132 research outputs found

    Admissibility via Natural Dualities

    Get PDF
    It is shown that admissible clauses and quasi-identities of quasivarieties generated by a single finite algebra, or equivalently, the quasiequational and universal theories of their free algebras on countably infinitely many generators, may be characterized using natural dualities. In particular, axiomatizations are obtained for the admissible clauses and quasi-identities of bounded distributive lattices, Stone algebras, Kleene algebras and lattices, and De Morgan algebras and lattices.Comment: 22 pages; 3 figure

    Singly generated quasivarieties and residuated structures

    Get PDF
    A quasivariety K of algebras has the joint embedding property (JEP) iff it is generated by a single algebra A. It is structurally complete iff the free countably generated algebra in K can serve as A. A consequence of this demand, called "passive structural completeness" (PSC), is that the nontrivial members of K all satisfy the same existential positive sentences. We prove that if K is PSC then it still has the JEP, and if it has the JEP and its nontrivial members lack trivial subalgebras, then its relatively simple members all belong to the universal class generated by one of them. Under these conditions, if K is relatively semisimple then it is generated by one K-simple algebra. It is a minimal quasivariety if, moreover, it is PSC but fails to unify some finite set of equations. We also prove that a quasivariety of finite type, with a finite nontrivial member, is PSC iff its nontrivial members have a common retract. The theory is then applied to the variety of De Morgan monoids, where we isolate the sub(quasi)varieties that are PSC and those that have the JEP, while throwing fresh light on those that are structurally complete. The results illuminate the extension lattices of intuitionistic and relevance logics

    Ω-Algebarski sistemi

    No full text
    The research work carried out in this thesis is aimed   at fuzzifying algebraic and relational structures in the framework of Ω-sets, where Ω is a complete lattice. Therefore we attempt to synthesis universal algebra and fuzzy set theory. Our  investigations of Ω-algebraic structures are based on Ω-valued equality, satisability of identities and cut techniques. We introduce Ω-algebras, Ω-valued congruences,  corresponding quotient  Ω-valued-algebras and  Ω-valued homomorphisms and we investigate connections among these notions. We prove that there is an Ω-valued homomorphism from an Ω-algebra to the corresponding quotient Ω-algebra. The kernel of an Ω-valued homomorphism is an Ω-valued congruence. When dealing with cut structures, we prove that an Ω-valued homomorphism determines classical homomorphisms among the corresponding quotient structures over cut  subalgebras. In addition, an  Ω-valued congruence determines a closure system of classical congruences on cut subalgebras. In addition, identities are preserved under Ω-valued homomorphisms. Therefore in the framework of Ω-sets we were able to introduce Ω-attice both as an ordered and algebraic structures. By this Ω-poset is defined as an Ω-set equipped with  Ω-valued order which is  antisymmetric with respect to the corresponding Ω-valued equality. Thus defining the notion of pseudo-infimum and pseudo-supremum we obtained the definition of Ω-lattice as an ordered structure. It is also defined that the an Ω-lattice as an algebra is a bi-groupoid equipped with an Ω-valued equality fulfilling some particular lattice Ω-theoretical formulas. Thus using axiom of choice we proved that the two approaches are equivalent. Then we also introduced the notion of complete Ω-lattice based on Ω-lattice. It was defined as a generalization of the classical complete lattice. We proved results that characterizes Ω-structures and many other interesting results. Also the connection between Ω-algebra and the notion of weak congruences is presented. We conclude with what we feel are most interesting areas for future work.Tema ovog rada je fazifikovanje algebarskih i relacijskih struktura u okviru omega- skupova, gdeje Ω kompletna mreza. U radu se bavimo sintezom oblasti univerzalne algebre i teorije rasplinutih (fazi) skupova. Naša istraživanja omega-algebarskih struktura bazirana su na omega-vrednosnoj jednakosti,zadovoljivosti identiteta i tehnici rada sa nivoima. U radu uvodimo omega-algebre,omega-vrednosne kongruencije, odgovarajuće omega-strukture, i omega-vrednosne homomorfizme i istražujemo veze izmedju ovih pojmova. Dokazujemo da postoji Ω -vrednosni homomorfizam iz Ω -algebre na odgovarajuću količničku Ω -algebru. Jezgro Ω -vrednosnog homomorfizma je Ω- vrednosna kongruencija. U vezi sa nivoima struktura, dokazujemo da Ω -vrednosni homomorfizam odredjuje klasične homomorfizme na odgovarajućim količničkim strukturama preko nivoa podalgebri. Osim toga, Ω-vrednosna kongruencija odredjuje sistem zatvaranja klasične kongruencije na nivo podalgebrama. Dalje, identiteti su očuvani u Ω- vrednosnim homomorfnim slikama.U nastavku smo u okviru Ω-skupova uveli Ω-mreže kao uredjene skupove i kao algebre i dokazali ekvivalenciju ovih pojmova. Ω-poset je definisan kao Ω -relacija koja je antisimetrična i tranzitivna u odnosu na odgovarajuću Ω-vrednosnu jednakost. Definisani su pojmovi pseudo-infimuma i pseudo-supremuma i tako smo dobili definiciju Ω-mreže kao uredjene strukture. Takodje je definisana Ω-mreža kao algebra, u ovim kontekstu nosač te strukture je bi-grupoid koji je saglasan sa Ω-vrednosnom jednakošću i ispunjava neke mrežno-teorijske formule. Koristeći aksiom izbora dokazali smo da su dva pristupa ekvivalentna. Dalje smo uveli i pojam potpune Ω-mreže kao uopštenje klasične potpune mreže. Dokazali smo još neke rezultate koji karakterišu Ω-strukture.Data je i veza izmedju Ω-algebre i pojma slabih kongruencija.Na kraju je dat prikaz pravaca daljih istrazivanja

    A study of fuzzy sets and systems with applications to group theory and decision making

    Get PDF
    In this study we apply the knowledge of fuzzy sets to group structures and also to decision-making implications. We study fuzzy subgroups of finite abelian groups. We set G = Z[subscript p[superscript n]] + Z[subscript q[superscript m]]. The classification of fuzzy subgroups of G using equivalence classes is introduced. First, we present equivalence relations on fuzzy subsets of X, and then extend it to the study of equivalence relations of fuzzy subgroups of a group G. This is then followed by the notion of flags and keychains projected as tools for enumerating fuzzy subgroups of G. In addition to this, we use linear ordering of the lattice of subgroups to characterize the maximal chains of G. Then we narrow the gap between group theory and decision-making using relations. Finally, a theory of the decision-making process in a fuzzy environment leads to a fuzzy version of capital budgeting. We define the goal, constraints and decision and show how they conflict with each other using membership function implications. We establish sets of intervals for projecting decision boundaries in general. We use the knowledge of triangular fuzzy numbers which are restricted field of fuzzy logic to evaluate investment projections

    Quantale Modules, with Applications to Logic and Image Processing

    Full text link
    We propose a categorical and algebraic study of quantale modules. The results and constructions presented are also applied to abstract algebraic logic and to image processing tasks.Comment: 150 pages, 17 figures, 3 tables, Doctoral dissertation, Univ Salern

    Equivalence relations and operators on ordered algebraic structures with difference.

    Get PDF
    This work concerns algebraic models of fuzzy and many-valued propositional logics, in particular Boolean Algebras, Heyting algebras, GBL-algebras and their dual structures, and partial algebras. The central idea is the representation of complex structures through simpler structures and equivalence relations on them: in order to achieve this, a structure is often considered under two points of view, as total algebra and partial algebra. The equivalence relations which allow the representation are congruences of partial algebras. The first chapter introduces D-posets, the partial algebraic structures used for this representation, which generalize Boolean algebras and MV-algebras. The second chapter is a study of congruences on D-posets and the structure of the quotients, in particular for congruences induced by some kinds of idempotent operators, here called S-operators. The case of Boolean algebras and MV-algebras is studied more in detail. The third chapter introduces GBL-algebras and their dual, and shows how the interplay of an S-operator with a closure operator gives rise to a dual GBL-algebra. Other results about the representation of finite GBL-algebras and GBL*algebras (GBL-algebras with monoidal sum), part of two papers previously published, are summarized and put in relation with the other results of this work

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value
    corecore