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S U M M A R Y
With the deployment of extensive seismic arrays, systematic and efficient parameter and un-
certainty estimation is of increasing importance and can provide reliable, regional models for
crustal and upper-mantle structure. We present an efficient Bayesian method for the joint inver-
sion of surface-wave dispersion and receiver-function data that combines trans-dimensional
(trans-D) model selection in an optimization phase with subsequent rigorous parameter un-
certainty estimation. Parameter and uncertainty estimation depend strongly on the chosen
parametrization such that meaningful regional comparison requires quantitative model selec-
tion that can be carried out efficiently at several sites. While significant progress has been made
for model selection (e.g. trans-D inference) at individual sites, the lack of efficiency can pro-
hibit application to large data volumes or cause questionable results due to lack of convergence.
Studies that address large numbers of data sets have mostly ignored model selection in favour
of more efficient/simple estimation techniques (i.e. focusing on uncertainty estimation but em-
ploying ad-hoc model choices). Our approach consists of a two-phase inversion that combines
trans-D optimization to select the most probable parametrization with subsequent Bayesian
sampling for uncertainty estimation given that parametrization. The trans-D optimization is
implemented here by replacing the likelihood function with the Bayesian information criterion
(BIC). The BIC provides constraints on model complexity that facilitate the search for an op-
timal parametrization. Parallel tempering (PT) is applied as an optimization algorithm. After
optimization, the optimal model choice is identified by the minimum BIC value from all PT
chains. Uncertainty estimation is then carried out in fixed dimension. Data errors are estimated
as part of the inference problem by a combination of empirical and hierarchical estimation.
Data covariance matrices are estimated from data residuals (the difference between prediction
and observation) and periodically updated. In addition, a scaling factor for the covariance ma-
trix magnitude is estimated as part of the inversion. The inversion is applied to both simulated
and observed data that consist of phase- and group-velocity dispersion curves (Rayleigh wave),
and receiver functions. The simulation results show that model complexity and important fea-
tures are well estimated by the fixed dimensional posterior probability density. Observed data
for stations in different tectonic regions of the southern Korean Peninsula are considered. The
results are consistent with published results, but important features are better constrained than
in previous regularized inversions and are more consistent across the stations. For example,
resolution of crustal and Moho interfaces, and absolute values and gradients of velocities in
lower crust and upper mantle are better constrained.

Key words: Inverse theory; Probability distributions; Surface waves and free oscillations;
Computational seismology; Statistical seismology; Crustal structure.
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1 I N T RO D U C T I O N

Surface wave dispersion (SWD) and teleseismic receiver function
(RF) data have been widely used to constrain variability of S-wave
velocity (VS) with depth. Observations of SWD over a finite range of
periods (dispersion curves) provide constraints on absolute VS with
smooth and continuous depth sensitivity (Takeuchi et al. 1964; Aki
& Richards 2002). RF data are sensitive to velocity discontinuities
which produce converted and reverberated phases due to a wave in-
cident (near vertical) from below (Langston 1979; Ammon 1991).
Joint analysis of SWD and RF allows combining their distinct sensi-
tivities to estimate improved 1-D VS structure (e.g. Özalaybey et al.
1997; Du & Foulger 1999; Tkalčić et al. 2006; Yoo et al. 2007).

The recent expansion of increasingly dense regional networks
(e.g. USArray, F-net, China Array, Virtual European Broadband
Seismograph Network) has provided opportunities to infer high-
resolution structures. In particular, quasi-3-D structure can be es-
timated from a series of joint inversions of 1-D RF and SWD
data (e.g. Shen et al. 2013a), which is generally possible when
the lateral variability is small beneath each station. However,
less attention has been given to the more challenging prob-
lem of rigorous uncertainty estimation, in particular due to the
high computational cost associated with meaningful uncertain-
ties. This work develops a joint inversion technique that pro-
vides rigorous model selection via trans-dimensional (trans-D) op-
timization and uncertainty estimation via Bayesian sampling that
is sufficiently efficient for regional studies with dense regional
networks.

The inversion of SWD and RF data for elastic properties is in-
herently ill-posed and ill-conditioned (Ammon et al. 1990; Lomax
& Snieder 1995, 2012; Snieder 1998). The non-uniqueness and
stability of an inversion can be considered in terms of parameter
uncertainties which quantify the range of parameter values that suffi-
ciently fit the data given a likelihood function. However, in linearized
approaches, widely applied for efficiency, the inverse problem is ap-
proximated (by linearization), often resulting in difficult-to-interpret
uncertainty estimates (e.g. Özalaybey et al. 1997; Du & Foulger
1999; Julià et al. 2000). Such inversions can be strongly affected
by subjective information (e.g. the initial model) and regularization
(e.g. damping, smoothing) (Jackson & Matsu’ura 1985; Sambridge
& Mosegaard 2002) which is often arbitrarily determined by ad-hoc
methods and the impact of regularization parameters on results is
not quantified (Scales & Snieder 2000; Mosegaard & Sambridge
2002; Sambridge & Mosegaard 2002). For instance, inversion un-
certainties from Bootstrap resampling tests (e.g. Efron & Tibshirani
1991) tend to be underestimated due to regularization (Sambridge
et al. 2006a).

Nonlinear approaches have been applied to SWD and RF to ad-
dress these issues (e.g. Lomax & Snieder 1995; Chang et al. 2004;
Lawrence & Wiens 2004). For example, optimization methods (e.g.
simulated annealing and genetic algorithms) obtain a global, opti-
mal parameter vector which does not depend on initial parameter
value choice. Note that global optimization also requires some form
of model selection or regularization to avoid over/under fitting of
data. Regularization is commonly applied when the problem is over-
parametrized (by many thin layers of fixed thickness) but causes an
approximation of the inverse problem that can make results dif-
ficult to interpret. Model selection, the process of identifying a
parametrization that is consistent with data information, is often
ignored when simple parametrizations are applied (a few layers of
unknown thickness based on ad-hoc decisions) to avoid the associ-
ated computational cost and conceptual challenges of quantitative

model selection, or to be simply based on prior information. How-
ever, this can lead to underparametrization issues (erroneous results,
biases) that are difficult to detect.

Parameter uncertainties due to non-uniqueness cannot be fully
estimated by optimization and depend strongly on model choice
and ensemble inference based on arbitrary criteria is insufficient
(Douma et al. 1996; Sambridge 1999; Sambridge & Mosegaard
2002; Lomax & Snieder 2012). Bayesian inference provides rig-
orous uncertainty estimates by quantifying the posterior proba-
bility density (PPD) of model parameters. The PPD is estimated
by numerical, multidimensional integration via nonlinear sampling
methods (e.g. Sambridge & Mosegaard 2002; Tarantola 2005) that
produce an ensemble of parameter-vector values that is statically
representative of the data errors. The most common and efficient
sampling methods for high-dimensional problems are based on
Markov chain Monte Carlo (MCMC) integration (Brooks et al.
2003). The PPD is constrained by data information (the likelihood
function) and prior probabilities (independent information) (Jack-
son & Matsu’ura 1985; Duijndam 1988; Scales & Snieder 1997;
MacKay 2003; Tarantola 2005) and parameter uncertainties are ob-
tained by marginalization to obtain quantities of interest (means,
marginal profiles, variances and covariances). Bayesian methods
have been increasingly adopted for inversions using SWD and RF
data (e.g. Piana Agostinetti & Malinverno 2010; Bodin et al. 2012;
Shen et al. 2013b; Dettmer et al. 2015).

The choice of specific model parametrization (e.g. the number of
layers) strongly affects parameter uncertainties. The resolution of
earth structure by observed data is not straightforward to quantify
because data are generally band-limited and sampling is incomplete,
resulting in sensitivity that varies as a function of space. For exam-
ple, for layered parametrizations, overparametrization with many
layers can result in spurious structure and overfitting in some parts
of the model while other regions may be appropriately parametrized.
Therefore, uncertainty estimates can also vary as a function of space
and may be overestimated in overparametrized parts of the model
and underestimated in underparametrized regions. Quantitative
model selection can be applied to address these issues in a Bayesian
framework where the normalizing constant in Bayes’ theorem (ev-
idence) quantifies the data support for a parametrization. In par-
ticular, model selection is applied to identify parametrizations that
are consistent with the information in the observed data (MacKay
2003). Since full evidence computation can be prohibitively ex-
pensive, asymptotic point estimates, such as the Bayesian informa-
tion criterion (BIC; Schwarz 1978), constitute a practical approach
based on a Gaussian approximation of the posterior around the main
posterior mode. Limitations arise due to the fact that the Gaussian
approximation around the maximum a posteriori (MAP) model may
not be representative of the whole posterior. However, in many cases
the BIC has been documented to provide meaningful parsimonious
estimates.

More complete uncertainty estimation can be achieved by in-
tegrating model selection and sampling via trans-D models (Ma-
linverno 2002; Bodin et al. 2012; Dettmer et al. 2012): Model
specification is relaxed from a single model to a group of models
for which an algorithm can be formulated that jumps between the
various parameter spaces while maintaining Markov chain proper-
ties. The uncertainty estimates then include the effects due to the
ambiguity of competing models. However, this requires fine-tuning
to ensure proper dimensional changes and to minimize additional
cost in computations. For example, the popular birth–death algo-
rithm (Malinverno 2002) is strongly affected by the way new states
of the parameter vector are proposed, which is problem dependent
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and efficient ways are often not known or possible (Dosso et al.
2014).

The uncertainties from Bayesian inversions are fundamentally
linked to the data errors via the likelihood function, which is a mea-
sure of the fit of the prediction to the observation given an assumed
statistical distribution of data errors (Tarantola 2005). Data errors
are typically a combination of theory (e.g. due to model limita-
tions, assumptions in data processing) and measurement (due to the
observation process) errors, which are difficult to separate. While
measurement errors may be estimated from ensembles of data or
pre-event noise, theory error is model dependent and can be sig-
nificant. Since it is impossible to obtain data errors independently,
they are often approximated by residual errors (Dosso & Wilmut
2006). In that case, the distribution parameters (e.g. variance and
covariance) must be estimated either to form the residuals directly
(empirical Bayesian estimation) or to be treated as unknown (hier-
archical estimation) (e.g. Gouveia & Scales 1998; Sambridge 1999;
Malinverno & Briggs 2004; Bodin et al. 2012; Dettmer & Dosso
2012).

In this paper, we present a procedure for Bayesian joint inver-
sion of SWD and RF data that applies efficient model selection and
uncertainty estimation while avoiding some of the high computa-
tional cost associated with trans-D models. The BIC is applied as
the quantitative criterion to select the most probable parametriza-
tion and is applied within a trans-D optimization algorithm (e.g.
Brooks et al. 2003) to carry out the selection in a computationally
efficient and automated manner. In particular, the BIC replaces the
likelihood function in the trans-D optimization phase of the inver-
sion. In classic model selection with the BIC (e.g. Molnar et al.
2010), multiple fixed-dimensional (fixed-D) optimizations are per-
formed for the various models under investigation. Once maximum
likelihood (ML) parameters are determined for each model, the
BIC is computed and the smallest BIC value identifies the opti-
mal model. This approach is straightforward to implement and to
monitor the selection process, and several complexities of trans-D
schemes are not required (e.g. birth-death). However, in the case
where the models to examine are little-known a priori, this can be
rather tedious and requires additional practitioner interaction, such
as searching unnecessary models and trial-and-error to find proper
ranges of models. In our approach, the BIC constrains the variability
of the complexity parameter (e.g. the number of layers) more than
would be the case in trans-D sampling. Therefore, we avoid exten-
sive exploration of the tails of the distribution of that parameter; an
aspect of trans-D sampling that is known to be inefficient. Finally,
the optimization does not require detailed balance and resampling
can be periodically applied to increase efficiency. Once the optimal
parametrization is obtained, it is held fixed and efficient sampling
is carried out for uncertainty estimation. Although a limitation of
our approach is that uncertainty estimates do not include the ef-
fect of limited knowledge about the parameterization, we show that
meaningful uncertainty estimates are obtained by our method.

Both optimization and sampling are implemented with parallel
tempering (PT, Geyer 1991; Dettmer & Dosso 2012; Sambridge
2013) to provide good scaling of algorithm performance with the
number of processors on computer clusters. The PT algorithm em-
ploys many Markov chains that concurrently sample a sequence
of distributions of which at least one distribution is identical to
the PPD. The other distributions are increasingly tempered (relaxed
by raising the likelihood to a power of <1) and aid sampling ef-
ficiency. The tempering facilitates free movement of the Markov
chain causing tempered chains to have higher acceptance rates of
proposed model vectors resulting in wide exploration of the param-

eter space. Information exchange between chains is implemented by
a Metropolis–Hastings (MH) criterion for Markov chain pairs which
can improve efficiency dramatically (Dosso et al. 2012). As opposed
to most previous work applying PT in geophysical problems, we ap-
ply PT as an efficient and inherently parallel optimization and an
alternative to sequential techniques (e.g. simulated annealing). The
combination of the PT, trans-D optimization steps with the BIC,
and parallel computer hardware result in an efficient optimization.

Data errors are addressed with a combination of empirical and
hierarchical estimation based on residual errors. Note that errors in
RF data are often strongly correlated and non-stationary between
data points. Similarly, SWD data often exhibit non-stationary er-
rors as a function of period. Hence, simple parametric covariance
models (with few parameters) may not be sufficient to describe
the error statistics. To quantify potentially complex structure in the
data covariance matrix without requiring large numbers of parame-
ters, we empirically estimate covariance matrices from the autoco-
variance functions of data residuals with non-stationary weighting
(Dettmer et al. 2007). In addition, these non-Toeplitz matrices are
scaled by unknown hierarchical parameters during sampling. This
approach accounts for complex error statistics without introducing
complicated error parameters that may be difficult to justify. In the
optimization phase, only the magnitude of noise (standard devia-
tion) is accounted throughout the ML technique (Dosso & Wilmut
2006), since well-converged data residuals may not be available in
the initial stage. Regarding possible trade-offs between the model
selection and the error estimation, however, our results show that
this simplified approach is generally effective.

The method is studied for both simulated and observed SWD and
RF data for three stations on the southern Korean Peninsula, where
each station represents a specific tectonic region. SWD data are ob-
tained from ambient noise analysis (e.g. Bensen et al. 2007) using
continuous data of the entire array in the southern Korean Penin-
sula. In all cases, joint inversions are performed for RF together with
phase velocity (PV) and group velocity (GV) we invert them jointly
to provide better constraints on velocity structure due to the differ-
ent depth sensitivities (Rodi et al. 1975), and due to the different
measurement processes that result in independent noise on the two
data types (e.g. Martinez et al. 2000; Shapiro & Ritzwoller 2002).
The inversion results provide better constraints about the tectonic
evolution of the southern Korean Peninsula. It is clearly evident
that stations in the southeastern part of the Korean Peninsula show
relatively high VS in the lower crust and low VS in upper mantle,
which can be interpreted as evidence for magma underplating and
a hot upper mantle along the southeastern edge of the Peninsula.

2 T H E O RY A N D M E T H O D

This section provides a brief overview of Bayesian methodology
and then describes in detail the inversion method applied in this
study.

2.1 Bayesian formulation

Let d be a vector of random variables with N observed data which
contains information about the earth and M denote a group of
models (specifying parametrization, theory for predictions and error
statistics). Let m be a vector of M random variables containing all
model parameters. Bayes’ rule defines the PPD p(m|d,M) as

p(m|d,M) = p(d|m,M)p(m|M)

p(d|M)
, (1)
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Figure 1. Schematic diagram of the inversion process. The names of applied algorithms are presented with their working periods in the Markov chains. MHG
and MH indicate Metropolis–Hastings–Green (see eq. 5) and Metropolis–Hastings algorithms, respectively. Bayesian Information Criterion (BIC) is presented
in eq. (7) for the model selection and in eq. (9) for the objective function.

which quantifies the state of information about the parameters
given data and prior p(m|M). Data information is represented by
p(d|m,M), which is the distribution of data errors but for ob-
served (fixed) data is interpreted as the likelihood function L(x),
where x = (m,M). The normalizing constant in eq. (1) is referred
to as Bayesian evidence and plays a key role in model selection.

For uncertainty estimation, the likelihood function must be spec-
ified based on an assumption about the residual-error statistics. We
assume Gaussian-distributed residuals (ri = di − di (x), the differ-
ence between prediction and observation) which leads to

L(x) =
S∏

i=1

1√
(2π )Ni |Cdi |

exp

{
−1

2
ri

T Cdi
−1ri

}
, (2)

where i indexes S data sets di including SWD and RF. Ni are the
number of data for the ith set and Cdi the data covariance matrices.
Note that the likelihood function concept is general and can be ap-
plied to any combination of data sets (PV, GV and RF). Importantly,
the appropriate weight for various data sets is given by errors on
the data and does not require subjective specification. Prior distri-
butions are chosen to be bounded and uniform over a wide range
of parameter values. For the parameter that indexes model com-
plexity, a bounded Poisson distribution is applied (see Supporting
Information Fig. S1 and Green 1995)

p(k) = e−λ λk

k!
, (3)

where λ is a scale parameter.
The evidence in eq. (1) represents the probability of the data

resulting from model M and can be interpreted as a likelihood
of the model parametrization, which is the foundation of Bayesian
model selection (Sambridge et al. 2006b). Because the evidence
normalizes the PPD, it is an integral over the parameter space and
given by

p(d|M) =
∫

p(d|m,M)p(m|M). (4)

Direct estimation of evidence is numerically challenging and costly
for high-dimensional, nonlinear problems. However, for a given

model, the un-normalized PPD is sufficient for parameter estima-
tion. While important, evidence computations it is often ignored
due to the challenges it poses.

Metropolis–Hastings–Green (MHG) sampling (Metropolis et al.
1953; Hastings 1970; Green 1995) was developed to facilitate pos-
terior sampling for trans-D models. For the models considered here,
a simple case of MHG sampling is sufficient to allow jumps between
parameter vectors that support different numbers of layers: We apply
birth-death moves (Geyer & Møller 1994) to either add or remove a
layer in the stratified earth model. While posterior sampling requires
a likelihood function to be applied, for optimization, the likelihood
function is replaced by a model selection criterion (Brooks et al.
2003), in this case the BIC (the function b in eq. 9). The birth-death
update is carried out by proposing one of three essential updates,
where a layer is either added, removed, or perturbed. These updates
change the current state x to state x′ based on a proposal distribution
q and the new state is accepted with probability

αMHG = min

[
1,

p(x′)
p(x)

{
b(x′)
b(x)

}β q(x|x′)
q(x′|x)

|J|
]

, (5)

where β is an annealing parameter for the PT algorithm (described
later) and |J| is the determinant of the Jacobian matrix of the trans-
formation from x to x′. We implement dimension changes such that
|J| = 1 (e.g. Malinverno 2002).

A birth is carried out by sampling a new interface position from
a uniform proposal which splits an existing layer into two new ones.
Then, the VS of a randomly selected new layer above or below the
interface is perturbed by a Gaussian proposal probability which is
centred on the previous value of that layer. A death is based on
selecting a random interface and deleting it. The merged layer has a
VS which is randomly selected from the values of the previous two
layers.

Parallel tempering (Geyer 1991; Dettmer & Dosso 2012) is ap-
plied to improve efficiency not only for the optimization but also
for the subsequent sampling processes (Fig. 1). For PT, several
Markov chains concurrently sample a sequence of increasingly tem-
pered/relaxed distributions with at least one distribution identical to
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the PPD. The tempered distributions are increasingly relaxed by rais-
ing the likelihood to a power of <1. The acceptance probability in
eq. (5) includes a tempering parameter β with value between 0 and 1
which de-emphasizes the likelihood function for small values. As a
result, low-β chains explore the parameter space more widely, while
high-β chains are more probable to explore local high-likelihood
modes. Our PT scheme considers only β ≤ 1, which is the typical
approach in sampling. In the optimization phase, including chains
of β > 1 may improve convergence to the best model. However, in
the applications considered here, it is important to improve algo-
rithm search efficiency in the trans-D space which is predominantly
improved by chains β < 1 (Dettmer & Dosso 2012). The PT al-
gorithm is particularly suited for parallel computers where many
processors update the Markov chains concurrently. Information ex-
change between chains is implemented by exchange moves which
apply the MH criterion for chain pairs (Geyer 1991)

αPT = min

[
1,

{
b(xl )

b(xn)

}βn−βl
]

, (6)

where xl and xn are the states of two randomly selected chains l and
m, respectively. Note that the prior and proposal ratios in eq. (5)
cancel since exchange moves are proposed for randomly selected
chain pairs and only the likelihood is tempered. Exchange moves are
carried out at the end of every iteration, since the process requires
minimum computational effort and communication between chains
is of low latency.

2.2 Parametrization and data prediction

We assume horizontally stratified isotropic, homogeneous layers
over a semi-infinite half-space, where x = (k, mk) indicates a set of
parameters for k − 1 interfaces. The parameter vector mk includes
the elastic properties of k − 1 layers and the half-space, the inter-
face positions z and the noise parameters (m = (z, v, κ, w)). The
interface positions (depths) are between z = 0 and z = zmax. The VS

of k layers and the half-space is given by v. While P-wave velocities
(VP) and density can affect SWD and RF data, sensitivity is much
weaker than to VS (Takeuchi et al. 1964; Tanimoto 1991; Julià et al.
2000) and we sample the bulk VP/VS ratio κ (independent of layer-
ing). This approach avoids biases due to the choice of a significantly
wrong VP/VS value when little prior knowledge is available but also
avoids over parametrization. The density of each layer is given by
an empirical relationship (Brocher 2005). The vector w contains
the scaling parameters of the data covariance matrices for S data
sets. To predict RF data for a set of parameters, we apply the reflec-
tion matrix method (Randall 1989) and water-level deconvolution
(Langston 1979) for RF data. To predict SWD data, a normal mode
solutions is applied (Saito 1988).

2.3 Trans-D optimization and model selection (Phase 1)

Prior to Bayesian sampling, an optimal parametrization is deter-
mined via trans-D optimization (Brooks et al. 2003), see Fig. 1. In
this phase, the evidence in eq. (4) is asymptotically approximated
by the BIC which makes the assumption of a Gaussian posterior
around the ML parameter vector x̂. The BIC is defined as

BIC = −2 log{L(x̂)} + M log N . (7)

The likelihood term in eq. (7) quantifies the fit to the data while the
second term penalizes complexity. The most common application
of the BIC is to carry out optimization for multiple parametrizations

and then identify the most probable one based on the minimum BIC
value. Here, the BIC is applied as the objective function in an opti-
mization that allows jumps between parametrizations based on the
reversible jump algorithm (Green 1995). Since no prior information
about the data-error statistics is available, we initially assume uncor-
related errors of unknown standard deviation σ i (i.e. Cdi = σ 2

i I).
In this case, the (un-normalized) likelihood function is given by
(Dosso & Wilmut 2006)

L(x) ∝
S∏

i=1

exp

{
− Ni

2
log

(
rT

i ri

)}
, (8)

and the objective function for the optimization is given by the BIC

b(x) ∝ exp(2 log{L(x)} − M log N ). (9)

Note that x does not contain the ML parameters but rather the
current state of the optimization.

We combine trans-D sampling, optimization with a BIC objec-
tive function, and PT to provide a computationally efficient and
practical model selection. The trans-D optimization operates on a
range of models (varying in the number of layers) and adapts the
search space based on the particular data. In addition, the choice
of selection criteria (here the BIC) for the objective function pro-
vides constraints on model complexity. This improves efficiency
greatly by eliminating models with relatively low probability but
does require the prior choice of a reasonable selection criterion.

At the end of the optimization phase, the PT algorithm provides
a number of parameter vectors from which the one with minimum
BIC value is chosen to conclude the trans-D optimization (Fig. 1).
Note that the algorithm maintains a memory about the lowest BIC
value throughout the history of the algorithm so that this selection
identifies the optimal model over the full Phase-1 history.

In MCMC sampling, some iterations (burn-in) are often discarded
until chains obtain equilibrium with regard to the posterior. We note
that burn-in for non-interacting parallel simulations can be highly
inefficient. Here, the interacting aspect of the algorithm provides
efficient burn-in during the optimization phase.

2.4 Posterior sampling (Phase 2)

To estimate rigorous parameter uncertainties, the data error param-
eters in eq. (2) must be quantified based on the residual-error r since
we do not have direct access to data errors. In particular, theory er-
rors often dominate strongly and affect the PPD estimate. While, in
principle, hierarchical methods (e.g. Bodin et al. 2012) can estimate
general structure in the data covariance matrix, such general models
can strongly trade off with the ability to resolve earth structure. In
addition, a problematic aspect of basing error estimates on residuals
is the residual dependence on the particular set of parameters used
to compute them. To avoid strong dependence of results on this ini-
tial choice, we estimate data covariance matrices Cd in eq. (2) from
residual-errors based on the optimization result but allow hierar-
chical scaling during sampling so that the magnitude of covariance
matrices is treated as unknown. With this approach, we can account
for strongly correlated and non-stationary errors without requiring
elaborate parametrizations of data errors.

Data covariance matrices are estimated here using an empir-
ical approach (Dettmer et al. 2007) before the sampling phase
(Fig. 1). First, data residuals are scaled by the standard deviations
of the residuals which are smoothed by a moving Gaussian win-
dow centred on the corresponding point. The width of the Gaussian
window is a control parameter that is chosen to provide numerical
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Table 1. True model parameters to generate
synthetic data.

Layer Depth (km) VS (km s−1)

1 2 2.2
2 9 3.2
3 17 3.0
4 26 3.4
5 35 4.8
6 50 4.6
7 half-space 4.8

stability of the estimate (the method is not sensitive to this choice).
Then, Toeplitz autocorrelation matrices are calculated for the scaled
residuals. Finally, the covariance matrices are scaled by the non-
stationary standard deviations to give the final non-Toeplitz data
covariance matrices. This process is performed several times to up-
date the matrices iteratively (Fig. 1). In our procedure, a short period
of iterations is carried out following the trans-D optimization where
data covariance matrices are iteratively updated. In these examples,
the process is performed five times.

The hierarchical scaling is applied during sampling (Phase 2)
and based on the empirical matrices Cei which are scaled by factors
w. The scaling factors have uniform priors centred on zero and the
scaling is given by

Cdi = e2wi Cei . (10)

Substituting eq. (10) into eq. (2) gives the likelihood function with
hierarchical scaling

L(m) ∝
S∏

i=1

exp

(
−Niwi − 1

2e2wi
ri

T Cei
−1ri

)
. (11)

The PPD sampling is carried out for the optimal parametrization
that was determined by trans-D optimization and the empirical co-
variance matrix estimates. In this case the MHG acceptance (eq. 5)
simplifies since the parametrization does not change. Note that a
proper likelihood function must be applied here instead of the BIC
objective function. Parallel tempering is applied for sampling ef-
ficiency. Since prior distributions are considered to be uniform,
the acceptance probability of the update reduces to the tempered
likelihood ratio.

3 S I M U L AT I O N R E S U LT S

This section applies the algorithm to simulated data which are pro-
duced for a set of parameters consisting of six layers over a half-
space (Table 1). The maximum depth of the trans-D model during
optimization is fixed to 70 km and the VP/VS ratio is 1.73 for
all layers. A simulated data set consists of a RF waveform and
fundamental-mode Rayleigh-wave SWD curves for GV and PV
(Figs 2a–c). To generate correlated random noise, realistic data co-
variance matrices are applied for each data type (Figs 2d–f). We use

the relationship Csi j = σiσ j r
√

(i− j)2
, where σ i and σ j are assigned

the standard deviations of the ith and jth data points, respectively,
and r < 1 is a scaling controlling the correlation lengths. To simulate
realistic errors, we further assume that error magnitudes depend on
data magnitudes. Hence, the standard deviation of the ith data point
is defined as σ i = σ b + a|di|, where σ b is the standard deviation of
the background noise and a is a magnitude scaling.

For the SWD data, we use 0.05 km s−1, 0.01 and 0.80 for σ b, a
and r, respectively. The values to generate RF data are 0.03, 0.10
and 0.90. Correlated noise (Figs 2a–c) is obtained by multiplying a

vector of Gaussian random numbers by the Cholesky decomposition
of the Cs. The synthetic SWD curves consist of 48 data points over
periods of 3–50 s with uniform 1 s sampling (Figs 2a and b). The
Gaussian filter width for the simulated RF is 2.5, and the RF has
216 data points with a sampling rate of 6.25 Hz (Fig. 2c).

Uniform priors are applied with bounds of [2.0,5.5] km s−1, [0.0,
70.0] km, and [1.6,2.0], for VS, layer boundaries, and VP/VS ratio,
respectively. The prior for scaling factors of RF, PV and GV data
covariance matrices is [−3, 3]. During the trans-D optimization, the
number of layers ranges from 2-30. We use λ = 6.0 (eq. 3) for the
Poisson prior on k (Supporting Information Fig. S1).

Twelve processors are used and each one simulates from a single
Markov chain. A total of 200 000 iterations are computed, includ-
ing 50 000 iterations for trans-D optimization, 50 000 for burn-in
and 100 000 for sampling. Here we empirically determine the num-
bers of iterations by visually monitoring the progress of chains
for stationary distributions of data root-mean-square errors and the
likelihood function. The overall quality of samples and the suit-
ability of assumptions can be checked a posteriori by the residual
analysis (Appendix A). Note that we carefully choose the number
of iterations based on many trials in all inversions of this work.
However, the proper length of chains may vary according to data
and prior ranges. Future goals include more rigorous automated
checks for the convergence of chains. Each processor is assigned a
β value from an exponential sequence from ∼0.001 to 1. Samples
are collected only for β = 1.0 such that the final PPD ensemble has
100 000 samples. The trans-D optimization provides rigorous and
efficient model selection without practitioner interaction.

The optimum number of layers is selected by taking the lowest
BIC value throughout the optimization phase (Fig. 3). The inferred
number of layers is 7, which is consistent with the true value. It
is noted that the maximum values of the likelihood increase with
the number of layers until models with 8 layers, which is greater
than the selected dimension. This can be useful to empirically check
the convergence of the model selection process. The following in-
ferences are all based on this (fixed) number of interfaces. The
inversion requires a total of less than one hour of computer time,
which is at least an order of magnitude less cost than our trans-D
sampling algorithms require without chain interactions. Inferences
from the high-dimensional PPD are presented in several ways (see
Appendix B). Fig. 4 shows VS profile marginals and interface prob-
abilities. These VS results exhibit clear velocity transitions for each
layer interface. Since the VS uncertainty estimates include the true
model throughout, we conclude that VS is resolved well by the data
despite the correlated noise. The 1-D marginal of bulk VP/VS shows
a single sharp peak centred at the true value (1.73). Interface prob-
ability as a function of depth (Fig. 4c) shows six clear peaks close
to the true values. The MAP, posterior mean-, and marginal mean-
models (defined in Appendix B) are presented in Fig. 4(d) and all
are close to each other. In addition, we carry out a comparison with
a full trans-D uncertainty estimation approach (see Supporting In-
formation Fig. S2), which is that the trans-D algorithm is applied
throughout the entire inversion process. Based on our test, sampling
duration should be at least four times longer to obtain a converged
PPD. While the trans-D convergence is much more challenging, the
PPD does not differ substantially from the results obtained with our
method (Fig. 4).

The range of data predictions produced by the PPD and the
fit for the MAP model are shown in Fig. 5. Despite the signifi-
cant correlated noise on the data, the range of PPD data predic-
tions and the MAP prediction are reasonably close to the raw syn-
thetic data without noise. The estimated error statistics and scaling
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Figure 2. Synthetic data produced using the assumed true model for (a) phase velocity, (b) group velocity and (c) receiver function. Black and red lines
show noise-free and noisy data, respectively. Insets at the bottom of the figures show applied Gaussian random numbers to generate the noises in data. Data
covariance matrix shown in panels (d)–(f) is used to generate each of the noisy data in panels (a)–(c).

Figure 3. Estimated maximum values of logarithmic likelihood (black) and
corresponding values of the BIC function (red) as a function of the number
of layers in the trans-D optimization phase.

factors are compared to true values in Fig. 6. The estimated covari-
ance matrices generally match the true ones in terms of magnitude
and shape. The marginals of scaling factors (Figs 6g–i) are not
centred on zero and are quite broad, indicating that the effects of

theory errors are not fully resolved by the empirical data covariance
approximation.

Fig. 7 shows the posterior normalized model covariance (correla-
tion) matrix which illustrates dependence between parameters. For
instance, VS values of adjacent layers are often negatively correlated
(e.g. V2 and V1). However, correlation strength decreases with sep-
aration (e.g. V1 and V3). Positive correlations are observed between
layer interface positions and the appropriate VS values. Neighbour-
ing interface positions are also often positively correlated. The scal-
ing factors show less correlation with other parameters, while the
VS are negatively correlated with VP/VS.

Joint marginal distributions (Fig. 8) provide additional insights
into correlations and uncertainties, such as multi-modality and how
similar the posterior is to a multivariate Gaussian. For example, neg-
ative correlation exists between VS of neighbouring layers (Fig. 8a),
and positive correlation between VS and z (Fig. 8b), which is consis-
tent with Fig. 7. In addition, weak negative correlation is observed
between various interface positions (Fig. 8c) and between VP/VS (k)
and VS (Fig. 8d). The correlation between VS and interface depths
appears to be the clearest. Such velocity-depth trade-off is a com-
mon inter-relationship in many geophysical problems using layered
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Figure 4. Synthetic inversion results: (a) posterior profile marginal densities (colour scale) and true model (dashed) for VS, (b) 1-D marginal and the true value
(dashed) for VP/VS, (c) interface probability and (d) individual models from the PPD. In panel (d), the uncertainties of the marginal mean model are presented
with ±2 standard deviations of the VS marginal at corresponding depth bins.
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Figure 5. Range of data predictions for the PPD compared to synthetic observed data (circles): (a) PV, (b) GV, and (c) RF. The predictions for the MAP model
(red) are compared to the synthetic data (with and without correlated errors, black and thick grey, respectively) for (d) PV, (e) GV, and (f) RF.
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Figure 6. True and estimated empirical and hierarchical errors for PV (left), GV (middle) and RF (right) data: (a–c) True non-stationary data covariance
matrices (see Section 2.4), (d–f) inversion estimates, and (g–i) 1-D marginals PPDs of scaling factors (eq. 10). The MAP and true values are shown as red and
black lines, respectively. The estimated matrices are multiplied by the MAP values of the scaling factors as indicated by numbers in scale bars.

structures since much information arises from the traveltime of a
wave in a layer which trades off between velocity and thickness.

4 A P P L I C AT I O N T O DATA F RO M T H E
S O U T H E R N KO R E A N P E N I N S U L A

4.1 Data processing

This section applies the method to several stations on the southern
Korean Peninsula. Data are considered for the stations SEO, TJN
and GKP1 (Fig. 9) in terms of PV and GV SWD curves, and RF
waveforms. The RF are obtained from teleseismic earthquakes in
the distance range of 20◦–100◦ with magnitude (Mb) greater than
5.5, and a Gaussian filter width of 2.5. Only RFs with >90 per cent
fitness during the deconvolution process are selected for the analy-

sis (Ligorrı́a & Ammon 1999). We apply a statistical ensemble ap-
proach to select only similar RF for the stack (Tkalčić et al. 2011).
The method is based on computing the correlation of pairs of RFs
and only those with normalized cross-correlation coefficients >0.9
are retained for stacking.

The SWD curves are obtained from ambient noise tomography
for the southern Korean Peninsula. The process of estimating SWD
from ambient noise cross-correlation and surface wave tomography
is now well established (e.g. Yao et al. 2008; Bensen et al. 2009;
Kim et al. 2012) and only briefly described here: (1) Continuous
recordings from 2005 to 2009 on 32 broad-band stations (Fig. 9) are
subdivided into 1-d-length windows with 50 per cent overlap and
the windowed data are normalized in time and spectral domains.
(2) Between pairs of stations, cross-correlation functions are cal-
culated for all available data to form empirical Green’s functions
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Figure 7. Posterior model covariance (correlation) matrix in the synthetic
experiment. Subscript numbers indicate layers from top to bottom and w1,
w2, and w3 are the scaling factors for PV, GV, and RF, respectively. Stars
indicate parameter pairs for which joint marginals are presented in Fig. 8.

Figure 8. Examples of joint marginal distributions with true value (solid
black).

(EGF). (3) The frequency-time analysis is performed with quality-
control procedures to estimate PV and GV from the ambient noise
EGFs (e.g. Bensen et al. 2007; Lin et al. 2008). (4) Surface wave
tomography (e.g. Kim et al. 2012; Saygin & Kennett 2012) is car-
ried out to provide maps showing horizontal variations of PV and
GV for wave-periods from 3–30 s. (5) SWD curves at locations of
individual stations are composed from the maps by linear interpo-
lation.

4.2 Inversion results and uncertainties

Inversions are carried out with similar settings to those applied in
the simulations. Since SWD data are estimates from ambient noise,
the number of data-points is limited to 28 and the period range to
3–30 s. Similar to the inversion results in Section 3, computer times
for the results at each station are less than one hour.

Figure 9. Map of stations on the southern Korean Peninsula used for this
study. Joint inversions are carried out for three stations (red triangles), while
all the stations (triangles) are used to estimate GV and PV SWD data.
Major tectonic regions are also shown (solid lines): Gyeounggi Massif (GM),
Okcheon Belt (OB), Yeongnam Massif (YM), and Gyeongsang Basin (GB).

Fig. 10 presents marginals for VS, interface probability, and VP/VS

ratio. The trans-D model selection identified significantly different
parametrization complexity for the various stations. The optimal
numbers of layers above the half-space are 6, 9, and 11 for SEO,
TJN and GKP1, respectively. Therefore, it would not be desirable
to make an ad-hoc decision, assuming the same number of lay-
ers for each station. In addition, note that visual inspection of the
data does not provide sufficient insight to decide on an optimal
parametrization. While the three stations are located in different
tectonic regions, VS structure appears to be similar and the depths
of velocity discontinuities are clearly resolved by the inversions.
The uppermost layers at all sites show low VS values (<3.0 km s−1)
for depths of <1 km. The crustal structure is generally simple and
ranging from 3.4 to 3.8 km s−1. Stations SEO and TJN have a clear
upper crustal discontinuity at ∼5–10 km depth. This part of the
crust is more complex at GKP1. In addition, a weaker but clear dis-
continuity is observed at mid-crustal depths (∼20 km) in TJN and
GKP1. The VS estimates are substantially different between sites in
the lower crust and uppermost mantle layers. Station GKP1 have
higher VS (3.8–4.0 km s−1) in the lower crust, while other stations
have relatively uniform mid-to-lower crustal VS (3.5–3.8 km s−1).
In the uppermost mantle, relatively low VS (4.2–4.4 km s−1) is
estimated at GKP1 compared to higher values at other stations
(4.4–4.6 km s−1). Therefore, the Moho velocity contrasts vary sig-
nificantly. The Moho is shallowest at SEO (∼29 km) and >30 km
for all other stations. Notably, the Moho is not resolved as a sharp
discontinuity at GKP1. Rather, interface probability suggests that
the data resolve the discontinuity over an up to 10-km thick region.
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Figure 10. Inversion results in terms of marginal profiles, interface probability, and VP/VS 1-D marginals for three stations.

Where the discontinuity is least sharp, the inversion infers a gradual
transition from crust to mantle.

The VP/VS are well resolved (Fig. 10) and probabilities are sig-
nificantly higher for SEO and TJN. However, note that these low
uncertainties likely do not suggest high sensitivity to in-situ VP.
Rather it is commonly observed that extremely simple parametriza-
tions such as selected here (VP/VS is not a function of depth) produce
low uncertainties. The VP/VS values in individual layers may well
be significantly outside these narrow uncertainty estimates, since
the parametrization only constrain the average value. Therefore,
interpretation of these values should be conservative.

The range of data predictions produced by the PPD samples and
observed data are shown in Fig. 11. The data appear to be fit well,
and the range of predictions generally include the observations. The
GV data fit at station GKP1 shows a discrepancy at periods shorter
than 8 s, while PV and RF data are fit well. The poorer fit for GV
data suggests a possible error in measurement processes, resulting
in inconsistent information between the various data types.

The correlation matrices in Fig. 12 show strong correlations
between many parameters. The correlations appear to be much
stronger than in the synthetic inversion which may be explained
by the higher model complexity with many thin layers and also
by potentially more complicated data errors which are not fully
accounted for by the empirical-hierarchical model. For example,
z in the sixth to eighth layers at TJN are strongly correlated and
correspond to Moho depths and upper mantle.

The joint marginals show examples of several strong positive
correlations for layers around the Moho depth (Figs 13b and c). It
is evident that both strong trade-offs and multi-modal distributions
exist, emphasizing the importance to apply nonlinear inversion for
this problem. Note that some strong correlations may be caused by
layered parametrizations to resolve (Moho) gradient structure. At
station SEO (Fig. 13a), negative correlation is shown between v1

and z2, suggesting a trade-off to compensate for slower velocity of
the surface layer.

4.3 Comparison with previous studies
and tectonic interpretation

This section compares our results in terms of posterior marginal-
mean profiles to previous studies, including an average model for
the entire southern Korean Peninsula and regional models for its
tectonic regions (Kim et al. 2011), and results from joint inversion
with genetic algorithms (GA, Chang et al. 2004; Chang & Baag
2005). While the average and regional models were obtained from

broad-band regional waveform grid-search, the GA results are for
individual stations from joint RF and PV data inversion. The south-
ern Korean Peninsula is composed of two Precambrian massifs,
the Yeongnam Massif (YM) and the Gyeounggi Massif (GM). The
Palaeozoic and the Mesozoic orogenic events between the YM and
GM resulted in the NE–SW trending Okcheon Belt (OB), formed
by accretion, folding and shearing. From the early Cretaceous the
Gyeongsang Basin (GB) formed by subduction of oceanic plates,
which involved the development of a pull-apart basin mainly in the
southeastern part and the east of the peninsula (Chough et al. 2000).
The three stations are located in the three different tectonic regions
(Fig. 9) GM, OB and GB.

Comparison of our results with the average and regional mod-
els in Fig. 14 shows clear similarities in terms of absolute veloc-
ities and crustal boundaries. The crustal interfaces estimated in
our work at depths between 5 and 12 km (Fig. 14) agree reason-
ably well with the 7.5-km discontinuity in the average model. We
further note that these interface depths as well as the velocities
of the adjacent layers also largely agree with the regional mod-
els. However, our results contain better resolved features and are
more straightforward to interpret. For example, our results clearly
resolve shallow low-velocity layers and gradients of velocity dis-
continuities, which are difficult to resolve by using grid-search
methods with a small number of layers and no quantitative model
selection.

The comparison of our results to the GA results shows signif-
icant advantages of our method. While similarity is expected due
to the data observations being similar in both cases, the differences
highlight the significantly different inversion approaches. The GA
results show clear effects that are due to overparametrization and
the required global regularization (smoothest model) (Chang et al.
2004). As a result of overparametrization and regularization, the
GA models exhibit more gradual changes as a function of depth
and also some unconstrained structure where the velocity estimate
jumps back and forth from layer to layer (e.g. lower crust at TJN
and GKP1). The high velocity estimates in the lower crust in the
GA models are likely also due to the smoothness constraint which
prevents strong velocity discontinuities. At the same time, several
low velocity layers (e.g. 5–10 km at SEO) and velocity jumps near
sharp discontinuities (e.g. around Moho depth in SEO) appear to
be unrealistic in the GA results. The problem that smoothest model
regularization produce both too smooth and too rough results is
common and rooted in the global nature of the regularization. In
practice, such features could be interpreted as actual structure. How-
ever, after overcompensating near the Moho, the GA results do revert
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Figure 11. Range of data predictions for the PPD and observed data (white circles).

to estimates similar to our results. The work presented here applies
Bayesian model selection to identify an optimal (parsimonious)
parametrization such that the inversion method does not require
any form of regularization and resulting models are more straight-
forward to interpret. Importantly, this quantitative model selection
results in rigorous uncertainty estimation, although we note that
optimal models are not as general as trans-D models (our approach
fixes the parametrization after trans-D optimization for efficiency
reasons which can result in lower uncertainty estimates).

Although the number of observation is limited in this study, the
crustal boundaries have clear velocity contrasts (∼0.2 km s−1) that
are consistent between stations. These discontinuities may suggest
boundaries in rock composition (Chang & Baag 2005) that are ob-
servable at multiple stations. However, the boundary depths are
shallower than previously detected mid-crustal (∼15–20 km) dis-
continuities (e.g. Cho et al. 2006; He & Hong 2010). These deeper
discontinuities may be present in our model as weak velocity in-
creases near 20-km depth at stations TJN and GKP1 (Figs 10b
and d). Since the crustal discontinuities are observed in all tectonic

regions, we interpret that they are developed during or after the
formation of the Korean Peninsula by a common geological pro-
cesses in a compressional regime, such as an amphibolite-granulite
transitions which are abundant in the central Korean Peninsula (e.g.
Lee et al. 2000). For the GB region, the boundary is overlain by a
low-velocity layer, an upper crust (∼3–8 km) with relatively (when
compared to the other stations) higher velocity (∼3.6 km s−1), and
a deeper shallow crustal boundary (∼4 km). Therefore, the GB has
a thicker sedimentary structure and a relatively high VS in the upper
crust. However, the slower layer around 9-km depth is difficult to
interpret because no evidence about layering of partial melting or
slower materials is reported at this depth. The thicker sedimentary
structure or dipping of the sediment-upper crust boundary could
affect RF waveform data in this region. The marginal-mean models
at SEO and TJN (Fig. 14) exhibit a relatively simple, slower (by
∼0.2 km s−1) lower crust and sharp Moho boundaries compared to
GKP1.

Our results estimate the depths of the Moho discontinuity be-
tween 30 and 34 km, which is similar to the variation in regional
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Figure 12. Estimated model covariance matrices, where stars indicate pa-
rameter pairs for which joint marginals are presented in Fig. 13.

models and agrees with previous studies using RF data (Chang &
Baag 2007; Yoo et al. 2007) where the centre of the YM and OB
regions, and the west of the GB region have thicker crust. How-
ever, the Moho structure exhibits some form of gradient at each
station (sharpest transition at SEO, smoothest transition at GKP1).
This illustrates an advantage of applying quantitative model selec-
tion in our study: The parametrization is adapted to the informa-
tion content of the data and permits more complex models that
result in more elaborate information about VS where required by the
data.

The velocities below the Moho are similar compared to the av-
erage and regional models at SEO and TJN. However, GKP1 show
substantial differences (>0.2 km s−1) that are much larger than our
uncertainty estimates and suggest a regional feature. In addition,
the southeastern station (GKP1) have lower crustal structures with
significantly high VS (>0.3 km s−1) and a less clear Moho discon-
tinuity compared to the stations in the west of the southern Korean
Peninsula (SEO and TJN). These features in the southeastern part
of the Korean Peninsula distinguish them from stations in other
parts. Magmatic underplating has been suggested beneath the GB
(Cho et al. 2004; Chang & Baag 2005), which can be associated
with lower crustal modification and relatively hot upper mantle (e.g.
Zheng et al. 2011).

5 C O N C LU S I O N S

This work developed an efficient and convenient method to carry
out rigorous uncertainty estimation for receiver-side structure for
stations in dense regional networks. The method is based on the
probabilistic joint inversion of Rayleigh-wave phase-velocity and
group-velocity, and RF data. The inversion operates in two phases,
where Phase 1 carries out a trans-D optimization and quantitative
model selection based on an automated application of the Bayesian
information criterion. Phase 2 uses the optimal model identified in
Phase 1 and carried out posterior sampling to estimate parameter
uncertainties. The approach is much more efficient than full trans-D
sampling but lacks some of the generality of trans-D uncertainty
estimation. However, the model selection we apply is efficient, quan-
titative, and practical for potentially large numbers of stations which
is a significant advance over the commonly applied ad-hoc choices
for parametrizations.

Parallel tempering is applied as both an efficient parallel opti-
mization algorithm and to improve sampling efficiency in poste-
rior estimation. The application of a BIC-based objective function
during optimization favours simple models which leads to faster
convergence to an optimum parametrization (avoids computer time
spent on exploring less probable models with excessive complex-
ity). In the sampling phase, empirical data covariance estimates
(based on data residuals) are updated by a hierarchical magnitude
scaling to avoid biases due to the model assumption (assuming un-
correlated errors of unknown standard deviation) that is required to
obtain the residuals.

The inversion is first applied to simulated data with realistic cor-
related and non-stationary errors. The inferred VS profile marginals
are close to the true model and exhibit reasonable uncertainty esti-
mates. In addition, the range of data predictions for the PPD capture
all data features well.

Most importantly, the method is applied to observed data from
three stations on the southern Korean Peninsula. We obtain SWD
data from ambient noise analysis using continuous broad-band
recordings from 32 stations. These data are then jointly inverted
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Figure 13. Examples of joint marginals for parameter pairs indicated by stars in Fig. 12. Map values are presented by vertical and horizontal lines.

Figure 14. Comparison of marginal mean models (solid red) and ±2 standard deviation bounds (dashed red) from this study with previously published results.
Thick grey lines are averages for the entire southern Korean Peninsula and green lines are average models of the tectonic regions (Kim et al. 2011). Models
estimated by Genetic algorithms (Chang et al. 2004; Chang & Baag 2005) are in blue.

with RF data at the three stations to demonstrate the inversion
method. The results are consistent with previously published results
but are much more straightforward to interpret and lead to tecton-
ical insights. When compared to results of regularized inversions,
our results resolve features better. In particular, discontinuities are
clearer and more consistent across the three stations and show less
spurious velocity structure. From these results, we can support the
theory of magma-underplating beneath the southeastern part of the
Korean peninsula.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. Examples of the Poisson prior distribution for different
values of the scale parameter (λ).
Figure S2. The same with Fig. 4 for synthetic inversion re-
sults, but from the inversion with the fully trans-dimensional sam-
pling. Note that four times longer chains are used to sample this

posterior distribution (http://gji.oxfordjournals.org/lookup/suppl/
doi:10.1093/gji/ggw149/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : R E S I D UA L
E X A M I NAT I O N

In Bayesian inversion, uncertainty estimates critically depend on
the formulation of the likelihood function and, by extension, on
reasonable estimates of the data errors. These are typically a
combination of theory and measurement errors that cannot be

Figure A1. Examples of residual analysis in terms of (a) residual autocor-
relation functions of raw residuals (grey) and standardized residuals (black),
and (b) residual histograms of standardized residuals (grey) and standard
normal distribution (black). Note that from −5 to 0 s of the RF waveforms
excluded in the residual analysis.
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separated. In this work, data covariance matrices are initially es-
timated from residual-error statistics (which include the effects of
measurement and theory errors and non-Gaussianity). The initial
estimates are updated by magnitude scaling parameters that are
unknowns in the uncertainty estimation. This approach provides a
relatively simple approach to capture complex covariances while
avoiding large numbers of parameters to model such covariances.
The validity of the covariance estimates can be examined by a pos-
teriori residual analysis (Dettmer et al. 2007). Fig. A1 shows exam-
ples of the residual analysis for the simulation (Fig. A1a) in Section
3, and for the observations at station SEO (Fig. A1b) in Section
4. From the residuals for the MAP model, standardized residuals
are obtained by multiplication with the inverse of the Cholesky de-
composition of the scaled data covariance matrices (Dettmer et al.
2007). If the covariance estimate quantifies the error process rea-
sonably well, standardized residuals are not correlated. This can be
examined by considering the autocorrelation function (left panels
in Fig. A1), which has a centre-peak width of only one point for un-
correlated residuals. In addition, the standardized residuals should
be close to a zero-mean Gaussian distribution of unit standard devi-
ation (right panels in Fig. A1), if the Gaussian assumptions is valid.
Fig. A1 shows that the covariance estimates account for the most
significant correlations and that residuals appear to be reasonably
close to Gaussian, with no significant outliers.

A P P E N D I X B : U N C E RTA I N T Y
Q UA N T I F I C AT I O N

To quantify inversion uncertainty, the PPD should be analysed using
statistical approaches including integrals of high-dimensional prob-
abilities. The MH sampling procedure yields an ensemble of models
that asymptotically represents the PPD. Therefore, inferring the en-
semble provides statistical approaches to analyse the PPD without
explicit high-dimensional integrations as (e.g. Dosso & Dettmer
2011),

I =
∫

f (m)p(m|d)dm ≈ 1

Q

Q∑
i=1

f (mi ) (B1)

where f is a specific function applied to examine the PPD and Q is
number of samples drawn via the MH.

Individual models are useful that represents the PPD to in-
terpret physical structures in many applications using geophys-
ical data. The MAP model maximizes the posterior probabil-
ity, or simply the likelihood function for the case of uniform
priors:

m̂ = argmax {p(m|d)} = argmax {L(m)} . (B2)

And, the posterior mean model m̄ is defined as,

m̄ =
∫

mp(m|d)dm. (B3)

Important properties of inversion uncertainties are deduced from
inter-relationship or covariance between model parameters. The
model covariance matrix Cm provides a quantitative value about
co-relationship between each pair of parameters. Here we use the
correlation matrix R, which is from normalizing the covariance ma-
trix by corresponding standard deviations. The model covariance
matrix is defined as,

Cm =
∫

(m − m̄)(m − m̄)T p(m|d)dm. (B4)

Then, the elements of correlation matrix is obtained by Ri j =
Cm i j/

√
Cm ii Cm j j . In the case that the PPD is potentially multi-

modal and non-Gaussian, the properties of the PPD are not fully
explained by the correlation coefficients. The marginal PPDs show
probability densities of specific parameters over the entire parame-
ter space. For ith element of the model vector, the marginal PPD is
defined by,

p(mi |d) =
∫

δ(mi − m ′
i )p(m′|d)dm′. (B5)

Regarding with the multi-dimensionality of the PPD, the ‘joint’
marginal PPD can be estimated by combinations of different pa-
rameters. Particularly in layered model parametrizations, we can
quantify and visualize the PPD conveniently by using a profile of
the marginal PPD of VS, which is bin-stacked in a tabulated VS-depth
domain with a similar manner to eq. (B5). For an additional indi-
vidual model deduced from the marginal PPD profile, a marginal
mean model is estimated by taking average of VS values from ev-
ery depth-bins. The uncertainty of the marginal mean model can
be obtained by standard deviation of the VS distributions at each
depth.
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