Applied Mathematics Letters

Errata to "The Inversion of Correlation Matrix for MA(1) Process"

Applied Mathematics Letters, Vol. 16, No. 3, pp. 317-321, 2003

B. C. Sutradhar

Department of Mathematics and Statistics
Memorial University of Newfoundland St. John's, NF, Canada A1C 5S7
P. KUMAR

Mathematics and Computer Science Program
University of Northern British Columbia
Prince George, BC, Canada V2N 4Z9
kumarp@unbc.ca
Applied Mathematics Letters, Vol. 16, No. 3, pp. 317-321, 2003
(Received and accepted June 2003)
The main result in Theorem 2.1 in [1, p. 318] should read as follows.
Theorem 2.1. For $t, t^{\prime}=1, \ldots, n$, the $\left(t, t^{\prime}\right)^{\text {th }}$ element of the inverse matrix of $C_{M}(1.2)$ is given by
$\frac{1+\theta^{2}}{1-\theta^{2}}\left[\left\{\theta^{\left|t-t^{\prime}\right|}-\theta^{2(n+2)-t-t^{\prime}-2}\right\}-\frac{\theta^{t+t^{\prime}}}{1-\theta^{2(n+2)-2}}\left\{\left(1-\theta^{2(n+2)-2 t-2}\right)\left(1-\theta^{2(n+2)-2 t^{\prime}-2}\right)\right\}\right]$.

REFERENCES

1. B.C. Sutradhar and P. Kumar, The Inversion of Correlation Matrix for MA(1) Process, Appl. Math. Lett. 16 (3), 317-321 (2003).
[^0]
[^0]: We thank Professor W. F. Trench for pointing out that the earlier expression in the theorem does not produce (3.2) from (3.1), for example.

