) =
1

η2t

(

d− 1

d− ηt

)d−2

,

where

ηt =

√

1 + 4(d− 1)t− 1

2(d− 1)t
.

Hence

M(G, t) ≥ Sd(t)
n

for all t ≥ 0. Now let

t = t(Td, p) =
p(d− p)

d2(1− p)2
.

Then

ηt =
1− p

1− p/d
,

and

Sd(t) =

(

1− p
d

)d

(1− p)2
.

Hence

M

(

G,
p(d− p)

d2(1− p)2

)

≥ 1

(1− p)2n

(

1− p

d

)n

.

After multiplying by (1− p)2n, we get the claim of the theorem. �
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We end this section with another corollary of Theorem 4.7. The so-called matching
energy was introduced by I. Gutman and S. Wagner [15], it is defined as follows:

ME(G) =
∑

zi:µ(G,zi)=0

|zi|,

where all zeros are counted with its multiplicity. With our notation this is nothing
else than

ME(G) = v(G)

∫

|z| dρG(z).
The following theorem shows that if we normalize the matching energy by dividing
by the number of vertices then among d–regular bipartite graphs its "minimum" is
attained at the infinite d–regular tree Td.

Corollary 4.8. Let G be a d–regular bipartite graph. Then
∫

|z| dρG(z) ≥
∫

|z| dρTd
(z).

Proof. Note that for any z we have

|z| = 1

π

∫ ∞

0

1

t2
ln(1 + t2z2) dt.

Hence
∫

|z| dρG =

∫
(

1

π

∫ ∞

0

1

t2
ln(1 + t2z2) dt

)

dρG(z) =

=
1

π

∫ ∞

0

1

t2

(
∫

ln(1 + t2z2) dρG(z)

)

dt ≥

≥ 1

π

∫ ∞

0

1

t2

(
∫

ln(1 + t2z2) dρTd
(z)

)

dt =

∫

|z| dρTd
.

Since we integrated a non-negative function, it was allowed to interchange the inte-
grals. �

Remark 4.9. Note that
∫

|z| dρTd
(z) =

d

π

(

2
√
d− 1− (d− 2) arctan

(

2

d− 2

√
d− 1

))

.

5. Proof of the Lower Matching Conjecture

In this section we prove Theorem 1.5. Here the main tool is that the matching
polynomial has only real zeros, this gives sufficient information about its coefficients
so that together with our results on the entropy function we can finish the proof
of Theorem 1.5. Let us mention that the argument in this section is more or less
standard, a survey on related methods and results can be found in [23].

Proof of Theorem 1.5. We can assume that 0 ≤ p < 1 since for p = 1, the statement
reduces to Schrijver’s theorem. Let t be chosen such a way that p(G, t) = p = k

n
.

Then

mk(G) =
mk(G)tk

M(G, t)
exp(v(G)λG(p)).

Let

aj =
mj(G)tj

M(G, t)
.



30 P. CSIKVÁRI

Then the probability distribution (a0, a1, . . . , an) has mean µ = k. By the Heilmann–
Lieb theorem,

∑

ajx
j has only real zeros. Then it is known that it is a distribution

of the number of successes in independent trials. Indeed, let

M(G, t) =

n
∏

i=1

(1 + γit),

where γi = λ2
i with our previous notation, and

pj =
γjt

1 + γjt
.

If Ij is the indicator variable that takes the value 1 with probability pj and 0 with
probability 1− pj , then

P(I1 + · · ·+ In = j) = aj .

The advantage of this observation is that there is a powerful inequality for such
distributions, namely Hoeffding’s inequality.

Theorem 5.1 (Hoeffding’s inequality [17]). Let S be a random variable with prob-
ability distribution of the number of successes in n independent trials. Assume that
ES = np. Let b and c integers satisfying b ≤ np ≤ c. Then

P(b ≤ X ≤ c) ≥
c
∑

j=b

(

n

j

)

pj(1− p)n−j.

In the particular case when np = k, we get that

ak ≥
(

n

k

)

pk(1− p)n−k = pµ

with our previous notation.
Putting everything together we obtain that

mk(G) =
mk(G)tk

M(G, t)
exp(v(G)λG(p)) ≥ pµ exp(2nGd(p)).

In the last step we used that λG(p) ≥ Gd(p) by Theorem 3.1. �

Proof of Theorem 1.7. The proof is completely analogous to the previous one. We
have to use the inequality λG(p) ≥ Ga,b(p), see Theorem 4.6. �
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