696 research outputs found

    Challenges and progress on the modelling of entropy generation in porous media: a review

    Get PDF
    Depending upon the ultimate design, the use of porous media in thermal and chemical systems can provide significant operational advantages, including helping to maintain a uniform temperature distribution, increasing the heat transfer rate, controlling reaction rates, and improving heat flux absorption. For this reason, numerous experimental and numerical investigations have been performed on thermal and chemical systems that utilize various types of porous materials. Recently, previous thermal analyses of porous materials embedded in channels or cavities have been re-evaluated using a local thermal non-equilibrium (LTNE) modelling technique. Consequently, the second law analyses of these systems using the LTNE method have been a point of focus in a number of more recent investigations. This has resulted in a series of investigations in various porous systems, and comparisons of the results obtained from traditional local thermal equilibrium (LTE) and the more recent LTNE modelling approach. Moreover, the rapid development and deployment of micro-manufacturing techniques have resulted in an increase in manufacturing flexibility that has made the use of these materials much easier for many micro-thermal and chemical system applications, including emerging energy-related fields such as micro-reactors, micro-combustors, solar thermal collectors and many others. The result is a renewed interest in the thermal performance and the exergetic analysis of these porous thermochemical systems. This current investigation reviews the recent developments of the second law investigations and analyses in thermal and chemical problems in porous media. The effects of various parameters on the entropy generation in these systems are discussed, with particular attention given to the influence of local thermodynamic equilibrium and non-equilibrium upon the second law performance of these systems. This discussion is then followed by a review of the mathematical methods that have been used for simulations. Finally, conclusions and recommendations regarding the unexplored systems and the areas in the greatest need of further investigations are summarized

    Recent Trends in Coatings and Thin Film–Modeling and Application

    Get PDF
    Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value

    ANALYSIS OF ENTROPY GENERATION DUE TO MAGNETOHYDRODYNAMIC COUPLE STRESS FLUID

    Get PDF
    We demonstrate the first reconfigurable photonic metamaterial controlled by electrical currents and magnetic fields, providing first practically useful solutions for sub-megahertz and high contrast modulation of metamaterial optical properties

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Cattaneo–Christov heat flux impacts on MHD radiative natural convection of Al2O3-Cu-H2O hybrid nanofluid in wavy porous containers using LTNE

    Get PDF
    This paper aims to examine impacts of Cattaneo–Christov heat flux on the magnetohydrodynamic convective transport within irregular containers in the presence of the thermal radiation. Both of the magnetic field and flow domain are slant with the inclination angles Ω and γ, respectively. The worked fluid is consisting of water (H2O) and Al2O3-Cu hybrid nanoparticles. The enclosures are filled with a porous medium, and the local thermal nonequilibrium (LTNE) model between the hybrid nanofluids and the porous elements are considered. Influences of various types of the obstacles are examined, namely, horizontal cold elliptic, vertical elliptic and cross section ellipsis. The solution methodology is depending on the finite volume method with nonorthogonal grids. The major outcomes revealed that the location (0.75, 0.5) is better for the rate of the flow and temperature gradients. The higher values of H* causes that the solid phase temperature has a similar behavior of the fluid phase temperature indicating to the thermal equilibrium state. Also, the fluid-phase average Nusselt number is maximizing by increasing Cattaneo–Christov heat flux factor

    Chemical reaction and heat transfer on boundary layer Maxwell Ferro-fluid flow under magnetic dipole with Soret and suction effects

    Get PDF
    AbstractIn this article, the influence of chemical reaction and heat transfer analysis of Maxwell saturated Ferro-fluid flow over a stretching sheet under the influence of magnetic dipole with Soret and suction effects are investigated. The sheet is assumed to be permeable in a semi-infinite domain. Firstly, partial differential equations of mass, momentum and concentration for the governing flow problem are modelled and converted into a system of differential equations by utilizing similarity approach. Then the solution of resulting non-linear differential equations is solved by efficient Runge-Kutta technique based on shooting algorithm with the help of MATLAB. Effect of all appropriate parameters like ferromagnetic interaction parameter, chemical reaction parameter, Maxwell parameter, Soret number, suction parameter, Maxwell parameter, Schmidt number, and suction parameter on velocity, temperature and concentration field are confirmed through graphs and table. From the present conclusions, it is examined that by increasing the Maxwell parameter there is a decrease in the fluid velocity and boundary layer thickness. On the other hand, the uprising behaviour is prominent for both temperature and concentration profiles. Also predicted that there is an enhancement in skin friction coefficient and rate of heat transfer by enlarging suction parameter, but opposite trend is noted for Sherwood number. Also noted that the values of Prandtl are taken ranges from 0.72 to 10. The Nusselt number increases from 1.09 to 4.80

    Numerical Analysis for the Hemodynamics in unruptured Cerebral Aneurysms

    Get PDF
    A cerebral aneurysm is a vascular disorder characterized by abnormal focal dilation of a brain artery which is considered as a serious and potentially life-threatening condition. Cerebral aneurysms affect around 2%-5% of adults and they are fatal and can rupture with an overall mortality rate of more than 50%. Through computational fluid dynamics investigation, this study is offering a closer look into the initiation growth and rupture of cerebral aneurysms. Four focus points are studied in this thesis which are sensitivity analysis of blood viscosity in aneurysms, the effect of cerebral aneurysm size on wall stresses and strain, hazard effects of gravitational forces on aneurysms and the use of porous media to model aneurysm coiling treatment method. This study highly contributes to the advancement of our vision about different aneurysm variables, such as the blood velocity, pressure, wall shear stress and the aneurysm wall stresses and strains. The study aims to provide information for the healthy and diseased cardiovascular functions and to assist in predicting the risk of aneurysm rupture. It provides surgeons with a better understanding of the aneurysm hemodynamics which supports optimal medical treatments
    corecore