293 research outputs found

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Interpolating Stabilized Element Free Galerkin Method for Neutral Delay Fractional Damped Diffusion-Wave Equation

    Full text link
    A numerical solution for neutral delay fractional order partial differential equations involving the Caputo fractional derivative is constructed. In line with this goal, the drift term and the time Caputo fractional derivative are discretized by a finite difference approximation. The energy method is used to investigate the rate of convergence and unconditional stability of the temporal discretization. The interpolation of moving Kriging technique is then used to approximate the space derivative, yielding a meshless numerical formulation. We conclude with some numerical experiments that validate the theoretical findings. © 2021 Mostafa Abbaszadeh et al

    Tensor Product Multiscale Many-Particle Spaces with Finite-Order Weights for the Electronic Schrödinger Equation

    Get PDF
    We study tensor product multiscale many-particle spaces with finite-order weights and their application for the electronic Schrödinger equation. Any numerical solution of the electronic Schrödinger equation using conventional discretization schemes is impossible due to its high dimensionality. Therefore, typically Monte Carlo methods (VMC/DMC) or nonlinear model approximations like Hartree-Fock (HF), coupled cluster (CC) or density functional theory (DFT) are used. In this work we develop and implement in parallel a numerical method based on adaptive sparse grids and a particle-wise subspace splitting with respect to one-particle functions which stem from a nonlinear rank-1 approximation. Sparse grids allow to overcome the exponential complexity exhibited by conventional discretization procedures and deliver a convergent numerical approach with guaranteed convergence rates. In particular, the introduced weighted many-particle tensor product multiscale approximation spaces include the common configuration interaction (CI) spaces as a special case. To realize our new approach, we first introduce general many-particle Sobolev spaces, which particularly include the standard Sobolev spaces as well as Sobolev spaces of dominated mixed smoothness. For this novel variant of sparse grid spaces we show estimates for the approximation and complexity orders with respect to the smoothness and decay parameters. With known regularity properties of the electronic wave function it follows that, up to logarithmic terms, the convergence rate is independent of the number of electrons and almost the same as in the two-electron case. However, besides the rate, also the dependence of the complexity constants on the number of electrons plays an important role for a truly practical method. Based on a splitting of the one-particle space we construct a subspace splitting of the many-particle space, which particularly includes the known ANOVA decomposition, the HDMR decomposition and the CI decomposition as special cases. Additionally, we introduce weights for a restriction of this subspace splitting. In this way weights of finite order q lead to many-particle spaces in which the problem of an approximation of an N-particle function reduces to the problem of the approximation of q-particle functions. To obtain as small as possible constants with respect to the cost complexity, we introduce a heuristic adaptive scheme to build a sequence of finite-dimensional subspaces of a weighted tensor product multiscale many-particle approximation space. Furthermore, we construct a multiscale Gaussian frame and apply Gaussians and modulated Gaussians for the nonlinear rank-1 approximation. In this way, all matrix entries of the corresponding discrete eigenvalue problem can be computed in terms of analytic formulae for the one and two particle operator integrals. Finally, we apply our novel approach to small atomic and diatomic systems with up to 6 electrons (18 space dimensions). The numerical results demonstrate that our new method indeed allows for convergence with expected rates.Tensorprodukt-Multiskalen-MehrteilchenrĂ€ume mit Gewichten endlicher Ordnung fĂŒr die elektronische Schrödingergleichung In der vorliegenden Arbeit beschĂ€ftigen wir uns mit gewichteten Tensorprodukt-Multiskalen-Mehrteilchen-ApproximationsrĂ€umen und deren Anwendung zur numerischen Lösung der elektronischen Schrödinger-Gleichung. Aufgrund der hohen Problemdimension ist eine direkte numerische Lösung der elektronischen Schrödinger-Gleichung mit Standard-Diskretisierungsverfahren zur linearen Approximation unmöglich, weshalb ĂŒblicherweise Monte Carlo Methoden (VMC/DMC) oder nichtlineare Modellapproximationen wie Hartree-Fock (HF), Coupled Cluster (CC) oder Dichtefunktionaltheorie (DFT) verwendet werden. In dieser Arbeit wird eine numerische Methode auf Basis von adaptiven dĂŒnnen Gittern und einer teilchenweisen Unterraumzerlegung bezĂŒglich Einteilchenfunktionen aus einer nichtlinearen Rang-1 Approximation entwickelt und fĂŒr parallele Rechnersysteme implementiert. DĂŒnne Gitter vermeiden die in der Dimension exponentielle KomplexitĂ€t ĂŒblicher Diskretisierungsmethoden und fĂŒhren zu einem konvergenten numerischen Ansatz mit garantierter Konvergenzrate. Zudem enthalten unsere zugrunde liegenden gewichteten Mehrteilchen Tensorprodukt-Multiskalen-ApproximationsrĂ€ume die bekannten Configuration Interaction (CI) RĂ€ume als Spezialfall. Zur Konstruktion unseres Verfahrens fĂŒhren wir zunĂ€chst allgemeine Mehrteilchen-SobolevrĂ€ume ein, welche die Standard-SobolevrĂ€ume sowie SobolevrĂ€ume mit dominierender gemischter Glattheit beinhalten. Wir analysieren die Approximationseigenschaften und schĂ€tzen Konvergenzraten und KostenkomplexitĂ€tsordnungen in AbhĂ€ngigkeit der Glattheitsparameter und Abfalleigenschaften ab. Mit Hilfe bekannter RegularitĂ€tseigenschaften der elektronischen Wellenfunktion ergibt sich, dass die Konvergenzrate bis auf logarithmische Terme unabhĂ€ngig von der Zahl der Elektronen und fast identisch mit der Konvergenzrate im Fall von zwei Elektronen ist. Neben der Rate spielt allerdings die AbhĂ€ngigkeit der Konstanten in der KostenkomplexitĂ€t von der Teilchenzahl eine wichtige Rolle. Basierend auf Zerlegungen des Einteilchenraumes konstruieren wir eine Unterraumzerlegung des Mehrteilchenraumes, welche insbesondere die bekannte ANOVA-Zerlegung, die HDMR-Zerlegung sowie die CI-Zerlegung als SpezialfĂ€lle beinhaltet. Eine zusĂ€tzliche Gewichtung der entsprechenden UnterrĂ€ume mit Gewichten von endlicher Ordnung q fĂŒhrt zu MehrteilchenrĂ€umen, in denen sich das Approximationsproblem einer N-Teilchenfunktion zu Approximationsproblemen von q-Teilchenfunktionen reduziert. Mit dem Ziel, Konstanten möglichst kleiner GrĂ¶ĂŸe bezĂŒglich der KostenkomplexitĂ€t zu erhalten, stellen wir ein heuristisches adaptives Verfahren zur Konstruktion einer Sequenz von endlich-dimensionalen UnterrĂ€umen eines gewichteten Mehrteilchen-Tensorprodukt-Multiskalen-Approximationsraumes vor. Außerdem konstruieren wir einen Frame aus Multiskalen-Gauss-Funktionen und verwenden Einteilchenfunktionen im Rahmen der Rang-1 Approximation in der Form von Gauss- und modulierten-Gauss-Funktionen. Somit können die zur Aufstellung der Matrizen des zugehörigen diskreten Eigenwertproblems benötigten Ein- und Zweiteilchenintegrale analytisch berechnet werden. Schließlich wenden wir unsere Methode auf kleine Atome und MolekĂŒle mit bis zu sechs Elektronen (18 Raumdimensionen) an. Die numerischen Resultate zeigen, dass sich die aus der Theorie zu erwartenden Konvergenzraten auch praktisch ergeben

    Topics in multiscale modeling: numerical analysis and applications

    Get PDF
    We explore several topics in multiscale modeling, with an emphasis on numerical analysis and applications. Throughout Chapters 2 to 4, our investigation is guided by asymptotic calculations and numerical experiments based on spectral methods. In Chapter 2, we present a new method for the solution of multiscale stochastic differential equations at the diffusive time scale. In contrast to averaging-based methods, the numerical methodology that we present is based on a spectral method. We use an expansion in Hermite functions to approximate the solution of an appropriate Poisson equation, which is used in order to calculate the coefficients in the homogenized equation. Extensions of this method are presented in Chapter 3 and 4, where they are employed for the investigation of the Desai—Zwanzig mean-field model with colored noise and the generalized Langevin dynamics in a periodic potential, respectively. In Chapter 3, we study in particular the effect of colored noise on bifurcations and phase transitions induced by variations of the temperature. In Chapter 4, we investigate the dependence of the effective diffusion coefficient associated with the generalized Langevin equation on the parameters of the equation. In Chapter 5, which is independent from the rest of this thesis, we introduce a novel numerical method for phase-field models with wetting. More specifically, we consider the Cahn—Hilliard equation with a nonlinear wetting boundary condition, and we propose a class of linear, semi-implicit time-stepping schemes for its solution.Open Acces

    DATA-DRIVEN MODELING AND SIMULATIONS OF SEISMIC WAVES

    Get PDF
    In recent decades, nonlocal models have been proved to be very effective in the study of complex processes and multiscale phenomena arising in many fields, such as quantum mechanics, geophysics, and cardiac electrophysiology. The fractional Laplacian(−Δ)/2 can be reviewed as nonlocal generalization of the classical Laplacian which has been widely used for the description of memory and hereditary properties of various material and process. However, the nonlocality property of fractional Laplacian introduces challenges in mathematical analysis and computation. Compared to the classical Laplacian, existing numerical methods for the fractional Laplacian still remain limited. The objectives of this research are to develop new numerical methods to solve nonlocal models with fractional Laplacian and apply them to study seismic wave modeling in both homogeneous and heterogeneous media. To this end, we have developed two classes of methods: meshfree pseudospectral method and operator factorization methods. Compared to the current state-of-the-art methods, both of them can achieve higher accuracy with less computational complexity. The operator factorization methods provide a general framework, allowing one to achieve better accuracy with high-degree Lagrange basis functions. The meshfree pseudospectral methods based on global radial basis functions can solve both classical and fractional Laplacians in a single scheme which are the first compatible methods for these two distinct operators. Numerical experiments have demonstrated the effectiveness of our methods on various nonlocal problems. Moreover, we present an extensive study of the variable-order Laplacian operator (−Δ)(x)/2 by using meshfree methods both analytically and numerically. Finally, we apply our numerical methods to solve seismic wave modeling and study the nonlocal effects of fractional wave equation --Abstract, p. i

    Numerical Computation, Data Analysis and Software in Mathematics and Engineering

    Get PDF
    The present book contains 14 articles that were accepted for publication in the Special Issue “Numerical Computation, Data Analysis and Software in Mathematics and Engineering” of the MDPI journal Mathematics. The topics of these articles include the aspects of the meshless method, numerical simulation, mathematical models, deep learning and data analysis. Meshless methods, such as the improved element-free Galerkin method, the dimension-splitting, interpolating, moving, least-squares method, the dimension-splitting, generalized, interpolating, element-free Galerkin method and the improved interpolating, complex variable, element-free Galerkin method, are presented. Some complicated problems, such as tge cold roll-forming process, ceramsite compound insulation block, crack propagation and heavy-haul railway tunnel with defects, are numerically analyzed. Mathematical models, such as the lattice hydrodynamic model, extended car-following model and smart helmet-based PLS-BPNN error compensation model, are proposed. The use of the deep learning approach to predict the mechanical properties of single-network hydrogel is presented, and data analysis for land leasing is discussed. This book will be interesting and useful for those working in the meshless method, numerical simulation, mathematical model, deep learning and data analysis fields
    • 

    corecore