1,982 research outputs found

    Effects of Stimulus Exploration Length and Time on the Integration of Information in Haptic Softness Discrimination

    Get PDF
    In haptic perception, information is often sampled serially (e.g., a stimulus is repeatedly indented to estimate its softness), requiring that sensory information is retained and integrated over time. Hence, integration of sequential information is likely affected by memory. Particularly, when two sequentially explored stimuli are compared, integration of information on the second stimulus might be determined by the fading representation of the first stimulus. We investigated how the exploration length of the first stimulus and a temporal delay affect contributions of sequentially gathered estimates of the second stimulus in haptic softness discrimination. Participants subsequently explored two silicon rubber stimuli by indenting the first stimulus one or five times and the second stimulus always three times. In an additional experiment, we introduced a 5-s delay after the first stimulus was indented five times. We show that the longer the first stimulus is explored, the more estimates of the second stimulus' softness contribute to the discrimination of the two stimuli, independent of the delay. This suggests that the exploration length of the first stimulus influences the strength of its representation, persisting at least for 5 s, and determines how much information about the second stimulus is exploited for the comparison

    The longer the first stimulus is explored in softness discrimination the longer it can be compared to the second one

    Get PDF
    In haptic perception information is often sampled serially over a certain interval of time. For example, a stimulus is repeatedly indented to repeatedly estimate its softness. Albeit such redundant estimates are equally reliable, they seem to contribute differently to the overall haptic percept in a comparison task. When comparing the softness of two silicon rubber stimuli, the within-stimulus weights of estimates of the second stimulus' softness decrease during the exploration. Here we test the hypothesis that such decrease of weights depends on the representation strength of the first stimulus' softness. We varied the length of the first stimulus' exploration. Participants subsequently explored two silicon rubber stimuli by indenting the first stimulus (comparison) 1 or 5 times and the second stimulus (standard) always 3 times. We assessed the weights of indentation-specific estimates from the second stimulus by manipulating perceived softness during single indentations. Our results show that the longer the first stimulus is explored the more estimates of the second stimulus' softness can be included in the comparison of the two stimuli. This suggests that the exploration length of the first stimulus determines the strength of its representation which influences the decrease of weights of indentation-specific estimates of the second stimulus

    The longer the first stimulus is explored in softness discrimination the longer it can be compared to the second one

    Get PDF
    <p>In haptic perception information is often sampled serially over a certain interval of time. For example, a stimulus is repeatedly indented to repeatedly estimate its softness. Albeit such redundant estimates are equally reliable, they seem to contribute differently to the overall haptic percept in a comparison task. When comparing the softness of two silicon rubber stimuli, the within-stimulus weights of estimates of the second stimulus' softness decrease during the exploration. Here we test the hypothesis that such decrease of weights depends on the representation strength of the first stimulus’ softness. We varied the length of the first stimulus’ exploration. Participants subsequently explored two silicon rubber stimuli by indenting the first stimulus (comparison) 1 or 5 times and the second stimulus (standard) always 3 times. We assessed the weights of indentation-specific estimates from the second stimulus by manipulating perceived softness during single indentations. Our results show that the longer the first stimulus is explored<br> the more estimates of the second stimulus' softness can be included in the comparison of the two stimuli. This suggests that the exploration length of the first stimulus determines the strength of its representation which influences the decrease of weights of indentation-specific estimates of the second stimulus.</p> <p> </p> <p>The Zip file contains all data relative to the publication. The data of each participant is contained in a separate folder. This folder contains a *.raw file for each session of the experiment and a "data" folder, which contains movement trajectories (*.trj files) and the staircase reversals for each condition (*.pse files) in separate folders for each session.</p> <p>A description of the variables is contained in the file VARIABLE_CODES.txt</p

    Integration of serial sensory information in haptic perception of softness.

    Get PDF
    Redundant estimates of an environmental property derived simultaneously from different senses or cues are typically integrated according to the maximum likelihood estimation model (MLE): Sensory estimates are weighted according to their reliabilities, maximizing the percept’s reliability. Mechanisms underlying the integration of sequentially derived estimates from one sense are less clear. Here we investigate the integration of serially sampled redundant information in softness perception. We developed a method to manipulate haptically perceived softness of silicone rubber stimuli during bare-finger exploration. We then manipulated softness estimates derived from single movement segments (indentations) in a multisegmented exploration to assess their contributions to the overall percept. Participants explored two stimuli in sequence, using 2–5 indentations, and reported which stimulus felt softer. Estimates of the first stimulus’s softness contributed to the judgments similarly, whereas for the second stimulus estimates from later compared to earlier indentations contributed less. In line with unequal weighting, the percept’s reliability increased with increasing exploration length less than was predicted by the MLE model. This pattern of results is well explained by assuming that the representation of the first stimulus fades when the second stimulus is explored, which fits with a neurophysiological model of perceptual decisions (Deco, Rolls, & Romo, 2010)

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Tactual perception: a review of experimental variables and procedures

    Get PDF
    This paper reviews literature on tactual perception. Throughout this review we will highlight some of the most relevant variables in touch literature: interaction between touch and other senses; type of stimuli, from abstract stimuli such as vibrations, to two- and three-dimensional stimuli, also considering concrete stimuli such as the relation between familiar and unfamiliar stimuli or the haptic perception of faces; type of participants, separating studies with blind participants, studies with children and adults, and an analysis of sex differences in performance; and finally, type of tactile exploration, considering conditions of active and passive touch, the relevance of movement in touch and the relation between exploration and time. This review intends to present an organised overview of the main variables in touch experiments, attending to the main findings described in literature, to guide the design of future works on tactual perception and memory.This work was funded by the Portuguese “Foundation for Science and Technology” through PhD scholarship SFRH/BD/35918/2007

    Active Haptic Exploration of Softness: Indentation Force Is Systematically Related to Prediction, Sensation and Motivation

    Get PDF
    Active finger movements play a crucial role in natural haptic perception. For the perception of different haptic properties people use different well-chosen movement schemes (Lederman and Klatzky, 1987). The haptic property of softness is stereotypically judged by repeatedly pressing one’s finger against an objects’ surface, actively indenting the object. It has been shown that people adjust the peak indentation forces of their pressing movements to the expected stimulus’ softness in order to improve perception (Kaim and Drewing, 2011). Here, we aim to clarify the mechanisms underlying such adjustments. We disentangle how people modulate executed peak indentation forces depending on predictive vs. sensory signals to softness, and investigate the influence of the participants’ motivational state on movement adjustments. In Experiment 1, participants performed a two alternative forced-choice (2AFC) softness discrimination task for stimulus pairs from one of four softness categories. We manipulated the predictability of the softness category. Either all stimuli of the same category were presented in a blocked fashion, which allowed predicting the softness category of the upcoming pair (predictive signals high), or stimuli from different categories were randomly intermixed, which made prediction impossible (predictive signals low). Sensory signals to softness category of the two stimuli in a pair are gathered during exploration. We contrasted the first indentation (sensory signals low) and last indentation (sensory signals high) in order to examine the effect of sensory signals. The results demonstrate that participants systematically apply lower forces when softer objects (as compared to harder objects) are indicated by predictive signals. Notably, sensory signals seemed to be not as relevant as predictive signals. However, in Experiment 2, we manipulated participant motivation by introducing rewards for good performance, and showed that the use of sensory information for movement adjustments can be fostered by high motivation. Overall, the present study demonstrates that exploratory movements are adjusted to the actual perceptual situation and that in the process of fine-tuning, closed- and open-loop mechanisms interact, with varying contributions depending on the observer’s motivation

    Determining the Contribution of Visual and Haptic Cues during Compliance Discrimination in the Context of Minimally Invasive Surgery

    Get PDF
    While minimally invasive surgery is replacing open surgery in an increasing number of surgical procedures, it still poses risks such as unintended tissue damage due to reduced visual and haptic feedback. Surgeons assess tissue health by analysing mechanical properties such as compliance. The literature shows that while both types of feedback contribute to the final percept, visual information is dominant during compliance discrimination tasks. The magnitude of that contribution, however, was never quantitatively determined. To determine the effect of the type of visual feedback on compliance discrimination, a psychophysical experiment was set up using different combinations of direct and indirect visual and haptic cues. Results reiterated the significance of visual information and suggested a visio-haptic cross-modal integration. Consequently, to determine which cues contributed most to visual feedback, the impact of force and position on the ability to discriminate compliance using visual information only was assessed. Results showed that isolating force and position cues during indentation enhanced performance. Furthermore, under force and position constraints, visual information was shown to be sufficient to determine the compliance of deformable objects. A pseudo-haptic feedback system was developed to quantitatively determine the contribution of visual feedback during compliance discrimination. A psychophysical experiment showed that the system realistically simulated viscoelastic behaviour of compliant objects. Through a magnitude estimation experiment, the pseudo-haptic system was shown to be successful at generating haptic sensations of compliance during stimuli indentation only by modifying the visual feedback presented to participants. This can be implemented in research and educational facilities where advanced force feedback devices are inaccessible. Moreover, it can be incorporated into virtual reality simulators to enhance force ranges. Future work will assess the value of visual cue augmentation in more complicated surgical tasks

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    corecore