77,358 research outputs found

    Transparent quantification into hyperpropositional contexts de re

    Get PDF
    This paper is the twin of (Duží and Jespersen, in submission), which provides a logical rule for transparent quantification into hyperprop- ositional contexts de dicto, as in: Mary believes that the Evening Star is a planet; therefore, there is a concept c such that Mary be- lieves that what c conceptualizes is a planet. Here we provide two logical rules for transparent quantification into hyperpropositional contexts de re. (As a by-product, we also offer rules for possible- world propositional contexts.) One rule validates this inference: Mary believes of the Evening Star that it is a planet; therefore, there is an x such that Mary believes of x that it is a planet. The other rule validates this inference: the Evening Star is such that it is believed by Mary to be a planet; therefore, there is an x such that x is believed by Mary to be a planet. Issues unique to the de re variant include partiality and existential presupposition, sub- stitutivity of co-referential (as opposed to co-denoting or synony- mous) terms, anaphora, and active vs. passive voice. The validity of quantifying-in presupposes an extensional logic of hyperinten- sions preserving transparency and compositionality in hyperinten- sional contexts. This requires raising the bar for what qualifies as co-denotation or equivalence in extensional contexts. Our logic is Tichý’s Transparent Intensional Logic. The syntax of TIL is the typed lambda calculus; its highly expressive semantics is based on a procedural redefinition of, inter alia, functional abstraction and application. The two non-standard features we need are a hyper- intension (called Trivialization) that presents other hyperintensions and a four-place substitution function (called Sub) defined over hy- perintensions

    Identity

    Get PDF
    I explore proposals for stating identity criteria in terms of ground. I also address considerations for and against taking identity and distinctness facts to be ungrounded

    Mistakes in medical ontologies: Where do they come from and how can they be detected?

    Get PDF
    We present the details of a methodology for quality assurance in large medical terminologies and describe three algorithms that can help terminology developers and users to identify potential mistakes. The methodology is based in part on linguistic criteria and in part on logical and ontological principles governing sound classifications. We conclude by outlining the results of applying the methodology in the form of a taxonomy different types of errors and potential errors detected in SNOMED-CT

    The Development of the Use of Expert Testimony

    Get PDF
    The steadily increasing performance of modern computer systems is having a large influence on simulation technologies. It enables increasingly detailed simulations of larger and more comprehensive simulation models. Increasingly large amounts of numerical data are produced by these simulations. This thesis presents several contributions in the field of mechanical system simulation and visualisation. The work described in the thesis is of practical relevance and results have been tested and implemented in tools that are used daily in the industry i.e., the BEAST (BEAring Simulation Tool) tool box. BEAST is a multibody system (MBS) simulation software with special focus on detailed contact calculations. Our work is primarily focusing on these types of systems. focusing on these types of systems. Research in the field of simulation modelling typically focuses on one or several specific topics around the modelling and simulation work process. The work presented here is novel in the sense that it provides a complete analysis and tool chain for the whole work process for simulation modelling and analysis of multibody systems with detailed contact models. The focus is on detecting and dealing with possible problems and bottlenecks in the work process, with respect to multibody systems with detailed contact models. The following primary research questions have been formulated: How to utilise object-oriented techniques for modelling of multibody systems with special reference tocontact modelling? How to integrate visualisation with the modelling and simulation process of multibody systems withdetailed contacts. How to reuse and combine existing simulation models to simulate large mechanical systems consistingof several sub-systems by means of co-simulation modelling? Unique in this work is the focus on detailed contact models. Most modelling approaches for multibody systems focus on modelling of bodies and boundary conditions of such bodies, e.g., springs, dampers, and possibly simple contacts. Here an object oriented modelling approach for multibody simulation and modelling is presented that, in comparison to common approaches, puts emphasis on integrated contact modelling and visualisation. The visualisation techniques are commonly used to verify the system model visually and to analyse simulation results. Data visualisation covers a broad spectrum within research and development. The focus is often on detailed solutions covering a fraction of the whole visualisation process. The novel visualisation aspect of the work presented here is that it presents techniques covering the entire visualisation process integrated with modeling and simulation. This includes a novel data structure for efficient storage and visualisation of multidimensional transient surface related data from detailed contact calculations. Different mechanical system simulation models typically focus on different parts (sub-systems) of a system. To fully understand a complete mechanical system it is often necessary to investigate several or all parts simultaneously. One solution for a more complete system analysis is to couple different simulation models into one coherent simulation. Part of this work is concerned with such co-simulation modelling. Co-simulation modelling typically focuses on data handling, connection modelling, and numerical stability. This work puts all emphasis on ease of use, i.e., making mechanical system co-simulation modelling applicable for a larger group of people. A novel meta-model based approach for mechanical system co-simulation modelling is presented. The meta-modelling process has been defined and tools and techniques been created to fully support the complete process. A component integrator and modelling environment are presented that support automated interface detection, interface alignment with automated three-dimensional coordinate translations, and three dimensional visual co-simulation modelling. The integrated simulator is based on a general framework for mechanical system co-simulations that guarantees numerical stability

    A Relational Formulation of the Theory of Types

    Get PDF
    This paper developes a relational---as opposed to a functional---theory of types. The theory is based on Hilbert and Bernays' eta operator plus the identity symbol, from which Church's lambda and the other usual operators are then defined. The logic is intended for use in the semantics of natural language

    Reference priors for high energy physics

    Full text link
    Bayesian inferences in high energy physics often use uniform prior distributions for parameters about which little or no information is available before data are collected. The resulting posterior distributions are therefore sensitive to the choice of parametrization for the problem and may even be improper if this choice is not carefully considered. Here we describe an extensively tested methodology, known as reference analysis, which allows one to construct parametrization-invariant priors that embody the notion of minimal informativeness in a mathematically well-defined sense. We apply this methodology to general cross section measurements and show that it yields sensible results. A recent measurement of the single top quark cross section illustrates the relevant techniques in a realistic situation

    The Development of the Use of Expert Testimony

    Get PDF

    Consistency of the Shannon entropy in quantum experiments

    Full text link
    The consistency of the Shannon entropy, when applied to outcomes of quantum experiments, is analysed. It is shown that the Shannon entropy is fully consistent and its properties are never violated in quantum settings, but attention must be paid to logical and experimental contexts. This last remark is shown to apply regardless of the quantum or classical nature of the experiments.Comment: 12 pages, LaTeX2e/REVTeX4. V5: slightly different than the published versio
    • …
    corecore