84,153 research outputs found

    Errata to “The inversion of correlation matrix for MA (1) process”

    Get PDF

    Inversion of Parahermitian matrices

    Get PDF
    Parahermitian matrices arise in broadband multiple-input multiple-output (MIMO) systems or array processing, and require inversion in some instances. In this paper, we apply a polynomial eigenvalue decomposition obtained by the sequential best rotation algorithm to decompose a parahermitian matrix into a product of two paraunitary, i.e.lossless and easily invertible matrices, and a diagonal polynomial matrix. The inversion of the overall parahermitian matrix therefore reduces to the inversion of auto-correlation sequences in this diagonal matrix. We investigate a number of different approaches to obtain this inversion, and and assessment of the numerical stability and complexity of the inversion process

    Highly efficient Bayesian joint inversion for receiver-based data and its application to lithospheric structure beneath the southern Korean Peninsula

    Get PDF
    With the deployment of extensive seismic arrays, systematic and efficient parameter and uncertainty estimation is of increasing importance and can provide reliable, regional models for crustal and upper-mantle structure.We present an efficient Bayesian method for the joint inversion of surface-wave dispersion and receiver-function data that combines trans-dimensional (trans-D) model selection in an optimization phase with subsequent rigorous parameter uncertainty estimation. Parameter and uncertainty estimation depend strongly on the chosen parametrization such that meaningful regional comparison requires quantitative model selection that can be carried out efficiently at several sites. While significant progress has been made for model selection (e.g. trans-D inference) at individual sites, the lack of efficiency can prohibit application to large data volumes or cause questionable results due to lack of convergence. Studies that address large numbers of data sets have mostly ignored model selection in favour of more efficient/simple estimation techniques (i.e. focusing on uncertainty estimation but employing ad-hoc model choices). Our approach consists of a two-phase inversion that combines trans-D optimization to select the most probable parametrization with subsequent Bayesian sampling for uncertainty estimation given that parametrization. The trans-D optimization is implemented here by replacing the likelihood function with the Bayesian information criterion (BIC). The BIC provides constraints on model complexity that facilitate the search for an optimal parametrization. Parallel tempering (PT) is applied as an optimization algorithm. After optimization, the optimal model choice is identified by the minimum BIC value from all PT chains. Uncertainty estimation is then carried out in fixed dimension. Data errors are estimated as part of the inference problem by a combination of empirical and hierarchical estimation. Data covariance matrices are estimated from data residuals (the difference between prediction and observation) and periodically updated. In addition, a scaling factor for the covariance matrix magnitude is estimated as part of the inversion. The inversion is applied to both simulated and observed data that consist of phase- and group-velocity dispersion curves (Rayleigh wave), and receiver functions. The simulation results show that model complexity and important features are well estimated by the fixed dimensional posterior probability density. Observed data for stations in different tectonic regions of the southern Korean Peninsula are considered. The results are consistent with published results, but important features are better constrained than in previous regularized inversions and are more consistent across the stations. For example, resolution of crustal and Moho interfaces, and absolute values and gradients of velocities in lower crust and upper mantle are better constrained

    Exotic hadronic states and all-to-all quark propagators

    Full text link
    We discuss methods to obtain accurate hadronic spectra with propagating quarks. Comparing the determination of masses for spin-exotic hybrid mesons with glueball mass determinations, we conclude that quark propagators from all sites to all other sites would enable great improvement in the errors. Such propagators are achievable by using stochastic estimators. We discuss previous attempts and present our method for maximal variance reduction. This is a very promising technique and we illustrate it by obtaining the spectrum of ground state and excited B mesons in the limit where the bb quark is static.Comment: 6 pages, LATEX, 2 postscript figures, needs espcrc2.st

    Uplink Multiuser MIMO Detection Scheme with Reduced Computational Complexity

    Get PDF
    The wireless communication systems with multiple antennas have recently received significant attention due to their higher capacity and better immunity to fading channels as compared to single antenna systems. A fast antenna selection scheme has been introduced for the uplink multiuser multiple-input multiple-output (MIMO) detection to achieve diversity gains, but the computational complexity of the fast antenna selection scheme in multiuser systems is very high due to repetitive pseudo-inversion computations. In this paper, a new uplink multiuser detection scheme is proposed adopting a switch-and-examine combining (SEC) scheme and the Cholesky decomposition to solve the computational complexity problem. K users are considered that each users is equipped with two transmit antennas for Alamouti space-time block code (STBC) over wireless Rayleigh fading channels. Simulation results show that the computational complexity of the proposed scheme is much lower than the systems with exhaustive and fast antenna selection, while the proposed scheme does not experience the degradations of bit error rate (BER) performances

    Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation

    Get PDF
    We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain, constructed from the amalgamation of 323 new high precision gravity measurements with existing gravity data from 361 observations. The new anomaly map images the high-density core of the CVC and the pronounced gravity low centred in the Las Cañadas caldera in greater detail than previously available. Mathematical construction of a sub-surface model from the local anomaly data, employing a 3D inversion based on 'growing' the sub-surface density distribution via the aggregation of cells, enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture. We find the resultant density distribution in agreement with geological and other geophysical data. The modelled sub-surface structure supports a vertical collapse origin of the caldera, and maps the headwall of the ca. 180 ka Icod landslide, which appears to lie buried beneath the Pico Viejo–Pico Teide stratovolcanic complex. The results allow us to put into context the recorded ground deformation and gravity changes at the CVC during its reactivation in spring 2004 in relation to its dominant structural building blocks. For example, the areas undergoing the most significant changes at depth in recent years are underlain by low-density material and are aligned along long-standing structural entities, which have shaped this volcanic ocean island over the past few million years

    The Magnetic Topology of the Weak-Lined T Tauri Star V410 - A Simultaneous Temperature and Magnetic Field Inversion

    Full text link
    We present a detailed temperature and magnetic investigation of the T Tauri star V410 Tau by means of a simultaneous Doppler- and Zeeman-Doppler Imaging. Moreover we introduce a new line profile reconstruction method based on a singular value decomposition (SVD) to extract the weak polarized line profiles. One of the key features of the line profile reconstruction is that the SVD line profiles are amenable to radiative transfer modeling within our Zeeman-Doppler Imaging code iMap. The code also utilizes a new iterative regularization scheme which is independent of any additional surface constraints. To provide more stability a vital part of our inversion strategy is the inversion of both Stokes I and Stokes V profiles to simultaneously reconstruct the temperature and magnetic field surface distribution of V410 Tau. A new image-shear analysis is also implemented to allow the search for image and line profile distortions induced by a differential rotation of the star. The magnetic field structure we obtain for V410 Tau shows a good spatial correlation with the surface temperature and is dominated by a strong field within the cool polar spot. The Zeeman-Doppler maps exhibit a large-scale organization of both polarities around the polar cap in the form of a twisted bipolar structure. The magnetic field reaches a value of almost 2 kG within the polar region but smaller fields are also present down to lower latitudes. The pronounced non-axisymmetric field structure and the non-detection of a differential rotation for V410 Tau supports the idea of an underlying α2\alpha^2-type dynamo, which is predicted for weak-lined T Tauri stars.Comment: Accepted for A&A, 18 pages, 10 figure

    Initial results on an MMSE precoding and equalisation approach to MIMO PLC channels

    Get PDF
    This paper addresses some initial experiments using polynomial matrix decompositions to construct MMSE precoders and equalisers for MIMO power line communications (PLC) channels. The proposed scheme is based on a Wiener formulation based on polynomial matrices, and recent results to design and implement such systems with polynomial matrix tools. Applied to the MIMO PLC channel, the strong spectral dynamics of the PLC system together with the long impulse responses contained in the MIMO system result in problems, such that diagonlisation and spectral majorisation is mostly achieved in bands of high energy, while low-energy bands can resist any diagonalisation efforts. We introduce the subband approach in order to deal with this problem. A representative example using a simulated MIMO PLC channel is presented
    corecore