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ABSTRACT

The study of magnetohydrodynamics (MHD) flow has received much attention in

the past years owing to its applications in MHD generators, plasma studies, nuclear

reactor, geothermal energy extractions, purifications of metal from non-metal enclo-

sures, polymer technology and metallurgy. In view of the above, theoretical analysis

of the effects of buoyancy force, velocity slip, temperature jump and thermal radi-

ation on entropy generation rate were investigated on electrically conducting couple

stress fluid through porous channel and highly porous medium. Semi-analytical tech-

niques of Adomian decomposition and differential transform were employed to solve

the boundary value problems derived from the conservation of mass, momentum and

energy balance. The velocity profile and temperature profile were used to compute

the irreversibility ratio and Bejan number. Graphical representations were presented

to explain the effects of various flow parameter variations. From the results, it was

found that increase in magnetic field and buoyancy force increased entropy generation

while increase in porosity, velocity slip and temperature jump parameters retarded

entropy generation rate. Moreover, both irreversibility due to viscous dissipation and

heat transfer contributed to entropy generation rate.

Keywords: Magnetohydrodynmic; Entropy generation; Adomian decomposition

method (ADM); Differential transform method (DTM); Bejan number.
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CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

The history of fluid flow is very old, one of the early studies is the work of Leonardo

Da Vinci’s which gave rapid advancement to the study of fluids mechanics about 500

years ago, but earlier than this time; prehistoric relics of irrigation canals have shown

that the study of fluid behaviour were much more available by the time of ancient

Egyptian (Nakayama and Boucher, 1999). Several centuries ago Johann (father) and

Daniel (son) began more modern understanding of fluids motion known as Bernoulli’s

equation. Since then, many researchers have done numerous work on fluid mechanics.

Fluid Mechanics can be described as the study of the behaviour of fluid under the

condition of rest and motion. It involves application of the fundamental laws encoun-

tered in Physics. The laws are Newton’s laws of motion, conservation of mass, first

law of thermodynamics and second law of thermodynamics. Studying the behaviour

of fluids is an essential part in the analysis of fluid models, it is needed in order to

understand various problems ranging from the study of blood flow in the capillaries

to the flow of crude oil across Niger-Delta of Nigeria. Fluid mechanics principles are

required to explain why airplanes are made streamlined with smooth surfaces for the

most efficient flight, while in the other way golf balls are made with rough surfaces to

improve their efficiency.

Fluids consist of liquid and gas (or vapour) phases of the physical forms in which

matter exists. The distinguishing feature between a fluid and the solid state of matter

is seen by comparing fluid and solid behaviour. When a shear stress is applied to a

solid it deforms, but its deformation does not increase with time (Fox, McDonald and

Pritchard, 2004) whereas a fluid deforms continuously when subjected to external

shearing (Rajput, 2004). Fluid can be defined as a substance that offers negligible

1



resistance to a change of shape and is capable of flowing. Specifically, a fluid can

be defined as a substance which deforms continuously when a shear stress of any

magnitude is applied to it. A shear stress (that is force per unit area) occurs when a

tangential force acts on a surface.

1.1.1 Couple Stress Fluid

In continuum mechanics, size effect of material particles within the flow is neglected. It

therefore implies that rotational interaction among particles resulting to symmetrical

nature of force-stress tensor is being ignored. However, in very important cases like

fluid flowing with suspended particles, this is not true. Hence, a size-dependent couple

stress theory is required. The spin field due to microrotation of freely suspended

particles set up an antisymmetric stress, which is called couple-stress, and thus couple-

stress fluid is formed.

Couple stress fluid was introduced by Stokes (1966), it has unique features like the

presence of couple stress, body couples and non-symmetric stress tensor. The impor-

tant feature of couple stress is the introduction of size-dependent effect. According to

Sunil et al. (2002), couple stress appears in fluids with very large molecules. Exam-

ples of such fluids include various types of lubricants with small amount of polymer

additives, blood, electro-rheological fluids, synthetic fluids, etc.

Several authors have discussed various aspects of couple stress fluid under different

flow configurations. For example Srivastava (1985) investigated the flow of couple

stress fluid through stenotic blood vessels. Zakaria (2002) investigated hydromag-

netic fluctuating flow of a couple stress fluid through a porous medium. Rudraiah

and Chandrashekara (2010) presented couple stress effects on the rate of growth of

Rayleigh-Taylor instability at the interface in a finite thickness couple stress fluid. De-

vakar and Iyengar (2010) considered the run up flow of a couple stress fluid between

parallel plates, while Srinivasacharya and Kaladhar (2012a) presented the analytical

solution of free and forced convection couple stress fluid flowing between two circular
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cylinders with the effects of Hall and ion-slip. Furthermore, Rani et al. (2011) inves-

tigated the numerical analysis of couple stress fluid between infinite vertical cylinder.

Double diffusive mixed convection in couple stress fluids with variable fluid properties

was analysed by Dinesh et al. (2015).

The analysis of couple stress fluids has many important applications in numerous pro-

cesses that occur in industry like the extrusion of polymer fluids, solidification of liquid

crystals, cooling of metallic plate in a bath, and colloidal solutions (Srinivasacharya

and Kaladhar, 2012b). Application of couple stress fluids are equally found in syn-

ovial joints (shoulder, hip, knee and ankle), geophysics, chemical engineering and

astrophysics. Walicki and Walicka (1999) and Kumar et al. (2015) modeled synovial

fluids as couple stress fluids in human joints because of the long chain of lauronic acid

molecules found as additives in synovial fluid.

1.1.2 Magnetohydrodynamic

The study of flows in which the fluid is electrically conducting is known as magne-

tohydrodynamics (MHD). Magneto means magnetic field; hydro means fluids; and

dynamics mean forces and the laws of motion. Magnetohydrodynamics (MHD) is the

mathematical model for the low frequency interaction that exists between electrically

conducting fluids and electromagnetic fields (Schnack, 2009). In other words, magne-

tohydrodynamics can be described as the study of the interaction between magnetic

fields and moving, conducting fluids (Dawson, 2001). Other terms used to describe

MHD include magneto fluid dynamics or hydromagnetics. Examples are liquid metals

(such as mercury, gallium, molten magnesium, molten antimony, liquid sodium etc.),

plasmas (ionized gases or electrically conducting gases) such as the solar atmosphere

and salt water or electrolyte.

The fundamental concept behind MHD is that the relative movement of a conducting

fluid and a magnetic field causes an electromotive force to develop, this will induce

electrical currents with density of order σ(u× B), where σ is the electrical conductivity,
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B is the magnetic field and u is the velocity field. The currents will give rise to another

induced magnetic field which is added to the original magnetic field and the fluid

appears to flow along with magnetic field lines. The combined magnetic field (that

is both the imposed and induced) then interacts with the induced current density, J ,

giving rise to a Lorentz force (per unit volume), J × B. This acts on the conductor

and it is directed so as to impede the relative movement of the magnetic field and the

fluid. In the description above, it is observed that fluid can “drag” magnetic field lines

while magnetic fields can pull on the conducting fluids, this partial “freezing together”

of medium and the magnetic field is referred to as MHD. The drive to explore MHD

came as a result of three technological innovations.

(i) Fast-breeder reactors which use liquid sodium as a coolant and this needs to be

pumped,

(ii) Controlled thermonuclear fusion requires that the hot plasma be confined away

from material surfaces by magnetic forces and

(iii) MHD power generation, in which ionized gas is propelled through magnetic

field, was thought to offer improved power station efficiencies.

The governing equations of MHD in differential form are given as follows:

Navier-Stokes equations with Lorentz force

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ j ×B + µf∇2u+ ρg (1.1)

Continuity equation:

∂ρ

∂t
+∇ · ρu = 0 (1.2)

Faraday’s equation:

∇× E = −∂B
∂t

(1.3)
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Ampere’s law:

∇×B = µmj (1.4)

Ohm’s law:

j = σ(E + U ×B) (1.5)

where µm is the magnetic permeability, σ fluid electrical conductivity, µf is the fluid

dynamic viscosity, u is the fluid velocity, E is the electrical field, B is the magnetic

field intensity and j is the current density. Implicit in equations (1.4)-(1.8) are these

additional relations:

∇ ·B = 0 and ∇ · j = 0

Magnetohydrodynamics has applications in numerous engineering processes such as;

(i) the metallurgical industries where magnetic fields are routinely used to heat,

pump, stir and levitate liquid metals,

(ii) electromagnetic stirring,

(iii) dampen the motion of liquid metal,

(iv) electrolysis cells where it is used to reduce aluminium oxide to aluminium

(Dawson, 2001).

(v) Astrophysics (planetary magnetic field),

(vi) Ship propulsion where electric current is applied to create MHD propulsion force

(see Figure 1.1),

(vii) MHD generators (as shown in Figure 1.2),

(viii) MHD flow meters,

(ix) Dispersion (granulation) of metals,

(x) MHD flow control (reduction of turbulent drag),
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(xi) Magnetic filtration and separation,

(xii) Jet printers,

(xiii) Fusion reactors (Abdou, 2007).
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Figure 1.1: Magnetohydrodynamic Ship Propulsion (Abdou, 2007)
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Figure 1.2: Magnetohydrodynamic Generator (Abdou, 2007)
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1.2 Basic Equations of Flow

The three basic equations that govern the dynamic of fluid flow are the fundamental

governing equations of fluid dynamics which are: the continuity equation, momentum

equation and energy equation. These equations are mathematical statements of the

three physical principles which are; conservation of mass, conservation of momen-

tum (Newton’s second law of motion) and conservation of energy (the first law of

thermodynamics).

Figure 1.3: Fluid element in three-dimensional flow (Rajput, 2004)
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1.2.1 Continuity Equation

Consider a small control volume (CV) as shown in Figure 1.3. Let ρ be mass density

of the fluid at a particular instant and u, v, w are component of velocity of flow en-

tering the three faces of the parallelepiped

Fluid influx (rate of mass of fluid entering the face ABCD) through ABCD =

ρ × velocity (x-direction ) × area of ABCD = ρ × u × dydz

Fluid efflux (rate of mas of fluid leaving the face EFGH) through EFGH =

ρ u dydz +
∂

∂x
(ρ u dydz)dx (1.6)

Gain in mass per unit time in x-direction = Fluid influx - Fluid efflux =

ρ u dydz − (ρ u dydz +
∂

∂x
(ρ u dx)dydz) (1.7)

Y -direction

Fluid influx (rate of mas of fluid entering the face ADHE) through ADHE =

ρ × velocity (y-direction ) × area of ADHE =ρ × v × dxdz

Fluid efflux (rate of mas of fluid leaving the face BCGF) through BCGF =

ρ v dxdz +
∂

∂y
(ρ v dxdz)dy (1.8)

Gain in mass per unit time in y-direction = Fluid influx - Fluid efflux =

ρ v dxdz − (ρ v dxdz +
∂

∂y
(ρ v dy)dxdz) (1.9)

z-direction

Fluid influx (rate of mas of fluid entering the face CDHG) through CDHG =

ρ × velocity (z-direction ) × area of CDHG = ρ × w × dxdy
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Fluid efflux (rate of mas of fluid leaving the face ABFE) through ABFE =

ρ w dxdy +
∂

∂z
(ρ w dxdy)dz (1.10)

Gain in mass per unit time in z-direction = Fluid influx - Fluid efflux =

ρ w dxdy − (ρ w dxdy +
∂

∂z
(ρ w dz)dxdy) (1.11)

Net mass gain in fluid along the three axes =

−

[
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z

]
dxdydz (1.12)

The total mass gain must equal to the rate of mass decrease within the control volume,

which is given as

∂ρ

∂t
dxdydz (1.13)

that is, equation (1.12) must be equal to equation (1.13), this yields

−

[
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z

]
dxdydz =

∂ρ

∂t
dxdydz (1.14)

Simplifying, we have

∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
+
∂ρ

∂t
= 0 (1.15)

The equation above is a three dimensional continuity equation for both compressible

and incompressible fluid. If the density is constant, that is ∂ρ
∂t

= 0, we obtain

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1.16)

which is the continuity equation for incompressible fluids. For 2-dimensional continu-

ity equation (x and y directions where w = 0), we obtain

∂u

∂x
+
∂v

∂y
= 0 (1.17)
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For one-dimensional continuity equation (x direction, v = w = 0), we have

∂u

∂x
= 0 (1.18)
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Figure 1.4: Infinitesimally small, moving fluid element(Wendt, 2009)
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1.2.2 Momentum Equation

Navier-Stoke equations are non-linear partial differential equations with time and

space dependency. The equations describe the flow of a fluid whose stress depends

linearly on velocity and pressure. The principle of Newton’s second law of motion is

applied to derive the Navier-Stoke equation.

F = ma (1.19)

where F = force, m = mass, a = acceleration. According to Newton’s second law in

equation (1.19) the net force on fluid element equals its mass times the acceleration

of the element.

The x-component of equation (1.19) is given as:

Fx = max (1.20)

where Fx and ax are the force and acceleration components in the x-direction. The

force comprises the body forces and the surface forces. Body forces are forces like

gravitational force which acts directly on the volumetric mass of the fluid element.

If we denote the body force per unit mass acting on the fluid element by f and fx

as the components of this force in the x-direction, we get the body force on the fluid

element acting in the x-direction as:

ρ fx dxdydz (1.21)

where dxdydz is the volume of the fluid element. From this discussion and Figure 1.5.

Net surface force in the x-direction =

[
p− (p+

∂p

∂x
dx)

]
dydz +

[
(τxx +

∂τxx
∂x

dx− τxx

]
dydz +

[
(τyx +

∂τyx
∂y

dy)− τyx

]
dxdz +

[
(τzx +

∂τzx
∂z

dz)− τzx

]
dxdy (1.22)
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Simplifying equation , we have

Fx =

(
− ∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
dxdydz + ρ fx dxdydz (1.23)

Writing

m = ρdxdydz (1.24)

The substantial derivative is given as

ax =
Du

Dt
(1.25)

Using equations (1.23)-(1.25) in equation (1.20) gives

ρ
Du

Dt
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx (1.26)

In this way we can obtain y- and z-components as

ρ
Du

Dt
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy (1.27)

ρ
Du

Dt
= −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz (1.28)

Equations (1.26)-(1.28) are the x-, y- and z-components non-conservation forms of

the momentum equations.

To derive the conservation form of the momentum equations, the left hand side of

equation (1.26) is written using the definition of the substantial derivative:

ρ
Du

∂t
= ρ

∂u

Dt
+ ρV · ∇u (1.29)
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but

ρ(∂u)

∂t
= ρ

∂u

∂t
+ u

∂ρ

∂t
⇒ ρ

∂u

∂t
=
∂(ρu)

∂t
− u∂ρ

∂t
(1.30)

and

∇ · (ρuV ) = u∇ · (ρV ) + (ρV ) · ∇u (1.31)

or

ρV · ∇u = ∇ · (ρuV )− u∇ · (ρV ) (1.32)

Then equation (1.29) becomes

ρ
Du

Dt
=
∂(ρu)

∂t
− u∂ρ

∂t
− u∇ · (ρV ) +∇ · (ρuV ) (1.33)

ρ
Du

Dt
=
∂(ρu)

∂t
− u
∣∣∣∣∂ρ∂t +∇ · (ρV )

∣∣∣∣+∇ · (ρuV ) (1.34)

and from the continuity equation

ρ
Du

Dt
=
∂(ρu)

∂t
+∇ · (ρuV ) (1.35)

The momentum equations (1.26)-(1.28) can then be written in conservation form as

∂(ρu)

∂t
+∇ · (ρuV ) = −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx (1.36)

∂(ρp)

∂t
+∇ · (ρuV ) = −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy (1.37)

∂(ρu)

∂t
+∇ · (ρuV ) = −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz (1.38)
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Suppose the fluid is Newtonian, that is, the shear stresses on the fluid element layer

are directly proportional to the rate of shear strain. Then the shear stresses are

written as

τxx = η∇ · V + 2µ
∂u

∂x
, τyy = η∇ · V + 2µ

∂v

∂x
, τzz = η∇ · V + 2µ

∂w

∂x
(1.39)

τxy = τyx = µ

(
∂v

∂x
+
∂u

∂y

)
, τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
, τyz = τzy = µ

(
∂w

∂y
+
∂v

∂z

)
(1.40)

where µ is the molecular viscosity coefficient and η = 2
3
µ is the bulk viscosity coeffi-

cient. Using the above in equations (1.36)-(1.38) yields

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂p

∂x
+

∂

∂x

(
η∇ · V + 2µ

∂u

∂x

)
+

∂

∂y

∣∣∣∣∣µ(
∂v

∂x
+
∂u

∂y
)

∣∣∣∣∣+

∂

∂z

∣∣∣∣∣µ(
∂u

∂z
+
∂w

∂x
)

∣∣∣∣∣+ ρfx (1.41)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂p

∂y
+

∂

∂x

∣∣∣∣∣µ
(
∂v

∂x
+
∂u

∂y

)∣∣∣∣∣+
∂

∂y

(
η∇ · V + 2µ

∂v

∂x

)
+

∂

∂z

∣∣∣∣∣µ
(
∂w

∂y
+
∂v

∂z

)∣∣∣∣∣+ ρfy (1.42)

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw2)

∂z
= −∂p

∂z
+

∂

∂x

∣∣∣∣∣µ
(
∂u

∂z
+
∂w

∂x

)∣∣∣∣∣+
∂

∂y

∣∣∣∣∣µ
(
∂w

∂y
+

∂v

∂z

)
∂

∂z

(
η∇ · V + 2µ

∂w

∂x

)
+ ρfz (1.43)
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Figure 1.5: Energy fluxes associated with an infinitesimally small, moving fluid
element (Wendt, 2009)
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1.2.3 Energy Equation

The law of conservation of energy (the first law of thermodynamics) is applied here

to derive energy equation. The law states that the sum of work and heat added to a

system will always equal to the increase of energy,

{Rate of change of energy inside the fluid element} = {Net flux of heat into fluid

element}+ { Rate of work done on the element due to body and surface forces}

The rate of work done by the body force acting on the fluid element moving at a

velocity V is given by ρ F · V dV = ρ F · V dxdydz

In Figure 1.6, the work done by pressure and shear stresses in the x-, y- and z-

directions add up to∣∣∣∣∣− ∂(up)

∂x
+
∂(uτxx)

∂x
+
∂(uτyx
∂y

+
∂(uτzx
∂z

∣∣∣∣∣dxdydz (1.44)

∣∣∣∣∣− ∂(vp)

∂y
+
∂(vτxy
∂x

+
∂(vτyy
∂y

+
∂(vτzy
∂z)

∣∣∣∣∣dxdydz (1.45)

∣∣∣∣∣− ∂(wp)

∂z
+
∂(wτxz)

∂x
+
∂(wτyz
∂y

+
∂(wτzz)

∂z

∣∣∣∣∣dxdydz (1.46)

The total, net rate of work done on the moving fluid element is given as

∣∣∣∣∣− (
∂(up)

∂x
+
∂(vp)

∂y
+
∂(wp)

∂z
) +

∂(uτxx)

∂x
+

∂(uτyx)

∂y
+
∂(uτzx)

∂z
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z
+

∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂z

∣∣∣∣∣dxdydz + ρF · V dxdydz (1.47)

The volumetric heating of the element is ρ q dxdydz, where q is the rate of volumetric

heat addition per unit mass. The net heat transferred in the x-direction into the fluid
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element by thermal conduction is given as∣∣∣∣∣(qx(qx +
∂qx
∂x

dx)

∣∣∣∣∣dydz = −∂qx
∂x

dxdydz (1.48)

Adding this to similar expressions for the y- and z-directions to give the total heat of

the fluid element by thermal induction as

−

(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
dxdydz (1.49)

Combining this with volumetric heating of the fluid element, gives

Net flux of heat into the element =∣∣∣∣∣ρq −
(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
dxdydz

∣∣∣∣∣ (1.50)

substituting qx = −k ∂T
∂x

; qy = −k ∂T
∂y

; qz = −k ∂T
∂z

where k is the thermal conductivity,

into equation (1.50), yields

Net flux of heat into the element =[
ρq +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)]
dxdydz (1.51)

{ Rate of change of energy inside the fluid element } =

ρ
D

Dt

(
E +

V 2

2

)
dxdydz (1.52)

where E is the internal energy per unit mass and V 2

2
(V 2 = u2+v2+w2) , is the kinetic

energy per unit mass. The energy equation can then be written as
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ρ
D

Dt

(
E +

V 2

2

)
= ρq +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
−(

∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z

)
+
∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z
+

∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z
+
∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂z
ρF · V (1.53)

Replacing the viscous stress terms with their equivalent expression gives the energy

equation (1.53) in terms of the flow field variables, to obtain

ρ
D

Dt
= ρq +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
− p

(
∂(u)

∂x
−

∂(v)

∂y
− ∂(w)

∂z

)
+ η

(
∂(u)

∂x
− ∂(v)

∂y
− ∂(w)

∂z

)
+∣∣∣∣∣2(∂(u)

∂x

)2
+ 2
(∂(v)

∂y

)2
+
(∂(u)

∂y
+
∂(v)

∂x

)2
+
(∂(u)

∂y
) +

∂(w)

∂x

)2
+

(∂(v)

∂z
+
∂(w)

∂y

)2∣∣∣∣∣ (1.54)

The conservation form of the energy equation (1.54) can be written as

ρ
ρE

Dt
+∇ · (ρEv) = ρq +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
− p

(
∂(u)

∂x
− ∂(v)

∂y
− ∂(w)

∂z

)
+ η

(
∂(u)

∂x
− ∂(v)

∂y
− ∂(w)

∂z

)
+

µ

∣∣∣∣∣2(∂(u)

∂x

)2
+ 2
(∂(v)

∂y

)2
+

(
∂(u)

∂y
+
∂(v)

∂x

)2

+

(
∂(u)

∂y
) +

∂(w)

∂x

)2

+(
∂(v)

∂z
+
∂(w)

∂y

)2∣∣∣∣∣ (1.55)
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1.3 Statement of the Problem

Studies of electrically conducting fluids in porous channels are important areas of

research due to their broad applications in Magnetohydrodynamic generators, ship

propulsion, fusion reactors, electrolysis and astrophysics. Although several studies

on electrically conducting fluids have been investigated in various fluid flows such as:

second grade fluid (Olanrewaju et al., 2016), third grade fluid (Hayat et al., 2015),

nanofluid (Das et al., 2015), Jeffrey fluid (Noreen et al., 2013), Eyring Powell fluid

(Jawad et al., 2015), Sisko fluid (Awaisa et al., 2017), couple stress fluid and the likes,

entropy generation of electrically conducting couples stress fluid has not been given

due attention. It is worth pointing out that a few recent investigations in this area

are channelled towards the effects of Brinkman number, Prandtl number, suction/in-

jection and Biot numbers.

Consequently, this study considers entropy generation of MHD couple stress fluid

which has been neglected. Furthermore, the analysis is carried out under the fol-

lowing flow configurations viz: porous channel, porous medium and vertical porous

medium. In addition, the effects of other important parameters on the entropy gen-

eration of hydromagnetic couple stress fluid like velocity slip, temperature jump and

thermal radiation are incorporated. Two semi-analytical techniques namely; Adomian

Decomposition Method and Differential Transform Method are used for the analysis.

1.4 Aim and Objectives

The aim of this study is to investigate the influence of magnetohydrodynamic, Ohmic

heating, porosity, buoyancy force, slip velocity, temperature jump and thermal ra-

diation on entropy generation rate in the flow of couple stress fluid through porous

channel and porous medium. The specific objectives are to:

(i) analyse the influence of magnetic field on couple stress flow through porous

channel with entropy generation;
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(ii) apply second law of thermodynamics for the analysis of hydromagnetic couple

stress fluid through a channel filled with non-Darcian porous medium;

(iii) investigate the inherent irreversibiliy in a buoyancy induced MHD couple stress

fluid;

(iv) investigate the combined effects of velocity slip and temperature jump on en-

tropy generation of radiative reactive hydromagnetic couple stress fluid through

vertical porous medium and

(v) compare the results with the existing method in literature.

1.5 Motivation

Heat transfer by convection process within the channel is irreversible, as a result, en-

tropy generation is continuous due to energy and momentum exchange which occurs

within the flow channel, and this can significantly alter the success of the desired

goal in engineering processes. This is due to the fact that increased entropy gener-

ation rate translates into destruction of the available energy for work. According to

Arikoglu et al. (2008) all processes that produce, convert and consume energy must be

re-examined very carefully and all available-work destruction mechanisms be removed.

In view of the above, entropy generation analysis of electrically conducting couple

stress fluid was considered in this study due to its enormous applications in engineer-

ing processes. This is to ensure all forms of exergy wastage involved in the application

of MHD couple stress fluid are removed or reduced.

In addition, the rapidly convergent Adomian decomposition and differential trans-

form techniques applied in this research have not been fully explored. However, few

authors who have employed these techniques in solving boundary value problems aris-

ing from fluid flows are: Gbadeyan and Hassan (2012); Adesanya (2014); Adesanya

et al. (2015); Hassan and Gbadeyan (2014) and Rashidi et al. (2011). Application of
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these methods in other areas are noted in the works of Adesanya et al. (2013); Hassan

(2008); Opanuga et al. (2015a); Opanuga et al. (2015b); Opanuga et al. (2016).

1.6 Justification for Research

The influence of magnetic field on the flow of thermal structure has received greater

attention due to its important applications in numerous areas. This study will enhance

safety of lives and properties during the application of reactive MHD couple stress

fluids and reduce entropy production which arises due to Ohmic heating present in

such flows.

In view of the foregoing, critical analysis of irreversibility associated with MHD couple

stress fluid and reactive MHD couple stress fluid will assist in achieving such a goal.

1.7 Significance of the Study

There has been a renewed interest in the study of the factors responsible for entropy

generation due to its destructive effect. This research will therefore provide insight

into the causes of irreversibility on MHD couple stress fluid. Moreover, it will enable

scientists and engineers to maximise the use of this type of fluid and hence reduce

these losses.

1.8 Scope of Research

This study considered entropy generation of MHD couple stress fluid through porous

channel, porous medium and vertical porous medium. The effect of convective heating,

velocity slip, temperature jump boundary conditions as well as thermal radiation are

analysed. Two semi-analytical techniques are applied in this analysis because of their

rapid convergence and less computational involvement.
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1.9 Limitation

Cylindrical and rotational flow geometries are not considered in this study due to

time constraint.

1.10 Delimitation

This research is limited to the following:

(i) steady case of the models are considered;

(ii) the flow geometries include horizontal and vertical channels since these are the

two broad categories of flow geometries due to the applications in ;

(iii) both porous and highly porous medium are analysed due to their applications

in earth science, energy science, and many other areas.

1.11 Definition of Terms

In this section various terms used in this study are defined;

Definition 1.11.1 (Viscosity): Viscosity refers to fluid thickness. It is the resis-

tance to the sliding motion of one fluid layer over the other (Sabersky et al., 1999).

Alternatively, it is defined as fluid property that determines its resistance to shearing

stresses (Rajput, 2004). The relationship between viscosity and temperature differ

from liquid to gas. In liquid, increase in temperature reduces the viscosity because

molecules separate from each other, which decreases the attraction. In the case of

gas, increase in temperature increases the molecular mixing, that is, it increases the

cohesion and momentum exchange between the layers of gases, thereby increasing the

viscosity of gaseous molecules (Nakayama and Boucher, 1999).

Definition 1.11.2 (Newtonian Fluids): These are fluids that obey the Newto-

nian’s law which states that, “the shear stress (τ) on a fluid element layer is directly
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proportional to the rate of shear strain”. The constant of proportionality is referred

to as the coefficient of viscosity that is,

τα
du

dy
⇒ τ = µ

du

dy
(1.56)

where (µ) is the proportionality constant (Rajput, 2004). Examples of Newtonian

fluids include water, gasoline, air, etc. Newtonian fluids do not change their viscosity

when under stress. Fluid viscosity depends on temperature and pressure and not on

the forces that act upon it.

Definition 1.11.3 (Non-Newtonian Fluids): These are fluids that do not follow

the linearity between the shear stress and deformation rate. When non-Newtonian

fluids are stressed their viscosity varies that is, they behave strangely either by be-

coming thicker or thinner. Some of these fluids behave either as a result of the applied

stress or the length of time the stress is applied. They can be categorized into four

viz:

(i) Rheopetic: These types of fluids become more viscous as they are stressed

over a period of time. For example Cream (viscosity increases over a period of

time).

(ii) Thixotropic: These fluids become less viscous as they are stressed over a period

of time for example honey.

(iii) Dilatant: These fluids change their viscosity based on how much force is ap-

plied. They tend to become more viscous when more force is applied, for example

Oobleck (viscosity increases with increased stress).

(iv) Pseudoplastic: They become less viscous when more force is applied for ex-

ample Tomato ketchup (viscosity decreases with increase in stress)

Definition 1.11.4 (Porous Channel): Porous channel consists of a passage with

permeable walls. They are built of solid matrix with pores. The walls are connected
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together to allow the passage of fluids. Porous channel has applications in agricul-

ture (irrigation, land drainage), geothermal system, microelectric heat transfer, grain

storage and action of kidney.

Definition 1.11.5 (Porous Medium): This is a material that consists of a solid ma-

trix with interconnected pores. The solid material is either rigid or it undergoes small

deformation. Fluids flow through the material is due to the interconnectedness of the

pores. Rye bread, beach sand, limestone, sandstone,wood and the human lung are

some of the examples of natural porous media (Nield and Bejan, 2006) See Figure 1.6.

Definition 1.11.6 (Thermal Diffusivity): Thermal diffusivity is the ratio of a

material thermal energy conduction to its thermal energy storage. Mathematically it

can be expressed as in equation (1.57):

α =
k

(ρCp)
(1.57)

where α, k, ρ and Cp are the thermal diffusivity, thermal conductivity, density and

the specific heat at a constant pressure respectively.
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Figure 1.6: Application of Porous Medium, (Collins, 1961; Bejan, 1984)

(A) Beach Sand, (B) Sandstone, (C) Limestone, (D) Rye Bread, (E) Wood, (F) Hu-

man Lung, (G) Granular porous materials used in the construction and (H) Crushed

Limestone
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Definition 1.11.7 (First Law of thermodynamics): It is the statement of law of

conservation of energy, that energy can neither be created nor destroyed but can be

converted from one form to the other. First law of thermodynamics states that energy

is conserved in all thermodynamic processes. It further states that the amount of work

equals the product of the external force acting on the system and the component of

the displacement parallel to the force (Schetz and Fuhs, 1999). The sum of work and

heat added to a system will always equal to the increase of energy as given in equation

(1.58).

∆U = q + w (1.58)

where ∆U is the total change in internal energy of a system, q is the heat exchanged

between a system and its surroundings and w is the work done by or on the system.

Definition 1.11.8 (Second Law of Thermodynamics): The second law states

that during any reaction the total useful energy in the universe will decrease. It

further states that a useful state variable called entropy S exists. The change in

entropy delta S is equal to the ratio of heat transfer delta Q to the temperature T,

that is,

δS =
δQ

T
(1.59)

The second law is a statement of inequalities. It is also an expression of the impossi-

bility of a process occurring. By first law such a process will possibly occur. Second

law of thermodynamics can be stated that during the process of converting one form

of energy into another, identical quantities of the energy are involved regardless of

the feasibility of the process. In other form, second law states that in any irreversible

physical process, there is an increase in both the entropy of the system and the en-

vironment. It has been experimentally confirmed that when energy (heat energy) is

transferred to a system, only a portion of heat can be converted to work. The above

definition leads to other two terms, entropy and exergy. The entropy of a system is
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the degree of its disorderliness. It represents the unavailability of a system’s thermal

energy for conversion into mechanical work, while exergy is the available energy for

conversion into work. The conclusion here is that a thorough knowledge of the irre-

versibility process will help in minimizing entropy and maximizing the conversion of

energy to useful work in engineering processes (Noor et al., 2012).

Definition 1.11.9 (Entropy Generation): Entropy production determines the per-

formance of thermal machines such as power plants, heat engines, refrigerators, heat

pumps, and air conditioners. It is the measure of the irreversibility that is associated

with the real processes. As entropy generation occurs, the available energy (that is,

exergy) reduces. To preserve the available energy in a fluid flow process or at least to

reduce the irreversibility, it is necessary to investigate entropy generation distribution

within the fluid volume. Minimizing entropy generation in systems is the only means

by which optimal performance of machine can achieved. Many studies have been

published to determine the factors responsible for irreversibility in components and

systems. Bejan (1982) analysed the irreversibility for forced convective heat transfer

due to temperature gradient and viscosity effect in a fluid. He equally presented some

factors that cause entropy generation in applied thermal engineering. According to

Bejan (1996), the general equation for the entropy generation per unit volume is given

by:

Sm =
k

T 2
w

(∇T )2 +
µ

Tw
Φ (1.60)

the first term in the equation is the entropy generation due to heat transfer while the

second term is the viscous dissipation irreversibility. k is thermal conductivity, T is

fluid temperature, µ is the dynamic viscosity and Φ is the irreversibility ratio.

Definition 1.11.10 (Buoyancy Force): An object is submerged when a fluid exerts

a force on it. Such a force due to a fluid in equilibrium is known as the buoyancy or

the upthrust. Buoyancy forces occur due to variations of density in a fluid subject to
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gravity (Turner, 1973). The weight of the displaced volume of fluid and the buoyance

has the same magnitude. Buoyancy is very important in many engineering application

such as in the designing of ships, boats, buoys and so on.

Definition 1.11.11 (No-Slip Condition): In fluid dynamics, the no-slip condition

for all viscous fluids states that at a solid boundary, fluid assumes the velocity of the

boundary. Velocity of fluid at all fluid-solid boundaries is equal to that of the solid

boundary (Michael, 1990). Particles that are close to a surface do not flow along with

other fluid, this occurs when the forces of adhesion is stronger than forces of cohesion.

At the fluid-solid interface, the attractive force between the fluid particles and solid

particles ( that is forces of adhesion) is greater than the forces between the particles

of fluid (forces of cohesion). The imbalance between the two forces reduces the fluid

velocity to zero. A common approximation for fluid slip is:

u− uwall = β
∂u

∂η
(1.61)

where η is the coordinate normal to the wall and β is called the slip length. For an

ideal gas, the slip length is often approximated as β ≈ 1.15l where l is the mean free

path (David et al., 1992).

Definition 1.11.12 (Prandlt Number): The Prandtl number (Pr) is the measure

of the momentum diffusivity (kinematic viscosity) divided by the thermal diffusivity.

Low Pr indicates strong conductive transfer whereas high Pr indicates strong convec-

tive transfer (Chandra and Chhabra, 2012).

Mathematically,

Pr =
v

k
=

η
ρ

λ
ρCp

=
ηCp
λ

(1.62)

where v is kinematic viscosity and k is thermal diffusivity

Definition 1.11.13 (Frank-Kamenetskii Parameter): The Frank-Kamenetskii

parameter (λ) is a measure of how reactive the gases or reactants are, what the

dimensions of the system involved, and the effect of ambient temperature on the
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Table 1.1: Typical values of Prandtl number

Material Pr
Gases 0.7-1.0

Air 20◦C 0.71
Water 1.7-13.7
Oils 50-100,000

system.

Definition 1.11.14 (Ohmic Heating): Ohmic heating, also known as Joule heating

and resistive heating, is the process by which heat is released during the passage of

an electric current through a conductor. The amount of heat released is in direct

proportion to the square of the current such that.

H ∝ I2 ·R · t (1.63)

Equation (1.63) represents Joule’s first law or Joule-Lenz law. Joule heating affects

the whole electric conductor, unlike the Peltier effect which transfers heat from one

electrical junction to another (Singh and Kumar, 1996).

1.12 Organisation of the Study

The rest of the thesis is organised as follows: Chapter two focuses on the review of

related literature. The review examines previous studies with the view to identifying

gaps and determining the gaps this current study would fill. In chapter three, analysis

of the two methods applied in this study are presented together with model formula-

tion and solution procedure. Chapter four presents the results as well as the detailed

discussion of results. Finally, chapter five concludes the study, while summarising and

offering recommendations for further study.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The study of magnetohydrodynamics flow has received much attention in the past

years owing to its applications in MHD generators, plasma studies, nuclear reactor,

geothermal energy extractions, purifications of metal from non-metal enclosures, poly-

mer technology and metallurgy. Magnetic fields produce many complex phenomena in

magnetohydrodynamic flows such as Hall currents, ion slip effects (at higher strength

magnetic fields), Joule (Ohmic) heating, Alfven waves in plasma flows, etc. (Cramer

and Pai, 1973). Such effects can have a significant effect on heat transfer and flow

dynamics. For instance in ionized gases having low density and strong magnetic field,

the electrical conductivity perpendicular to the magnetic field is reduced due to free

spiraling of electrons and ions about the magnetic lines of force prior to collisions;

a current is thereby induced which is mutually perpendicular to both electrical and

magnetic fields, constituting the Hall current effect. (Beg et al., 2009).

One of the earliest attempts to understand MHD was the Faraday’s famous experi-

ment of 1832 on Waterloo Bridge, which was intended to detect tidal motion in River

Thames by electromagnetic induction. Such experiment is not an MHD experiment,

since the dynamical effect of the field on the motion is negligible and is not included.

The main origin of MHD dates back to pioneering discoveries of Northrup, Hartmann,

Alfven, and others in the early twentieth century. After 1950, the subject witnessed

rapid development and soon became a well established field of scientific endeavour

in various contexts: These include geomagnetism and planetary magnetism, astro-

physics, nuclear fusion (plasma) physics, liquid metal technology and so on (Molokov

et al., 2007).
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2.2 Review of Related Literature

2.3 Magnetohydrodynamic

Batchelor (1949) investigated on the spontaneous magnetic field in a conducting liq-

uid in turbulent motion. Alfven (1956) presented the Sun’s general magnetic field,

submitting that all the fine structure of the corona is given by the magnetic field,

Chang and Lundgren (1961) studied the duct flow in magnetohydrodynamics, (Mof-

fatt, 1970) considered the Turbulent dynamo action at low magnetic Reynolds number

while Hunt and Shercliff (1971) investigated magnetohydrodynamics at high Hart-

mann number. Some extremum principles for pipe flow in magnetohydrodynamics

was presented by Smith (1972), who argued that with appropriate choices for the ex-

trema, an asymptotic expansion for the mass-flow rate at large Hartman number can

be constructed. Later, Sloan (1973) extended it to extremum principles for magneto-

hydrodynamic channel flow. In the work of Gupta (1972), effect of uniform magnetic

field on the Eckman layer over an infinite horizontal plate at rest relative to an elec-

trically conducting liquid rotating with uniform angular velocity about a vertical axis

was considered. Rao et al. (1982) analyzed the combined effect of free and forced

convection on MHD flow in a rotating porous channel. Seth et al. (1982) investigated

unsteady hydromagnetic Couette flow in a rotating system. Chandran et al. (1992)

further reported the effect of rotation on unsteady electrically conducting Couette

flow, showing that increase in magnetic field increases the velocity of the fluid. Singh

et al. (1994) considered transient effects on electrically conducting Couette flow with

rotation. Singh (2000) investigated an oscillatory hydromagnetic Couette flow with

transpiration. Gbadeyan et al. (2005) analyzed the radiative effect on electrohydro-

dynamic froth flow in vertical channel. Also, Gbadeyan et al. (2006) investigated the

radiation effect of magnetohydrodynamics flow of gas between concentric spheres.

Furthermore, Patel and Kassegne (2007) considered electroosmosis and thermal effects

in magnetohydrodynamic (MHD) micropumps using 3D MHD equations, Akyildiz
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and Vajravelub (2008) used homotopy analysis method (HAM) to investigate MHD

flow of a viscoelastic fluid and showed that magnetic field acts as an aiding force in

increasing the velocity of the fluid. Beg et al. (2009) reported on the unsteady elec-

trically conducting Hartmann-Couette flow and heat transfer in a Darcian channel

with Hall current, ionslip, viscous and Joule heating effects, using Network Numerical

Solutions (NMS), it was reported that Primary velocity decreased with a rise in Hart-

mann number (Ha), whereas the secondary velocity (w*) is enhanced. Furthermore,

temperature (T*) is reduced significantly with the rising values of Hartmann number

(Ha) which indicates that the system is cooled with stronger magnetic fields. Also,

Beg et al. (2009) presented the numerical study of free convective MHD heat and

mass transfer from a stretching surface to a saturated porous medium with soret and

Dufour effects. Gbadeyan et al. (2010) considered the radiative effect on velocity,

magnetic and temperature fields of a magnetohydrodynamic oscillatory flow past a

limiting surface with variable suction. Chauhan and Rastogi (2010) researched on the

radiation effects on free convection of electrically conducting fluid through a rotating

vertical porous medium. Turkyilmazoglu (2011) documented some findings on the

existence and limit of solutions of heat and mass transfer of MHD slip flow for the

viscoelastic fluid over a stretching sheet. Also, Fang et al. (2009) obtained a closed

form solution for slip MHD viscous fluid over a stretching sheet. Noor et al. (2012)

used shooting method to assess the heat and mass transfer of electrically conducting

thermophoretic flow over an inclined radiate isothermal permeable surface with heat

source/sink, it was observed that increase in thermophoretic parameter corresponds to

lower fluid flow concentration on the inclined surface. Rashidi et al. (2011) reported

on the application of modified differential transform method (DTM) to simulate elec-

trically conducting multi-physical flow phenomena from a rotating disk. The results

showed that increase in magnetic parameter (M) suppresses radial velocity, decreases

tangential velocity and elevates axial velocity.

Other studies are (Hamad and Pop, 2011) in unsteady hydromagnetic free convection

flow through a vertical permeable flat plate in a rotating frame of reference with con-
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stant heat source in a nanofluid. Adesanya and Makinde (2012) used Erying-Powel

model to analyze heat transfer to MHD non-Newtonian couple stress pulsatile flow

between two parallel porous plates. Thermal radiation effects on magnetohydrody-

namic free convection heat and mass transfer from a sphere in a variable porosity

regime was examined by Prasad, Vasu, Beg and Parshad (2012), they concluded that

increasing porosity accelerated the flow but decreased temperatures. Mutuku-Njane

and Makinde (2013) employed fourth-order Runge-Kutta together with shooting tech-

nique to study the effects of Navier slip on MHD flow of a Nanofluid through vertical

porous plates with convective heating, it was submitted that increase in Grashof

number decreases the fluid velocity. Singh (2013) considered the exact solution of hy-

dromagnetic mixed convection periodic flow in a rotating vertical channel with heat

radiation. Khan et al. (2014) studied electrically conducting boundary layer radia-

tive, heat generating and chemical reacting flow of nanofluid. Hassan and Gbadeyan

(2014) investigated thermal stability of a reactive hydromagnetic Poiseuille fluid flow

through a channel. Hassan and Gbadeyan (2015) examined a reactive hydromagnetic

internal heat generating fluid flow through a channel. Shehzad et al. (2015) con-

sidered influence of convective heat and mass conditions in MHD flow of nanofluid.

Hayat et al. (2015) examined the effect of inclined magnetic field in flow of third

grade fluid with variable thermal conductivity and submitted that higher values of

magnetic field enhances the skin-friction, the temperature and concentration profiles

of the fluid.

2.4 Flow through Porous Medium

Fluid flows through non-Darcian porous medium abound in many real life scenarios

such as geophysical and petrochemical flows. In the recent times the application of

porous media to improve convection heat transfer has been studied by many authors

like Chauhan and Kumar (2009) in which the effects of slip conditions on forced con-

vection and entropy generation in a circular channel occupied by a highly porous

medium was investigated. In a related study, Jha et al. (2015) investigated mixed
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convection in a vertical annulus filled with porous material having time-periodic ther-

mal boundary conditions. Barletta, Magyari, Pop and Storesletten (2007) studied

mixed convection with viscous dissipation in a vertical channel filled with a porous

medium while Al-nimr and Khadrawl (2003) analysed transient free convection fluid

flow in domains partially filled with porous media.

2.5 Flow through Vertical Channel

The study of fluid flow and heat transfer in a vertical porous channel have been given

considerable attention in the past few decades due to its wide applications in ar-

eas such as the design of cooling systems for electronic devices, chemical processing

equipment, microelectronic cooling and solar energy (Jamalabadi et al., 2015). Nu-

merous authors who conducted investigations on such flow include: Mutuku-Njane

and Makinde (2013) who investigated the combined effects of buoyancy force and

Navier slip on MHD flow of a Nanofluid over a convectively heated vertical porous

plate and submitted that increase in Grashof number decreases the fluid velocity. In

the work of Jamalabadi et al. (2015), in which optimal design of Magnetohydrody-

namic mixed convection flow in a vertical channel with slip boundary conditions and

thermal radiation effects was analysed by using an entropy generation minimization

method. It was concluded that Grashof numbers to Reynolds number ratio are bet-

ter for maximizing the exergy of the system. Adesanya and Falade (2015) presented

the study on thermodynamic analysis for a third grade fluid through a vertical chan-

nel with internal heat generation, among the submissions was that increase in the

Grashof number depletes the exergy level of the thermal system. In addition, heat

transfer dominates the channel with increase in Grashof number. Also, Sharma et

al. (2014) investigated radiative and free convective effects on MHD flow through a

porous medium with periodic wall temperature and heat generation or absorption with

the conclusion that increase in Grashof number increases the skin-friction coefficient

at the wall.
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2.6 Boundary Layers Flows

Boundary layers flows due has numerous applications in various industries and manu-

facturing processes, for example polished heart valves, polishing of internal civilities,

micro-electronic mechanical systems (MEMS). Researchers have found that Kn = 0

which means the non-slip condition and the continuum flow assumption is valid for

Kn < 0.001. For the range of 0.001 < Kn < 0.1, the flow is called slip flow where

Kn is the ratio of molecular mean free path λ to macrolength scale and it is given

as Kn = λ
H

. In the slip region, the standard Navier-Stokes and energy equations can

still be applied by taking into account velocity slip and temperature jump at the walls

(Renksizbulut et al., 2006; Hooman, 2007). Navier (1823) was the first to introduce

the linear slip boundary condition, it was later proposed by Maxwell (1879), which is

the standard characterization of slip used in contemporary time.

Interesting research work on slip velocity and temperature jump include the follow-

ing; Adesanya (2015) studied free convective flow of heat generating fluid through a

porous vertical channel with velocity slip and temperature jump. Fang et al. (2009)

gave an exact solution of Slip MHD viscous flow over a stretching sheet. Jha and

Ajibade (2009) investigated free convective flow of heat generating/absorbing fluid

between vertical porous plates with periodic heat input. Zhenga et al. (2012) dis-

cussed MHD flow and heat transfer over a porous shrinking surface with velocity slip

and temperature jump. Hayat et al. (2010) considered simultaneous effects of slip

and heat transfer on the peristaltic flow.

2.7 Reactive Flows

Reactive fluid flow problems has application in many reservoir and automobile en-

gineering such as; fuel combustion during industrial and engineering processes, bush

burning, releases from automobile engines, waste burning, production of liquid steel,

burning of crude oil leakages on high sea, thermal explosions, nuclear reactor, bomb
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detonation, petro-chemical fluid flows in refineries etc. (Adesanya, 2013). Reactive

viscous fluid was first introduced by Frank-Kamenetskii (1969), thereafter Chao et al.

(1996) examined theoretically the heat transfer and reaction characteristics of a chem-

ically reactive forced convection flow near the stagnation point of a catalytic porous

bed with finite thickness. Ayeni (1982) reported on the explosion of chain-thermal re-

action while Dainton (1960) presented an introduction to chain reaction, by including

the effects of Arrhenius temperature dependence with variable pre-exponential factor.

Okoya (2006) presented the thermal stability for a reactive viscous flow of a third

– grade fluid between two parallel plates with a uniform pressure gradient (Plane –

Poiseuille flow). Jha et al. (2011) investigated a transient natural convection flow of

a reactive viscous flow in a vertical channel formed by two infinite vertical parallel

plates. Jha et al. (2013) studied unsteady/steady natural convection flow of reactive

viscous fluid in a vertical annulus.

2.8 Entropy Generation

The current trend of entropy generation analysis is the application of second law of

Thermodynamics, and its design-related concept of entropy generation minimization

(EGM). After the pioneering work of (Bejan, 1980; Bejan, 1982; Bejan, 1996), sev-

eral investigations on the factors responsible for the entropy generation under various

physical situations have been carried out. Yapici, Basturk, Kayatas and Yalcin (2005)

investigated the transient local entropy generation in pulsating turbulent flow through

an externally heated pipe, it was concluded that entropy generation rates increased in

the case of sinusoidal and saw-down flow. Pakdemirli and Yilbass (2006)investigated

entropy generation in a pipe due to non-Newtonian fluid flow, it was submitted that

increase in the non-Newtonian parameter reduces the fluid friction in the region close

to the pipe wall which in turn results in low entropy generation. Hooman (2007) pre-

sented entropy generation for microscale forced convection with focus on the effects of

different thermal boundary conditions, velocity slip, temperature jump, viscous dissi-

pation, and duct geometry. Sahiti, Krasniqi, Fejzullahu, Bunjaku and Muriqi (2008)
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studied entropy generation minimization of a double-pipe pin fin heat exchanger, it

was concluded that larger pin lengths are accompanied with larger entropy produc-

tion rates. Arikoglu et al. (2010) investigated combined effects of temperature and

velocity jump on the heat transfer, fluid flow, and entropy generation over a single

rotating disk. Jery et al. (2010) studied the effect of an inclined magnetic field on the

entropy generation rate by considering only the natural convention flow. Maghrbi,

Jery, Hidouri and Brahim (2010) studied the evanescent magnetic field effects on en-

tropy generation at the onset of natural convection, the results show that increase in

relaxation time decreased entropy generation. Bouabid et al. (2011) studied entropy

generation by free convection in an inclined rectangular channel.

Furthermore, Ajibade et al. (2011) obtained a closed form solution on the effect of en-

tropy generation in a steady flow of viscous incompressible fluids between two infinite

parallel porous plates. Two flow geometries were considered: Couette and Poiseuille

flow with suction/injection; it was noted that entropy generation number increases

on one porous plate with suction while it decreases on the other porous plate with

injection. Karamallah, Mohammad and Khalil (2011) studied the entropy genera-

tion in a vertical square channel packed with saturated porous media, it was shown

that entropy generation reduced as Reynold, Darcy number and Eckert numbers de-

creased. Rashidi and Freidoomehr (2012) considered the effects of velocity slip and

temperature jump on the entropy generation in MHD flow over a porous rotating disk.

Eegunjobi and Makinde (2012) considered the effects of Navier slip on steady flow of

an incompressible viscous fluid through a porous channel with suction/injection. It

was submitted that increase in asymmetric slip parameters increases the dominance

effects of heat transfer irreversibility at the lower wall and fluid friction irreversibil-

ity at the upper wall. Later, Makinde and Eegunjobi (2013) employed Runge-kutta

fourth-order integration scheme to study the effects of convective heating and suc-

tion/injection on the entropy generation in a steady flow of a viscous fluid through

a channel with permeable walls. The results indicated that entropy generation rate

increases with increase in the value of Biot numbers at both walls while heat transfer
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irreversibility dominates the centreline region of the channel. Adesanya and Makinde

(2014) discussed the effects of couple stresses and Navier slip on the entropy gener-

ation. Furthermore, Das and Jana (2014) investigated the effects of magnetic field

and Navier slip on the entropy generation in a flow of viscous incompressible hydro-

magnetic fluid flowing between two infinite horizontal parallel porous plates. It was

stated that entropy generation rises with an increase in magnetic field parameter,

heat transfer irreversibility dominates the flow process within the channel centreline

region, while the influence of fluid friction irreversibility is observed at the channel

walls from the conclusion. Basak et al. (2012) investigated entropy generation during

natural convection in a porous cavity considering the effect of thermal boundary con-

ditions and reported that entropy generation is mainly contributed by heat transfer

irreversibility.

The effect of entropy generation on third grade fluid has also been investigated by

several authors, these include Makinde (2009) who conducted an investigation on the

thermal stability effect of a reactive third-grade fluid in a channel with convective cool-

ing. Irreversibility analysis of third-grade fluid with variable properties was analysed

by Adesanya, (2014), and it was explained that increase in the internal heat genera-

tion parameter corresponds to a rise in the entropy generation rate in the centerline

of the channel only. Moreover, Adesanya and Makinde (2015a) utilised the rapidly

convergent ADM to study the effect of buoyancy force on the entropy generation of

a third grade fluid through a vertical channel with internal heat generation. The re-

active case induced by chemical reaction was considered and it was reported that the

available energy of the system rises with an increase in the non-Newtonian parameter

while buoyancy force, internal heat generation and viscous heating of the fluid reduced

the exergy level of the thermal system. Adesanya and Falade (2015) further extended

the work to hydromagnetic case of third grade fluid flowing through porous medium,

it was argued that fluid irreversibility increases at the centreline with increased mag-

netic field intensity which was attributed to the imbalance in the Lorentz force that

acted as a resistance to the flow and increased the fluid temperature.
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Irreversibility associated with couple stress fluid was also investigated by Adesanya

and Makinde (2015b) where the effects of entropy generation of couple stress fluid

through porous channel with convective heating was analysed, it was discovered that

increase in couple stresses reduces the entropy generation rate within the channel

except at the heated wall. Also, Adesanya and Makinde (2015c) studied irreversibility

analysis in a couple stress film flow along an inclined heated plate with adiabatic

free surface using regular perturbation method. The study revealed that there is

an increase in entropy generation rate along the heated inclined plate as viscosity

variation, viscous heating and couple stress inverse parameters increased.

Most of the studies presented above either considered the entropy generation of some

electrically conducting fluids or the entropy generation of couple stress fluid under var-

ious flow configurations. The literature survey reveals that adequate attention has not

been paid to entropy generation of electrically conducting couple stress fluid. Mean-

while it has been discovered that applying magnetic field to lubricants can increase

its load carrying capacity and improve its lubrication capacity as well as the perfor-

mance of squeeze film (Hughes and Elco, 1962; Rajashekar and Kashinath, 2012).

Furthermore, Gerbeth et al. (2013) submitted that the magnetic field produced by a

simple magnet placed across the channel usually interact with the flow of fluid and

this plays very important role in the control of motion of hot fluid in many metal-

lurgical engineering applications, crystal growth, electrochemistry and other thermal

processes which occurs at very high temperature. This explains why the research is

worthwhile.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

Analysis of the two methods applied in this study and the mathematical models are

presented in this chapter. The procedure for the implementation of Adomian decom-

position and differential transform techniques are discussed in details. The choice

of the two semi-analytical techniques employed in this work is due to unavailability

of analytical solution to the non-linear governing equations derived from the mod-

els. In subsequent sections, the mathematical formulation and solution procedure are

presented.

3.2 Description of Methods

In literature, different types of numerical and analytical procedures such as: finite

element method, Galerkin method, the Laplace transformation, Finite Difference Ap-

proach, Perturbation Technique, Homotopy Perturbation Technique, Variational It-

eration Method, Shooting Quadrature Method, Runge-Kutta -Fehlberg method etc.,

are available. Some of these existing techniques have difficulties in relation to the size

of computational work and convergence. In this study, the Adomian Decomposition

Method (ADM) and Differential Transform Method (DTM) applied have advantage

over other methods because of their simplicity in handling boundary value problems,

high accuracy and rapid convergence. The computations are done by developing

numerical codes that incorporate the methods described below in Mathematica and

Maple software. Detailed solution are in the appendix section.
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3.2.1 Adomian Decomposition Method

In the 1980s, George Adomian (1923-1996) proposed this powerful technique for solv-

ing linear and nonlinear ordinary and partial differential equations. The method

has since then been called Adomian Decomposition Method (ADM) (Adomian, 1989;

Adomian, 1994). To apply ADM the given equation is split into linear and non-linear

parts, the highest-order derivative operator in the linear operator is inverted on both

sides. The initial/boundary conditions together with the source term constitute the

zeroth component while any nonlinear term in the equation is decomposed as Ado-

mian polynomials and the successive terms as series solution by recurrent relation

using Adomian polynomials. Later, Wazwaz (1999) developed the modified version of

the Adomian decomposition method. The modified technique provides a qualitative

improvement over standard Adomian method, although it introduces a slight change

in the formulation of Adomian recursive relation. The reason for this improvement

rests on the fact that the technique accelerates the convergence of the solution and

facilitates the formulation of Adomian polynomials.

Consider the generalized differential equation of the form

Ly +Ry +Ny = g (3.1)

L is the highest order derivative (L is invertible), R is a linear differential operator,

N is the nonlinear term and g is the source term.

Applying L−1 on both sides of equation (3.1) to obtain

y = L−1(g)− L−1(Ry)− L−1(Ny) (3.2)

Equation (3.2) can be written as

y = h− L−1(Ry)− L−1(Ny) (3.3)

Note that h represents the terms arising from integrating the source term g that is,
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(L−1(g)) and from the given conditions.

Using the standard Adomian decomposition method, the zeroth component is written

as

y0 = h (3.4)

and the recursive relation is

yn+1 = −L−1(Ryn)− L−1(Nyn), n ≥ 0 (3.5)

y1 = −L−1(Ry0)− L−1(Ny0) (3.6)

y2 = −L−1(Ry1)− L−1(Ny1) (3.7)

y3 = −L−1(Ry2)− L−1(Ny2) (3.8)

Then the solution will be of the form

y(t) =
∞∑
n=0

yn(t) (3.9)

The non-linear term can be determined by an infinite series of Adomian polynomials

Ny =
∞∑
n=0

An (3.10)

where A
′
ns are calculated by the relation

An =
1

n!

dn

dtn
[N(

n∑
i=0

tiyi)]t=0, n = 0, 1, 2, 3 · · · (3.11)
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3.2.2 Differential Transform Method

The concept of the differential transform method was first introduced by Zhou (1986),

and it was applied to solve both linear and nonlinear initial value problems in electric

circuit analysis. Chen and Ho (1999) later developed this method for the solution

of partial differential equations. To apply this method for the solution of differential

equations, a semi-analytical numerical technique that uses Taylor series in the form

of a polynomial is constructed. The advantage of this method over high-order Tay-

lor series method is that it does not require symbolic computation of the necessary

derivatives of the data functions. Furthermore, Taylor series method is computation-

ally time-consuming especially for higher order equation while differential transform

is an iterative procedure for obtaining analytic Taylor series solutions of differen-

tial equations.The basic definition and the fundamental theorems of DTM and its

applicability are well addressed in Arikoglu and Ozkol (2005), Liu and Song (2007)

and Hassan (2008). However, the basic principles of the differential transformation

method are described as follows.

Let the differential transformation of the kth derivative of the function u(t) about a

point t = t0 be defined as

U(k) =
1

k!
[
dku(t)

dtk
]t=t0 (3.12)

where u(t) is the original function and U(k) is the transformed function. The inverse

differential transform U(k) can be written as

u(t) =
∞∑
i=0

U(k)(t− t0)k (3.13)

Function u(t) can then be written as a finite series with equation (3.12) stated as

u(t) =
n∑
i=0

U(k)(t− t0)k (3.14)

Relevant theorems for the differential equations to be solved can then be derived from

equations (3.12) and equation (3.13)
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If

(i) u(t) = v(t)± w(t), then U(k)±W (K)

(ii) u(t) = αv(t), then U(k) = αV (k)

(iii) u(t) = dv(t)
dt

, then U(k) = (k + 1)V (k + 1)

(iv) u(t) = drv(t)
dtr

, then U(k) = (k + 1) · · · (k + r)V (k + r)

(v) u(t) = tr, then U(k) = δ(k − r) =

{1, k=r

0, k 6=r

(vi) u(t) = v(t)w(t), then U(k) =
∑k

n=0 V (k)W (k − n)

(vii) u(t) = v3(t), then U(k) =
∑k

k1

∑k1
r V (r)V (k1 − r)V (k − r)

(viii) u(t) = (dv(t)
dt

)2, then V (k) =
∑k

r(k + 1)(k − r + 1)V (r + 1)V (k − r + 1)

(ix) u(t) = d2v(t)
dt2

, then V (k) =
∑k

r(r+1)(r+2)(k−r+2)(k−r+1)V (r+2)V (k−r+2)

The procedure for the solution of the model equations is organized into the following

stages:

(i) The governing equations of motion were derived,

(ii) the equations were non-dimensionalised to obtain the required boundary value

problems,

(iii) the boundary value problems were solved by Adomian decomposition and dif-

ferential transform techniques,

(iv) the obtained velocity and temperature profiles were utilised to compute the

entropy generation rate, irreversibility distribution ratio and Bejan number and

(v) finally, the graphs for the velocity profile, temperature profile , entropy genera-

tion rate and Bejan number were plotted
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3.3 Mathematical Models

3.3.1 Model 1: Influence of Magnetic Field on Couple Stress Flow Through

Porous Channel with Entropy Generation

In this model, emphasis is on the control of heat irreversibility which could arise

from viscous dissipation or heat transfer. This is because heat irreversibility is gen-

erated continuously with temperature difference across the heated channel. This

all-important effect has been neglected in the recent work by Adesanya and Makinde

(2015b). This is in spite of various magnetohydodynamic applications in industrial

and engineering systems involving heat transfer in industries and systems involving

thermal engineering.

3.3.2 Formulation of Model 1

Consider the steady flow and heat transfer of hydromagnetic couple stress fluid flowing

steadily through a porous channel taking Ohmic heating of the fluid into consideration.

A uniform transverse magnetic field B0 is applied perpendicularly to the channel

plates. It is assumed that the fluid exchanges heat with the ambient in an axi-

symmetrical manner. Due to wall porosity, fluid is injected with a constant velocity

at the lower plate and sucked off at the upper plate with the same velocity. Under this

configuration (see Figure 3.1), the momentum and energy balance equations governing

the fluid flow can be written as follows (Adesanya and Makinde, (2015b))
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Figure 3.1: Schematic diagram for Model 1
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ρV0
du

′

dy′ = − dp
dx′ + µ

d2u
′

dy′2
− ηd

4u
′

dy′4
− σB2

0u
′

(3.15)

ρCpv0
dT

dy′ = k
d2T

′

dy′2
+ µ
(du′

dy′

)2
+ η
(d2u′

dy′2

)2
+ σB2

0u
′2 (3.16)

The last terms in equations (3.15)-(3.16) are due to the magnetic field arising from

interactions with the fluid. The thermal boundary conditions are

k
dT

′

dy′ (0) = −γ1(Tf − T
′
), k

dT
′

dy′ (h) = −γ2(Tf − T
′

0) (3.17)

while the no-slip and stress-free conditions are

u
′
(0) =

d2u
′

dy2
(0) = 0 = u

′
(h) =

d2u
′

dy2
(h) (3.18)

Introducing the following dimensionless parameters

y =
y

′

h
, u =

u
′

v0
, θ =

T
′ − T0

Tf − T0
, s =

v0h

v
,G = − h2dp

µv0dx
, a2 = µ

h2

η
, Pr =

vρCp
k

,

Br =
µv0

k(Tf − T0)
, Bi1 =

γ1h

k
,Bi2 =

γ2h

k
,Ns =

T 2
0 h

2EG
k(Tf − T0)2

,Ω =
Tf − T0
T0

,

v =
µ

ρ
,H2 =

σB2
0h

2

µ
(3.19)

into equations (3.15)-(3.18) to obtain the following boundary-value problems

s
du

dy
= G+

d2u

dy2
− 1

a2
d4u

dy4
−H2u;u(0) =

d2u

dy2
(0) = 0 = u(1) =

d2u

dy2
(1) (3.20)

d2θ

dy2
= sPr

dθ

dy
−Br

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2

}
;

dθ(0)

dy
= Bi1(θ(0)− 1);

dθ(1)

dy
= −Bi2(θ(1)) (3.21)

Other quantities of interest in this work include the skin friction coefficient Cf and
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heat transfer rate Nu at the channels wall respectively:

Cf =
du(y)

dy

∣∣∣∣∣
y=0,1

;Nu = −dθ(y)

dy

∣∣∣∣∣
y=0,1

(3.22)

3.3.3 Solution by Adomian Decomposition Method (ADM)

Writing equations (3.20) and (3.21) in the integral form yields

u(y) = b1y +
b2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G+

d2u

dY 2
−

s
du

dY
−H2u

}
dY dY dY dY (3.23)

and

θ(y) = b3 + b4(y) +

∫ y

0

∫ y

0

{
sPr

dθ

dY
−Br

( du
dY

)2
−

Br

a2

( d2u
dY 2

)2
−BrH2u2

}
dY dY (3.24)

where b1 ,b2 ,b3 , b4 are the parameters to be determined later.

By ADM, an infinite series solution is defined as

u(y) =
∞∑
n=0

un(y), θ(y) =
∞∑
n=0

θn(y) (3.25)

Now using equation (3.25) in equations (3.23)-(3.24) yields

∞∑
n=0

un(y) = b1y +
b2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G+

∞∑
n=0

d2un
dY 2

−

sPr

∞∑
n=0

dun
dY
−H2

∞∑
n=0

un

}
dY dY dY dY (3.26)

and

∞∑
n=0

θn(y) = b3 + b4y +

∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

(
∞∑
n=0

du

dY

)2

−

Br

a2

(
∞∑
n=0

d2u

dY 2

)2

−BrH2

∞∑
n=0

u2

}
dY dY (3.27)
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In view of (3.26)-(3.27), the zeroth order terms can be written as

∞∑
n=0

u0(y) = b1y +
b2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G
}
dY dY dY dY (3.28)

∞∑
n=0

θ0(y) = b3 + b4y (3.29)

while other terms can be determined using the recurrence relations

∞∑
n=0

un+1(y) = a2
∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
∞∑
n=0

d2un
dY 2

−

s
∞∑
n=0

dun
dY
−H2

∞∑
n=0

un

}
dY dY dY dY (3.30)

and

∞∑
n=0

θn+1(y) =

∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

(
∞∑
n=0

du

dY

)2

−

Br

a2

(
∞∑
n=0

d2u

dY 2

)2

−BrH2

∞∑
n=0

u2

}
dY dY (3.31)

The nonlinear term in equation (3.31) is written as

Bn = u2 (3.32)

while the Adomian polynomials are computed as

B0 = u20, B1 = 2u0u1, B2 = 2u0u2 + u21, . . . (3.33)

Substituting equation (3.32) in (3.31) yields

∞∑
n=0

θn+1(y) =

∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

(
∞∑
n=0

du

dY

)2

−

Br

a2

(
∞∑
n=0

d2u

dY 2

)2

−BrH2

∞∑
n=0

Bn

}
dY dY (3.34)
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Solving equations (3.28)-(3.30) and (3.34) yields the solution of the boundary value

problems.

3.3.4 Solution by Differential Transform Method (DTM)

To solve the boundary value problems by DTM, equations (3.20)-(3.21) are trans-

formed as

U(k + 4) =
a

(k + 4)!

[
(k + 1)(k + 2)U(k + 2)−

s(k + 1)U(k + 1) +Gδ(k)−H2U(k)

]
(3.35)

θ(k + 2) =
1

(k + 2)!

[
sPr(k + 1)θ(k + 1)−

Br
k∑
r=0

(r + 1)(k − r + 1)U(k − r + 1)−

Br

a2

k∑
r=0

(r + 1)(r + 2)(k − r + 2)(k − r + 1)U(k − r + 2)−

H2

k∑
r=0

U(r)U(k − r)

]
(3.36)

U(0) = 0, U(1) = A,U(2) = 0, U(3) =
B

3!
(3.37)

θ(0) = C, θ(1) = Bi1(θ(1)− 1) (3.38)

Using equation (3.37) in equation (3.35) and equation (3.38) in equation (3.36), the

solution of the boundary value problem is obtained. To verify the accuracy of the

computations, the approximate solution obtained by ADM is compared with DTM

solution in Table 3.1. In the result section, the obtained velocity and temperature
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profiles are used to compute the entropy generation rate.
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Table 3.1: Comparison between ADM and DTM for G = H = a = 1, s = 0.1

y UADM UDTM Abs Error
0.1 0.003680317 0.003680317 2.99999 ×10−12

0.2 0.006959623 0.006959623 5.99968 ×10−12

0.3 0.009523962 0.009523962 8.99757 ×10−12

0.4 0.011151328 0.011151328 1.19898×10−11

0.5 0.011709275 0.011709275 1.49687×10−11

0.6 0.011153527 0.011153527 1.79222 ×10−11

0.7 0.009527596 0.009527596 2.08318 ×10−11

0.8 0.006963372 0.006963372 2.3672 ×10−11

0.9 0.003682714 0.003682714 2.64088 ×10−11

1 2.52325 ×10−12 -2.6475 ×10−11 2.89982 ×10−11
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3.3.5 Entropy Generation Analysis

The local entropy generation rate according to Bejan (1996), for the problem under

discussion can be written as:

EG =
k

T 2
0

(dT ′

dy′

)2
+

µ

T0

(du′

dy

)2
+

η

T0

(d2u′

dy′2

)2
+
σB2

0u
2

T0
(3.39)

Using the dimensionless variables (3.19) in equation (3.39) gives

Ns =
(dθ
dy

)2
+
Br

Ω

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2

}
(3.40)

The first term of equation (3.39) is the irreversibility due to heat transfer, the second

and the third terms are entropy generation due to fluid friction and couple stresses

respectively while the fourth term is the irreversibility due to the effect of magnetic

field. Setting N1 as irreversibility due to heat transfer and N2 as hydromagnetic fluid

friction irreversibility

N1 =
(dθ
dy

)2
, N2 =

Br

Ω

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2

}
(3.41)

then the Bejan number (Be) for the irreversibility ratio can be written as:

Be =
N1

Ns
=

1

1 + Φ
,Φ =

N2

N1

(3.42)

Observe Be = 0 corresponds to the special case when heat irreversibility due to

magnetic fluid friction dominates over heat transfer irreversibility. Similarly, as N1

takes preeminence over N2 the numerical value of Be is expected to be unity and

Be = 1
2

when both contribute equally.
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Table 3.2: Comparison between Adesanya and Makinde (2015b), ADM and DTM
solution of velocity profile for G = a = 1, s = 0.1, H = 0

y Adesanya and Makinde (2015b) UADM UDTM
0 0.000000000 0.000000000 0.000000000

0.1 0.003714182 0.003714182 0.003714182
0.2 0.007024039 0.007024039 0.007024039
0.3 0.009612623 0.009612623 0.009612623
0.4 0.011255559 0.011255559 0.011255559
0.5 0.011818879 0.011818879 0.011818879
0.6 0.011257781 0.011257781 0.011257781
0.7 0.009616293 0.009616293 0.009616293
0.8 0.007027825 0.007027825 0.007027825
0.9 0.003716603 0.003716603 0.003716603
1 2.02478 ×10−11 1.92488 ×10−11 3.71469 ×10−11
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3.3.6 Model 2: Second Law Analysis of Hydromagnetic Couples Stress

Fluid Embedded in a Non-Darcian Porous Medium

Analysis of hydromagnetic couples stress fluid embedded in a non-Darcian porous

medium is useful and important basically for (i) gaining fundamental understand-

ing of such flows, (ii) the need to ensure entropy minimization in a hydromagnetic

couple stress fluid flow and (iii) possible application of such non-Newtonian fluids

in petroleum production, power engineering, movement of biological fluids and food,

and construction engineering. The primary motivation for this problem is derived

from the above issues which is very important yet un-addressed in the previous works

on the subject (Adesanya, 2014; Adesanya and Makinde, 2015b). In particular, the

objective of this model is second law analysis of hydromagnetic couples stress fluid

embedded in a non-Darcian porous medium.

3.3.7 Formulation of Model 2

Consider the steady flow of electrically conducting couple stress non-Newtonian fluid

through non-Darcian porous medium. The flow is subjected to injection of the fluid

at the lower plate and suction at the upper plate with constant velocity. A uniform

transverse magnetic field is applied in the direction of flow and the interaction of

the induced magnetic field is considered negligible compared to the interaction of the

applied magnetic field. The wall plates are assumed to exchange heating in an axi-

symmetrical manner with the ambient temperature. Under the configuration shown

in Figure 3.2, the governing equations for the momentum, heat balance and entropy

generation rate can be written as Adesanya and Makinde, (2015b)
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Figure 3.2: Schematic diagram for Model 2
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ρV0
du

′

dy′ = − dp
dx′ + µ

d2u
′

dy′2
− ηd

4u
′

dy′4
− σB2

0u
′ − µu

′

K
− bu

′2

√
K

(3.43)

ρCpv0
dT

dy′ = k
d2T

′

dy′2
+ µ
(du′

dy′

)2
+ η
(d2u′

dy′2

)2
+ σB2

0u
′2 +

µu
′2

K
+
bu

′3

√
K

(3.44)

EG =
k

T 2
0

(dT ′

dy′

)2
+

µ

T0

(du′

dy′

)2
+

η

T0

(d2u′

dy′2

)2
+
σB2

0u
2

T0
+
µu

′2

T0K
+

bu
′3

T0
√
K

(3.45)

The boundary conditions are

u
′
(0) = 0 =

d2u
′
(0)

dy2
, k
dT

′
(0)

dy′ = −γ1(Tf − T
′
);

u
′
(h) = 0 =

d2u
′
(h)

dy2
, k
dT

′
(h)

dy′ = −γ2(T
′ − T0) (3.46)

The following dimensionless variables are introduced

y =
y

′

h
, u =

u
′

v0
, θ =

T
′ − T0

Tf − T0
, s =

v0h

v
,G = − h2dp

µv0dx
, a2 = µ

h2

η
,

Pr =
vρCp
k

,Br =
µv0

k(Tf − T0)
, Bi1 =

γ1h

k
,Bi2 =

γ2h

k
,

NS =
T 2
0 h

2EG
k(Tf − T0)2

,Ω =
Tf − T0
T0

, v =
µ

ρ
,H2 =

σB2
0h

2

ρ
,

β2 =
h2

K
,α2 =

bh2v0

µ
√
K

(3.47)

Substituting equation (3.47) into equations (3.43)-(3.46), the following dimensionless

equations are obtained

s
du

dy
= G+

d2u

dy2
− 1

a

d4u

dy4
−H2u− β2u− α2u2 (3.48)

d2θ

dy2
= sPr

dθ

dy
−Br

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
, (3.49)

60



Ns =
(dθ
dy

)2
+
Br

Ω

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
(3.50)

with the boundary conditions

u(0) = 0 =
d2u(0)

dy2
,
dθ(0)

dy
= Bi1(θ(0)− 1);

u(1) = 0 =
d2u(1)

dy2
,
dθ(1)

dy
= −Bi2(θ(1)) (3.51)

3.3.8 Solution by Adomian Decomposition Method (ADM)

Writing equations (3.48)-(3.49) in the integral form gives

u(y) = f1y +
f2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G+

d2u

dY 2
−

s
du

dY
+BrH2u−Brβ2u−Brα2u

}
dY dY dY dY (3.52)

and

θ(y) = f3 + f4(y) +

∫ y

0

∫ y

0

{
sPr

dθ

dY
−Br

{( du
dY

)2
+
Br

a2

( d2u
dY 2

)2
+

BrH2u2 +Brβ2u2 +Brα2u3

}}
dY dY (3.53)

Note that f1, f2, f3, f4 are the parameters to be determined later.

ADM solutions in the form of an infinite series are stated as

u(y) =
∞∑
n=0

un(y), θ(y) =
∞∑
n=0

θn(y) (3.54)
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Now, substituting equation (3.54) in equations (3.52)-(3.53) to obtain

∞∑
n=0

un(y) = f1y +
f2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G+

∞∑
n=0

d2un
dY 2

−

s
∞∑
n=0

dun
dY
−H2

∞∑
n=0

un − β2

∞∑
n=0

un − α2

∞∑
n=0

un

}
dY dY dY dY (3.55)

and

∞∑
n=0

θn(y) = f3 + f4y +

∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

{(
∞∑
n=0

du

dY

)2

+

Br

a2

(
∞∑
n=0

d2u

dY 2

)2

+BrH2

∞∑
n=0

u2 +Brβ2

∞∑
n=0

u2 +Brα2

∞∑
n=0

u3

}}
dY dY (3.56)

In view of (3.55)-(3.56), the zeroth order term can be written as

∞∑
n=0

u0(y) = f1y +
f2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G
}
dY dY dY dY (3.57)

∞∑
n=0

θ0(y) = f3 + f4y (3.58)

while other terms are determined using the recurrence relations

∞∑
n=0

un+1(y) = a2
∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
∞∑
n=0

d2un
dY 2

− s
∞∑
n=0

dun
dY
−

H2

∞∑
n=0

un − β2

∞∑
n=0

un − α2

∞∑
n=0

un

}
dY dY dY dY (3.59)

∞∑
n=0

θn+1(y) = a2
∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

{(
∞∑
n=0

du

dY

)2

+

Br

a2

(
∞∑
n=0

d2u

dY 2

)2

+BrH2

∞∑
n=0

u2 +Brβ2

∞∑
n=0

u2 +

Brα2

∞∑
n=0

u3

}}
dY dY (3.60)
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The nonlinear terms in equation (3.60) can be represented as

Bn = u2, Cn = u3 (3.61)

Adomian polynomials of the nonlinear terms are computed as

B0 = u20, B1 = 2u0u1, B2 = 2u0u2 + u21, . . . ; C0 = u30, C1 = 3u20u1, (3.62)

C2 = 3u20u2 + 3u0u
2
1, . . .

Substituting equation (3.61) in (3.60) yields

∞∑
n=0

θn+1(y) = a2
∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

{(
∞∑
n=0

du

dY

)2

+

Br

a2

(
∞∑
n=0

d2u

dY 2

)2

+BrH2

∞∑
n=0

Bn +Brβ2

∞∑
n=0

Bn +

Brα2

∞∑
n=0

Cn

}}
dY dY (3.63)

Solution to equations (3.57)-(3.58) and (3.63) are obtained at n = 0, 1, 2, 3, . . .

3.3.9 Solution by Differential Transform Method (DTM)

To solve the boundary value problems by DTM, equations (3.48)-(3.49) and equation

(3.51) are transformed as

U(k + 4) =
a

(k + 4)!

[
(k + 1)(k + 2)U(k + 2)−

s(k + 1)U(k + 1) +Gδ(k)−H2U(k)−

β2U(k)− α2

k∑
r=0

U(k)U(k − r)

]
(3.64)
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θ(k + 2) =
1

(k + 2)!

[
sPr(k + 1)θ(k + 1)−

Br
k∑
r=0

(r + 1)(k − r + 1)U(k − r + 1) +

Br

a2

k∑
r=0

(r + 1)(r + 2)(k − r + 2)(k − r + 1)U(k − r + 2)−

H2

k∑
r=0

U(r)U(k − r) + β2

k∑
r=0

U(r)U(k − r)−

α2

k∑
r

r∑
s

U(s)U(r − s)U(k − r)

]
(3.65)

U(0) = 0, U(1) = A,U(2) = 0, U(3) =
B

3!
(3.66)

θ(0) = C, θ(1) = Bi1(θ(1)− 1) (3.67)

Using equation (3.66) in equation (3.64) and equation (3.67) in equation (3.65), the

solution of the boundary value problem is obtained.

The accuracy of the results of these computations can be verified by comparing the

approximate solutions obtained by ADM and DTM in Table 3.3.

64



Table 3.3: Comparison between ADM and DTM solutions for s = 0.1, H = a =
Br = β = α = Bi1 = Bi2 = G = 1

y UADM UDTM AbsError
0 0.000000000 0.000000000 0.000000000

0.1 0.0036467 0.0036468 1.42433 ×10−08

0.2 0.0068958 0.0068958 2.76217 ×10−08

0.3 0.0094361 0.0094361 3.92577×10−08

0.4 0.011048 0.011048 4.82496×10−08

0.5 0.0116006 0.0116007 5.36641 ×10−08

0.6 0.0110502 0.0110502 5.45404 ×10−08

0.7 0.0094397 0.0094397 4.99391 ×10−08

0.8 0.0068995 0.0068995 3.91091×10−08

0.9 0.0036491 0.0036491 2.19351 ×10−08

1 3.879 ×10−11 1.529 ×10−11 2.34932 ×10−11
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3.3.10 Entropy Generation

Investigating entropy generation within the flow, according to Bejan (1996) the local

entropy generation rate as shown in (3.45) is

EG =
k

T 2
0

(dT ′

dy′

)2
+

µ

T0

(du′

dy′

)2
+

η

T0

(d2u′

dy′2

)2
+
σB2

0u
2

T0
+
µu

′2

T0K
+

bu
′3

T0
√
K

The first term in the above equation is the irreversibility due to heat transfer, the

second and the third terms account for entropy generation due to fluid friction and

couple stress respectively while the last three terms represent irreversibility due to

the effect of magnetic field and porosity.

The dimensionless form as shown in equation (3.50) is given as

Ns =
(dθ
dy

)2
+
Br

Ω

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
Investigating entropy generation within the flow, let

N1 =
(dθ
dy

)2
, N2 =

Br

Ω

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
(3.68)

The Bejan number Be = 0 is the irreversibility due to viscous dissipation, couple

stress effect, The Bejan number can be written as in equation (3.42)
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3.3.11 Model 3: Inherent Irreversibility Analysis in Buoyancy Induced

Magnetohydrodynamic Couple Stress Fluid

In this present section, the objective is to analyze the inherent irreversibiliy analysis

in a buoyancy induced MHD couple stress fluid.

3.3.12 Formulation of Model 3

The following assumptions are made:

(i) The flow is steady, electrically conducting and incompressible,

(ii) the fluid is viscous and flow through vertical porous medium,

(iii) the channel walls exchange heat with the ambient surrounding following the

Newton’s cooling law,

(iv) a uniform magnetic field of strength (B0) is applied,

(v) hall effect and induced magnetic field (since magnetic Reynolds number is very

small for most fluid used in industrial applications) will be neglected and

(vi) there is injection at the plate where y = 0 and suction at the plate where y =

h at the same velocity v0
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Figure 3.3: Schematic diagram for Model 3
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Then the governing equations for the momentum, heat balance and entropy generation

rate can be written as Adesanya and Makinde, (2015b)

ρV0
du

′

dy′ = − dp
dx′ + µ

d2u
′

dy′2
− ηd

4u
′

dy′4
− σB2

0u
′ − µu

′

K
− bu

′2

√
K

+

gζ(T − T0) (3.69)

ρCpv0
dT

dy′ = k
d2T

′

dy′2
+ µ
(du′

dy′

)2
+ η
(d2u′

dy′2

)2
+ σB2

0u
′2 +

µu
′2

K
+
bu

′3

√
K

(3.70)

EG =
k

T 2
0

(dT ′

dy′

)2
+

µ

T0

(du′

dy′

)2
+

η

T0

(d2u′

dy′2

)2
+
σB2

0u
2

T0
+
µu

′2

T0K
+

bu
′3

T0
√
K

(3.71)

The boundary conditions are

u
′
(0) = 0 =

d2u
′
(0)

dy2
, k
dT

′
(0)

dy′ = −γ1(Tf − T
′
),

u
′
(h) = 0 =

d2u
′
(h)

dy2
, k
dT

′
(h)

dy′ = −γ2(T
′ − T0) (3.72)

Introducing the following dimensionless variables

y =
y

′

h
, u =

u
′

v0
, θ =

T
′ − T0

Tf − T0
, s =

v0h

v
,G = − h2dp

µv0dx
, a2 = µ

h2

η
,

Pr =
vρCp
k

,Br =
µv20

k(Tf − T0)
, Bi1 =

γ1h

k
,Bi2 =

γ2h

k
,NS =

T 2
0 h

2EG
k(Tf − T0)2

,

Ω =
Tf − T0
T0

, v =
µ

ρ
,H2 =

σB2
0h

2

µ
,Gr =

gζρh2(Th − T0)
µv

(3.73)

Substituting equation (3.73) into equations (3.69)-(3.72), the following dimensionless

equations are obtained

s
du

dy
= G+

d2u

dy2
− 1

a

d4u

dy4
−H2u− β2u− α2u2 +Grθ (3.74)

d2θ

dy2
= sPr

dθ

dy
−Br

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
, (3.75)
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Ns =
(dθ
dy

)2
+
Br

Ω

{(du
dy

)
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
(3.76)

with the boundary conditions

u(0) = 0 =
d2u(0)

dy2
,
dθ(0)

dy
= Bi1(0)(θ − 1);

u(1) = 0 =
d2u(1)

dy2
,
dθ(1)

dy
= −Bi2(θ(1)) (3.77)

3.3.13 Solution by Adomian Decomposition Method

The integral form of equations (3.74) and (3.75) are in the form

u(y) = a1y +
a2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G+

d2u

dY 2
− s du

dY
−

H2u− β2u− α2u2 +Grθ

}
dY dY dY dY (3.78)

and

θ(y) = a3 + a4(y) +

∫ y

0

∫ y

0

{
sPr

dθ

dY
−Br

{( du
dY

)2
+

1

a2

( d2u
dY 2

)2
+ (3.79)

H2u2 + β2u2 + α2u3

}}
dY dY

where a1 ,a2 ,a3 , a4 are the parameters to be determined later.

The ADM infinite series solutions are of the form

u(y) =
∞∑
n=0

un(y), θ(y) =
∞∑
n=0

θn(y) (3.80)

Now using equation (3.80) in equations (3.78)-(3.79), gives

∞∑
n=0

un(y) = a1y +
a2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G+

∞∑
n=0

d2un
dY 2

− (3.81)

s

∞∑
n=0

dun
dY
−H2

∞∑
n=0

un − β2

∞∑
n=0

un − α2

∞∑
n=0

u2n +Gr

∞∑
n=0

θn

}
dY dY dY dY
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and

∞∑
n=0

θn(y) = a3 + a4y +

∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

{(
∞∑
n=0

dun
dY

)2

+ (3.82)

1

a2

( ∞∑
n=0

d2un
dY 2

)2
+H2

∞∑
n=0

u2n + β2

∞∑
n=0

u2n + α2

∞∑
n=0

u3n

}}
dY dY

From equations (3.81)-(3.82), the zeroth order terms can be written as

∞∑
n=0

u0(y)a1y +
a2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
G
}
dY dY dY dY (3.83)

∞∑
n=0

θ0(y) = a3 + a4y (3.84)

and the recurrence relations below are used to determine other terms.

∞∑
n=0

un+1(y) = a2
∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
∞∑
n=0

d2un
dY 2

− s
∞∑
n=0

dun
dY
− (3.85)

H2

∞∑
n=0

un − β2

∞∑
n=0

un − α2

∞∑
n=0

u2n +Gr
∞∑
n=0

θn

}
dY dY dY dY

and

∞∑
n=0

θn+1(y) =

∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

{(
∞∑
n=0

dun
dY

)2

+ (3.86)

1

a2

( ∞∑
n=0

d2un
dY 2

)2
+H2

∞∑
n=0

u2n + β2

∞∑
n=0

u2n + α2

∞∑
n=0

u3n

}}
dY dY

Substituting (3.61) for the the nonlinear terms in equation (3.86) gives

∞∑
n=0

θn+1(y) =

∫ y

0

∫ y

0

{
sPr

∞∑
n=0

dθn
dY
−Br

{(
∞∑
n=0

dun
dY

)2

+ (3.87)

1

a2

( ∞∑
n=0

d2un
dY 2

)2
+H2

∞∑
n=0

Bn + β2

∞∑
n=0

Bn + α2

∞∑
n=0

Cn

}}
dY dY

Adomian polynomials for (3.87) are represented as given in equation (3.62).

Solution to equations (3.83) - (3.85) and (3.87) can be obtained by solving at n =

0, 1, 2, 3, . . .
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3.3.14 Entropy Generation

The expression for entropy generation according to Bejan (1996) in equation (3.71)

given below suggests five sources of entropy production. The first term is irreversibility

due to heat transfer, the second term is irreversibility due to fluid friction while the

last three terms are entropy generation due to couple stresses, magnetic field and

porosity respectively.

EG =
k

T 2
0

(dT ′

dy′

)2
+

µ

T0

(du′

dy′

2)2
+

η

T0

(d2u′

dy′2

)2
+
σB2

0u
2

T0
+
µu

′2

T0K
+

bu
′3

T0
√
K

The dimensionless form of the entropy generation expression in equation (3.76) is also

written as:

Ns =
(dθ
dy

)2
+
Br

Ω

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
entropy generation rate is investigated by setting

N1 =
(dθ
dy

)2
, N2 =

Br

Ω

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+H2u2 + β2u2 + α2u3

}
(3.88)

where N1 is irreversibility due to heat transfer and N2 represents fluid friction ir-

reversibility with couple stresses, magnetic field and porosity. To describe the con-

tribution of heat transfer irreversibility to the overall entropy generation, the Bejan

number Be is employed. It gave the ratio of heat transfer and viscous dissipation

with magnetic field within the channel as shown in (3.42)
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3.3.15 Model 4: Combined Effects of Velocity Slip, Temperature Jump

and Thermal Radiation on Entropy Generation of a Reactive Hy-

dromagnetic Couple Stress Fluid Through Vertical Porous Medium

Optimal energy utilization has been the concern of engineers and scientists over the

years. It is in the light of this that various investigations have been conducted to

reduce all forms of wastage. Available research works in literature reveal that not

much has been done on the effect of velocity slip and temperature jump on entropy

generation. Most of the works on entropy generation did not address the impact of slip

and temperature jump on entropy generation (Adesanya, 2014; Adesanya and Falade,

2015; Adesanya and Makinde, 2015c; Adesanya et al., 2015; Ajibade et al., 2011).

Motivated by studies Adesanya and Makinde (2015b), Adesanya et al. (2015) and

Rashidi and Freidoonimehr (2012), the aim of this section is to investigate the effects

of velocity slip, temperature jump and thermal radiation on the entropy generation

of hydromagnetic reactive couple stress fluid through vertical porous medium.

3.3.16 Formulation of Model 4

Consider the steady and thermally developed flow of an incompressible reactive couple

stress fluid in the presence of velocity slip and temperature jump placed between

two parallel impermeable plates with isothermal boundary conditions. A constant

magnetic field of strength B0 is applied. It is assumed that the fluid motion is induced

by applied axial pressure gradient. It is further assumed that the radiative heat flux

in the energy equation follows Roseland approximation. Neglecting the consumption

of the reactant, then the governing equations for Navier-Stokes, heat balance equation

and entropy generation expression are written as Adesanya et al. (2015); Adesanya,

(2015); Rashidi and Freidoonimehr, (2012) (see Figure 3.4).
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Figure 3.4: Schematic diagram for Model 4
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0 = − dp
dx′ + µ

d2u
′

dy′2
− ηd

4u
′

dy′4
− σB2

0u
′ − µu

′

K
− bu

′2

√
K

+ gζ(T − T0) (3.89)

0 =
d2T

′

dy′2
+
QC0A

k
e−

E
RT + µ

(du′

dy′

)2
+ η

d2u
′

dy′2
+
µu

′2

K
+
bu

′3

√
K

+

σB2
0u

′2 − dqr
dy′ (3.90)

EG =
k

T 2
0

(dT ′

dy′

)2
+

16σcT 3
0

3k∗

(dT ′

dy′

)2
+

µ

T0

(du′

dy′

)2
+

η

T0
(
d2u

′

dy′2
)2 +

µu
′2

T0K
+

bu
′3

T0
√
K

+
σB2

0u
′2

T0
(3.91)

and the associated boundary conditions are

u(0) = 0, u
′
(0) = uw +

2− ξ
ξ

Ψ
du

′

dy′ ;u(h) = u
′
(h) = 0 (3.92)

and

T
′
(0) = Tw +

2− σT
σT

2φ

φ+ 1

Ψ

Pr

dT
′

dy′ ;T
′
(h) = 0 (3.93)

Invoking the Roseland approximation (Raptis et al., 2004) for radiation to obtain

qr =
4σ

3k∗
dT

′4

dy′ (3.94)

Equation (3.94) can be expressed as a linear function of temperature by expanding

T
′4 in a Taylor series about T0

T
′4 = T

′4
0 + 4T

′4
0 (T

′ − T ′

0) + 6T
′2
0 (T

′ − T ′

0)
2 + 4T

′

0(T
′ − T ′

0)
3 +

(T
′ − T ′

0)
4 (3.95)

and neglecting second and higher order terms to have

T
′4 ≡ 4T 3

0 T − 3T 3
0 (3.96)
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Substituting equations (3.95) and (3.96) in equation (3.90) gives

0 =
d2T

′

dy′2
+
QC0A

k
e−

E
RT + µ

(du′

dy′

)
+ η

d2u
′

dy′2
+
µu

′2

K
+
bu

′3

√
K

+

σB2
0u

′2 +
16σT 3

0

3k∗
d2T

dy′2
(3.97)

the following are the dimensionless variables

y =
y

′

h
, u =

u
′

UM
, θ =

E(T − T0)
RT 2

0

, λ =
QEAC0h2e− E

RT

RT 2
0 k

,

M = − h2

µU

dP

dx
, ε =

RT0
E

, δ =
U2µM2e

E
RT

QAC0h2
, a =

h

l
, l =

√
η

µ
,

β =

√
1

Da
,Da =

k

h2
, Ns =

h2E2EG
kR2T 2

0

, H2 =
σB2

0h
2

ρ
,

Gr =
gζρh2(Th − T0)

µv
, kn =

Ψ

h
(
2− σT
σT

)
2φ

φ+ 1
,

γ =
(2− ξ)Ψ

ξh
,N =

4σcT
′3
0

kk∗
(3.98)

Using equation (3.98) in equations (3.89), (3.91)-(3.93) and (3.97) yields the boundary

value problems and the dimensionless entropy generation expression

0 = 1 +
d2u

dy2
− 1

a2
d4u

dy4
−H2u− β2u− α2u2 +Grθ (3.99)

0 =

(
1+

4N

3

)
d2θ

dy2
+λ

{
e

θ
1+εθ +δ

(du
dy

)
+
δ

a2

(d2u
dy2

)2
+δβ2u2+δα2u3+δH2u2

}
(3.100)

Ns =

(
1+

4N

3

)(dθ
dy

)2
+
δλ

ε

{(du
dy

)2
+

1

a2

(d2u
dy2

)2
+β2u2 +α2u3 +H2u2

}
(3.101)

as well as the boundary conditions

u(−1) = 0, u
′
(−1) = 1 + γu

′′
(−1);u(1) = u

′
(1) = 0,

θ(−1) = 1 +
kn
Pr

θ
′
(0); θ(1) = 0 (3.102)
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3.3.17 Solution by Adomian Decomposition

Expressing equations (3.99) and (3.100) in the integral form to obtain

u(y) = c1y +
c2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
1 +

d2u

dY 2
−H2u− β2u−

−α2u2 +Grθ

}
dY dY dY dY (3.103)

and

θ(y) = c3 + c4(y)−

(
3

3 + 4N

)∫ y

0

∫ y

0

λ

{
e

θ
1+εθ + δ

( du
dY

)2
+

δ

a

( d2u
dY 2

)2
+ δH2u2 + δβ2u2 + δα2u3

}
dY dY (3.104)

where c1 ,c2 ,c3 , c4 are the parameters which will be determined later.

The infinite series solutions by ADM are written as:

u(y) =
∞∑
n=0

un(y), θ(y) =
∞∑
n=0

θn(y) (3.105)

Now using equation (3.105) in equations (3.103)-(3.104), gives

∞∑
n=0

un(y) = c1y +
c2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
1 +

∞∑
n=0

d2un
dY 2

−

β2

∞∑
n=0

u2n −H2

∞∑
n=0

un − α2

∞∑
n=0

u2n +Gr
∞∑
n=0

θn

}
dY dY dY dY (3.106)

and

∞∑
n=0

θn(y) = c3 + c4 −
3

3 + 4N

∫ y

0

∫ y

0

λ

{
e

∑∞
n=0 θn(y)

1+ε
∑∞
n=0 θn(y) + δ

(
∞∑
n=0

du

dY

)2

+
δ

a

(
∞∑
n=0

d2u

dY 2

)2

+

δβ2

∞∑
n=0

u2 + δH2

∞∑
n=0

u2 + δα2

∞∑
n=0

u3n

}
dY dY(3.107)

From equations (3.106) and (3.107), the zeroth order terms can be written as

∞∑
n=0

u0(y) = c1y +
c2
3!
y3 + a2

∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
1
}
dY dY dY dY (3.108)
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∞∑
n=0

θ0(y) = c3 + c4y (3.109)

while other terms can be determined using the recurrence relations

∞∑
n=0

un+1(y) = a2
∫ y

0

∫ y

0

∫ y

0

∫ y

0

{
∞∑
n=0

d2un
dY 2

− β2

∞∑
n=0

u2n −

H2

∞∑
n=0

un − α2

∞∑
n=0

u2n +Gr
∞∑
n=0

θn

}
dY dY dY dY (3.110)

and

∞∑
n=0

θn+1(y) = − 3

3 + 4N

∫ y

0

∫ y

0

λ

{
e

∑∞
n=0 θn(y)

1+ε
∑∞
n=0 θn(y) + δ

(
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δ
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(
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d2u
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n=0

u2 + δH2

∞∑
n=0

u2 + δα2

∞∑
n=0

u3n

}
dY dY (3.111)

The non-linear term in equation (3.111) can be written as

Bn = u2;Cn = u3;An = e
θn(y)

1+εθn(y) (3.112)

The Adomian polynomials are computed as

B0 = u20, B1 = 2u0u1, B2 = 2u0u2 + u21, . . . ; C0 = u30, C1 = 3u20u1,

C2 = 3u20u2 + 3u0u
2
1, . . . ;A0 = e

θ0(y)
1+εθ0(y) , A1 =

e
θ0(y)

1+εθ0(y) θ1(y)

[1 + εθ0(y)]2
,

A2 =
e

θ0(y)
1+εθ0(y) [(1− 2ε− 2ε2θ0(y))θ1(y)2 + 2(1 + εθ0(y)2θ2(y))]

2[1 + εθ0(y)]2
(3.113)

Substituting (3.112) in equation (3.111) yields

∞∑
n=0

θn+1(y) = − 3

3 + 4N

∫ y

0

∫ y

0

λ

{
An + δ
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δ
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d2u
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+ δβ2
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n=0
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u2 + δα2
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u3n

}
dY dY (3.114)

78



3.3.18 Entropy Generation

The local entropy generation rate according to Bejan (1996), given in equation (3.91)

is written below:

EG =
k

T 2
0

(dT ′

dy′

)2
+

16σcT 3
0

3k∗

(dT ′

dy′

)2
+

µ

T0

(du′

dy

)2
+

η

T0

(d2u′

dy′2

)2
+

σB2
0u

′2

T0
+

bu
′3

T0
√
K

+
µu

′2

T0k

The first term in the above equation is the entropy generation due to heat transfer, the

second, third, fourth, fifth, sixth and seventy terms are the entropy generation due to

radiation, fluid friction, couple stresses and magnetic field and porosity respectively .

The dimensionless form in equation (3.101) is given as

Ns =

(
1 +

4N

3

)(dθ
dy

)2
+
δλ

ε

{(du
dy

)2
+

1

a

(d2u
dy2

)2
+ β2u2 +

α2u3 +H2u2

}
Investigating entropy generation within the flow by letting

N1 =

(
1 +

4N

3

)(dθ
dy

)2
, N2 =

δλ

ε

{(du
dy

)2
+

1

a

(d2u
dy2

)2
+ β2u2 +

α2u3 +H2u2 + δα2u3

}
(3.115)

The Bejan number is given in (3.42)
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the results of this work, the plots are shown for models 1-4. To

be realistic, we have chosen physically meaningful values for Prandtl number between

0.004 and 2 to accommodate fluids such as mercury (0.008-0.041), oxygen (0.729-

0.759), air (0.703-0.784) and water vapour (0.882-0.994) (Lienhard IV and Lienhard

V, 2006).

4.2 Model 1

Influence of hydromagnetic couple stress fluid with entropy generation through porous

channel is analyzed in this model. Semi-analytical solutions by Adomian decompo-

sition method for the velocity and temperature profiles are obtained and validated

by DTM solution. The results are used to compute the entropy generation rate and

Bejan number. The results are presented in Figures 4.1 - 4.12

4.2.1 Effects of Parameter Variation on Velocity and Temperature Pro-

files

The effect of parameters variation on velocity and temperature are shown in Figures

4.1-4.6. Figure 4.1 shows the effect of magnetic field parameter on fluid velocity. It is

observed that an increase in the magnetic field parameter leads to a decrease in the

velocity of the fluid. This is as a result of the presence of Lorentz force that opposes

the fluid flow; the force is caused by the applied magnetic field which clusters the

fluid particles and thus impedes the free flow of the fluid. In Figure 4.2, variation

in suction/injection parameter on fluid velocity is presented. It is observed that as

injection of hot fluid into the channel increases there is shift in flow symmetry due
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to decrease in fluid kinematic viscosity. Figure 4.3 illustrates the effect of the inverse

of couple stress parameter on fluid velocity. Increase in the inverse of couple stresses

increases fluid velocity which indicates that couple stress parameter will decrease fluid

velocity. The result is physically true because increase in couple stresses enhances

fluid viscosity as fluid particles size increases. This is in perfect agreement with result

reported in (Adesanya and Makinde, 2015b).

Furthermore, Figure 4.4 depicts the effect of magnetic field on fluid temperature.

As seen from the plot, there is an increase in fluid temperature as magnetic field

parameter (H2) increases. The increase can be attributed to the increase in viscous

heating which increases the rate of heat transfer from the fluid to the walls. Figure 4.5

shows the plot of suction/injection on temperature profile. Expectedly, we observed

an increase in temperature as injection of hot fluid into the channel increases. Figure

4.6 presents the effect of couple stress inverse on temperature. It shows that fluid

temperature decreases as couple stress parameter increases. The reason is that fluid

viscosity rises with increase in couple stresses.

81



Figure 4.1: Effect of magnetic field parameter ( H2) on velocity profile
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Figure 4.2: Effect of suction/injection (s) on velocity profile
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Figure 4.3: Effect of couple stress inverse parameter (a) on velocity profile
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Figure 4.4: Effect of magnetic field parameter ( H2) on temperature profile
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Figure 4.5: Effect of suction/injection (s) on temperature profile
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Figure 4.6: Effect of couple stress inverse parameter (a) on temperature profile
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4.2.2 Effects of Parameter Variation on Entropy Generation Rate

In Figures 4.7-4.9, the effects of variation of some governing parameters on entropy

generation rate are presented. Figure 4.7 depicts the plot of variation in magnetic

field parameter on entropy generation. As shown in Figure 4.1, rise in Hartman

number decreases the flow velocity while increasing the fluid temperature as reported

in Figure 4.4. The net effect on entropy generation rate is presented in Figure 4.7.

As observed, increased Hartman number enhances entropy generation. This is true

since Hartman number decreases velocity thereby clustering the fluid particle. This

clustering enhances viscous dissipation within the layers. Moreover, Hartman number

increases fluid temperature implies that the rate of heat transfer from the fluid to the

walls must increase. The totality of these is shown to increase entropy generation

significantly as confirmed in the plot.

In Figure 4.8, it is shown that entropy generation decreases at the lower wall with

injection and in the middle of the channel while it increases at the upper wall with

suction. This can be traced to Figure 4.2 where it was submitted that increase in

suction/injection parameter leads to a break in flow symmetry within the channel.

Figure 4.9, depicts the effect of couple stresses on the entropy generation rate, it is

observed that entropy generation increases with increase in couple stress inverse. This

implies that increase in couple stresses decreases entropy generation rate. The reason

is shown in Figure 4.3 where the plot indicates that fluid velocity reduces with increase

in couple stresses due to increase in fluid viscosity as fluid particle size increases. The

effect of this on the flow system is to lower the random movement of the fluid particles

and consequently the drop in entropy production rate in the core region of the channel

than the channel walls.
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Figure 4.7: Effect of magnetic field parameter (H2) on entropy generation rate
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Figure 4.8: Effect of suction/injection (s) on entropy generation rate
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Figure 4.9: Effect of couple stress inverse parameter (a) on entropy generation

91



4.2.3 Effects of Parameter Variation on Bejan Number

The influence of parameters variation on Bejan number are presented in Figures 4.10-

4.12. Figure 4.10 depicts the graph of magnetic field parameter on Bejan number. It is

observed that Bejan number increases across the channel as magnetic field parameter

increases. This is an indication that heat transfer is the major contributor to irre-

versibility across the channel. Figure 4.11 represents the effect of suction/injection on

Bejan number. The plot indicates that increase in suction/injection decreases Bejan

number at the lower wall and at the center of the channel with a slight increase at the

upper wall. This shows that irreversibility due to viscous dissipation dominates the

flow at the upper wall. Finally the effect of couple stress inverse on entropy genera-

tion in Figure 4.12 is presented; it is found that couple stress inverse decreases Bejan

number, which indicates that couple stresses retard Bejan number. This suggests the

dominance of irreversibility by viscous dissipation over heat transfer.
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Figure 4.10: Effect of magnetic field parameter ( H2) on Bejan number
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Figure 4.11: Effect of suction/injection (s) on Bejan number
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Figure 4.12: Effect of couple stress inverse (a) on Bejan number
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4.2.4 Effects of Parameter Variation on Skin Friction

Tables 4.2-4.4 present the effect of parameters variation on skin friction coefficient.

Tables 4.2 and 4.3 indicate that skin friction decreases as the value of magnetic field

parameter and suction/injection increase while in Table 4.4 skin friction increases

with increase in pressure gradient parameter.
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Table 4.1: Effect of Magnetic field variation on Skin friction

G H s a Cf
1 1 1 1 0.03535583
1 2 1 1 0.0344646
1 3 1 1 0.0331398

Table 4.2: Effect of suction/injection on variation on Skin friction

G H s a Cf
1 1 1 1 0.03535583
1 1 2 1 0.0352547
1 1 3 1 0.0351476

Table 4.3: Effect of Pressure gradient variation on Skin friction

G H s a Cf
1 1 1 1 0.0353583
2 1 1 1 0.0707166
3 1 1 1 0.106075
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4.2.5 Effects of Parameter Variation on Nusselt Number

Tables 4.5-4.7 present the effect of parameters variation on Nusselt number. Table

4.5 presents the effect of variation in magnetic field parameter on Nusselt number.

It is noticed that increase in magnetic field parameter leads to a decrease in Nusselt

number. Table 4.6 illustrates suction/injection variation on Nusselt number. Increase

in suction/injection decreases Nusselt number. Table 4.7 displays the effect of couple

stresses on Nusselt number. The table shows that increase in couple stresses increases

the Nusselt number.
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Table 4.4: Effect of Magnetic field variation on Nusselt number

G H s Pr Br a Nu
1 1 1 0.71 1 1 0.0605638
1 2 1 0.71 1 1 0.0605517
1 3 1 0.71 1 1 0.605316

Table 4.5: Effect of suction/injection variation on Nusselt number

G H s Pr Br a Nu
1 1 1 0.71 1 1 0.605638
1 1 2 0.71 1 1 0.312725
1 1 3 0.71 1 1 0.144648

Table 4.6: Effect of couple stress variation on Nusselt number

G H s Pr Br a Nu
1 1 1 0.71 1 1 0.605638
1 1 1 0.71 1 2 0.608578
1 1 1 0.71 1 3 0.609122
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4.3 Model 2

Second law analysis of hydromagnetic couple stress fluid through non-Darcian porous

medium has been considered in this model. The graphical results in Figures 4.13-4.27

are presented to explain the influence of pertinent parameters on velocity, tempera-

ture, entropy generation and Bejan number.

4.3.1 Effects of Parameters Variation on Velocity and Temperature Pro-

files

Effect of parameters variation on velocity and temperature are shown in Figures 4.13-

4.19. Figure 4.13 depicts the plot of magnetic field parameter on velocity profile;

the figure shows that increase in the magnetic field parameter reduces fluid velocity.

This can be attributed to the force exerted by the applied magnetic field on fluid

particles which clumps the fluid particles together leading to an increase in viscosity

and consequently, the drop in fluid velocity. In Figures 4.14 and 4.15, the effects of

porous media parameters (β, α) are presented; the graphs reveal that fluid velocity

reduces as porous media parameters increase. This can be attributed to the reduc-

tion in the porous media permeability (K) of the fluid which reduces the free flow of

fluid particles. Figure 4.16 shows the plot of couple stress inverse on velocity profile.

As observed from the plot, increase in couple stress inverse parameter increases the

velocity profile. It means that couple stress parameter will eventually reduce fluid

velocity due to increased viscosity of the fluid.

Figure 4.17 displays the graph of magnetic field parameter variation on fluid tem-

perature. It is observed that fluid temperature increases with increase in magnetic

field parameter. This is due to an increase in heat source from the Ohmic heating

present in the flow; which enhances transfer of heat to the boundaries. Furthermore,

Figure 4.18 indicates that as porous media shape factor parameter rises in value fluid

temperature is enhanced. The study shows that reduction in the porous media per-
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meability of the fluid is responsible for the rise in temperature. The influence of

the inverse of couple stress parameter on temperature is shown in Figure 4.19. It is

noticed from the graph that as couple stress inverse parameter increases the temper-

ature of the fluid drops. The implication of this is that, increase in couple stresses

enhances fluid thickness that is, the dynamic viscosity increases which increases the

temperature.
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Figure 4.13: Effect of magnetic field parameter (H2) on velocity profile
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Figure 4.14: Effect of porous media shape factor parameter (β) on velocity profile
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Figure 4.15: Effect of second order porous media resistance parameter ( α) on
velocity profile
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Figure 4.16: Effect of couple stress inverse parameter (a) on velocity profile
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Figure 4.17: Effect of magnetic field parameter ( H2) on temperature profile
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Figure 4.18: Effect of porous media shape factor parameter (β) on temperature
profile
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Figure 4.19: Effect of couple stresses (a)on temperature profile
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4.3.2 Effects of Parameter Variation on Entropy Generation

The effect of parameters variation on entropy generation rate in Figures 4.20-4.23 are

presented. In Figure 4.20, the influence of magnetic field parameter on entropy gen-

eration is depicted. It is indicated in the graph that entropy generation is enhanced

with increase in magnetic field parameter. This can be traced to Figure 4.13 which

shows that fluid velocity decreases with increased Hartman number caused by clump-

ing of fluid particle. Furthermore, it is shown in Figure 4.17 that fluid temperature

rises as Hartman number is increased due to increased heat transfer to the boundaries

from Ohmic heating. The effect of these is the significant rise in entropy generation

displayed in Figure 4.20. In Figures 4.21 and 4.22, the effects of porous shape pa-

rameters on entropy generation are displayed. The plots indicate that increase in the

porous shape parameters reduces entropy generation. This is clearly shown in Figures

4.14 and 4.15 that fluid velocity reduces with increase in porous media parameters;

the drop in fluid velocity reduces the random movement of fluid particles and conse-

quently the reduction in entropy generation rate.

Moreover in Figure 4.23 the graph displays the influence of couple stress inverse

parameter on the entropy generation rate. It is revealed that entropy generation rises

with increase in couple stress inverse parameter (a). This implies that couple stresses

reduce entropy generation due to the reduction in random movement of fluid particles.

The drop in the randomness of fluid particles is clearly revealed in Figure 4.16 which

shows that fluid velocity decreases with increase in couple stresses.
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Figure 4.20: Effect of magnetic field parameter ( H2) on entropy generation rate
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Figure 4.21: Effect of porous media shape factor parameter (β) on entropy genera-
tion rate
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Figure 4.22: Effect of second order porous media resistance parameter (α) on en-
tropy generation rate
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Figure 4.23: Effect of couple stresses (a) on entropy generation rate
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4.3.3 Effects of Parameter Variation on Bejan Number

Influence of parameters variation on Bejan number are presented in Figures 4.24-

4.27. Figures 4.24-4.26 display the plots of variation in magnetic field parameter,

porous media shape factor parameter and Brinkman number respectively on Bejan

number. The plots indicate that increase in the parameters increases Bejan number.

Furthermore, Figure 4.27 presents the influence of Prandtl number on Bejan number.

It is shown from the plot that Bejan number decreases slightly at the lower wall while

there is a significant increase in the middle and upper walls of the channel as Prandtl

number increases. The results indicate the dominance of irreversibility due to heat

transfer in the middle and upper walls of the channel.
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Figure 4.24: Effect of magnetic field parameter ( H2) on Bejan number
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Figure 4.25: Effect of porous media shape factor parameter (β) on Bejan number
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Figure 4.26: Effect of Brinkman number (Br) on Bejan number
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Figure 4.27: Effect of Prandtl number (Pr) on Bejan number
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4.4 Model 3

In this model, irreversibility analysis of MHD couple stress fluid flow through ver-

tical porous medium has been investigated using the rapidly convergent Adomian

decomposition method. The velocity and temperature profiles are obtained and used

to compute the entropy generation rate. The effects of various parameters are con-

sidered on velocity, temperature, entropy generation and Bejan number to provide

insight to the problems, and the results are graphically displayed in Figs. 4.28-4.46

4.4.1 Effects of Parameters Variation on Velocity Profile

Figures 4.28-4.31 present the variations of velocity for different flow parameters. Fig-

ure 4.28 represents the effect of variation in Grashof number parameter on velocity

profile. There is a rise in the velocity of the fluid as Grashof number parameter

increases. It is observed that buoyancy force speeds up fluid velocity. Figure 4.29

presents the effect of suction/injection on fluid velocity. The plot shows a rise in fluid

velocity as suction/injection parameter increases; the rise in fluid velocity is due to

the reduction in fluid kinematic viscosity as more hot fluid is injected into the channel

while in Figure 4.30 the influence of Prandtl number on the velocity of the fluid is

displayed. The Figure reveals that fluid velocity accelerates as the value of Prandtl

number rises from water vapour to water. Furthermore, Figure 4.31 portrays the

effect of the inverse of couple stresses on fluid velocity. It is clearly shown that fluid

velocity increases as the inverse of couple stresses increases. The fluid velocity will

eventually reduce as couple stresses increases due to increase in fluid thickness which

reduces fluid motion.
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Figure 4.28: Effect of Grashof number (Gr) on velocity profile
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Figure 4.29: Effect of suction/injection (s) on velocity profile
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Figure 4.30: Effect of Prandtl number (Pr) on velocity profile
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Figure 4.31: Effect of couple stress inverse (a) on velocity profile
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4.4.2 Effect of Parameters Variation on Temperature Profile

The influences of different governing parameters on temperature are presented in Fig-

ures 4.32-4.36 Figure 4.32 portrays the effect of Grashof number on fluid temperature.

Fluid temperature is enhanced across the channel as the value of Grashof number in-

creases due to increase in fluid volumetric expansion. The effect of magnetic field

parameter on fluid temperature is shown in Figure 4.33. It is clear from the plot that

fluid temperature increases as magnetic field parameter increases. The Lorentz heat-

ing effect is attributed to the rise in temperature. Figure 4.34 displays the effect of

suction/injection parameter on fluid temperature; the figure reveals that temperature

increases as suction/injection parameter increases. This is true as injection of hot

fluid into the channel will definitely increase fluid temperature. Figure 4.35 displays

the effect of lower Biot number (Bi1) on fluid temperature. As seen from the graph,

the temperature increases as convective heating from the lower wall increases, while

the trend is reversed in Figure 4.36 with upper Biot number (Bi2) due to the cooling

effect.
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Figure 4.32: Effect of Grashof number (Gr) on temperature profile
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Figure 4.33: Effect of magnetic field parameter ( H2) on temperature profile
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Figure 4.34: Effect of suction/injection (s) on temperature profile
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Figure 4.35: Effect of lower Biot number (Bi1) on temperature profile
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Figure 4.36: Effect of upper Biot number (Bi2) on temperature profile
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4.4.3 Effect of Parameters Variation on Entropy Generation Rate

The influences of various parameters on entropy generation rate are presented in

Figures 4.37-4.41. Figure 4.37 describes the effect of Grashof number on entropy

generation rate. The plot depicts that entropy generation registers an increase as

Grashof number rises in values. In Figures 4.28 and 4.32, it is presented that fluid

velocity and temperature increased as Grashof number increases due to the impact

of buoyancy force as well as rise in fluid volumetric expansion respectively. The net

effect is the increased randomness of fluid particles which leads to increase in entropy

production. Figure 4.38 displays the effect of magnetic field parameter on entropy

generation. Entropy production becomes higher at the upper wall as magnetic field

value rises. This is explained in Figure 4.33 that increase in Hartman number has a

corresponding increase in fluid temperature because the applied magnetic field clus-

tered fluid particles together thereby enhancing viscous dissipation. Consequently,

fluid velocity is reduced and the temperature rises leading to loss of available energy

as entropy production rises.

Furthermore, Figure 4.39 depicts the influence of suction/injection on entropy gener-

ation rate. From the plot, we observed that entropy generation increases considerably

as suction/injection parameter varies. This is because of the injection of hot fluid

into the channel which resulted into increased velocity and temperature as revealed

in Figures 4.29 and 4.34. Finally, Figures 4.40 and 4.41 show similar result, the plots

depict the effect of Biot numbers on entropy generation. As observed from the figures,

entropy generation increases considerably across the channel as both lower and upper

Biot numbers increase in values.
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Figure 4.37: Effect of Grashof number (Gr) on entropy generation rate
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Figure 4.38: Effect of magnetic field parameter ( H2) on entropy generation rate
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Figure 4.39: Effect of suction/injection (s) on entropy generation rate
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Figure 4.40: Effect of lower Biot number (Bi1) on entropy generation rate
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Figure 4.41: Effect of upper Biot number (Bi2) on entropy generation rate
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4.4.4 Effect of Parameters Variation on Bejan Number

This section presents the effect of variation of parameters on Bejan number in Fig-

ures 4.42-4.46. Figures 4.42 depicts the effect of Grashof number on Bejan number the

plots indicate that Bejan number decreases as the values of Grashof number increases.

Therefore entropy generation due to viscous dissipation dominates over heat trans-

fer, while Figures 4.43-4.46 display the plots of Hartman number, suction/injection

parameter, lower and upper Biot numbers respectively on Bejan number, the plots

show that Bejan number increases as the values of the parameters increase. This is

an indication that heat transfer dominates entropy generation for Hartman number,

suction/injection, lower and upper Biot numbers.
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Figure 4.42: Effect of Grashof number (Gr) on Bejan number
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Figure 4.43: Effect of magnetic field parameter ( H2) on Bejan number
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Figure 4.44: Effect of suction/injection (s) on Bejan number
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Figure 4.45: Effect of lower Biot number (Bi1) on Bejan number
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Figure 4.46: Effect of upper Biot number (Bi2) on Bejan number
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4.5 Model 4

This model considers the effect of velocity slip, temperature jump and thermal ra-

diation on the entropy generation rate of hydromagnetic reactive couple stress fluid

through vertical porous medium. The boundary value problems are solved by the

rapidly convergent Adomian decomposition method. The results showing the effects

of some pertinent parameters on the velocity, temperature, entropy generation and

Bejan number are discussed with the aid of graphs as in Figs. 4.47-4.62

4.5.1 Effect of Parameter Variation on Velocity Profile

The effects of parameters variation on the velocity profile are displayed in Figures 4.47-

4.50. Figure 4.47 depicts the effect of increasing velocity slip parameter on the flow

velocity. It is clear from the plot that an increase in velocity slip parameter increases

fluid velocity. The reason is that increase in velocity slip corresponds to an increase

in the molecular mean free path of each fluid particle and reduction in the frictional

forces which increases fluid velocity. In Figure 4.48, the velocity profile is shown for

an increasing values of temperature jump parameter. It is observed that fluid velocity

reduces as temperature jump parameter increases due to increased molecular distance

of each fluid particle. In Figure 4.49 effect of variation in Grashof number on velocity

profile is displayed. As observed from the plot, buoyancy force speeds up the motion

of fluid particles. Figure 4.50 represents the effect of radiation parameter on the fluid

velocity. From the plot, one observes that as the radiation parameter increases, there

is an increase in fluid velocity. It is shown that the increase in radiation parameter

corresponds to an enhancement in the intensity of heat generated through thermal

radiation and the bond holding the components of the fluid particles is easily broken

therefore the fluid velocity rises.
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Figure 4.47: Effect of velocity slip parameter (γ) on velocity profile
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Figure 4.48: Effect of temperature jump parameter (kn) on velocity profile
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Figure 4.49: Effect of Grashof number (Gr) on velocity profile
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Figure 4.50: Effect of thermal radiation parameter (N) on velocity profile
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4.5.2 Effect of Parameters Variation on Temperature Profile

In Figures 4.51-4.54, effect of parameters variations on temperature profiles are shown

in the plots. In Figure 4.51 it is observed that as velocity slip parameter increases

it reduces the fluid temperature which can be attributed to the gain in momentum

of fluid. Figure 4.52 demonstrates the effect of temperature jump parameter on fluid

temperature. From the plot it shows that there is a rise in fluid temperature as tem-

perature jump parameter increases. The rise is caused by an increase in the molecular

mean free path of the fluid. Moreover, Figure 4.53 depicts the influence of thermal

radiation on the temperature. Clearly it is seen that increase in thermal radiation

parameter implies a drop in fluid temperature due to increase in the absorptivity rate

which lowers the radiated heat and hence the drop in temperature. Furthermore, in

Figure 4.54 the representative profile of Grashof number for fluid temperature is dis-

played. The plot reflects that as Grashof number increases fluid temperature increases

due to the significant rise in the volumetric expansion of the fluid.
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Figure 4.51: Effect of velocity slip parameter (γ) on temperature profile
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Figure 4.52: Effect of temperature jump parameter (kn) on temperature profile
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Figure 4.53: Effect of thermal radiation parameter (N) on temperature profile
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Figure 4.54: Effect of Grashof number (Gr) on temperature profile
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4.5.3 Effect of Parameters Variation on Entropy Generation

The effects of variations in slip velocity, temperature jump, thermal radiation and

Grashof number on entropy generation are displayed in Figures 4.55-4.58. Figure

4.55 shows that the rate of entropy generation reduces with increase in velocity slip

parameter as a result of the reduction in the heat generated as shown in Figure

4.51. Moreover, Figures 4.56-4.58 show similar results on the influence of temperature

jump, thermal radiation parameters and Grashof number on entropy generation. It is

observed that increase in temperature jump parameter, thermal radiation parameter

and Grashof number increases entropy generation significantly. Specifically in Figure

4.56 the rise in the entropy generation is due to the high temperature of fluid particles

which is caused by rise in temperature jump parameter as confirmed in Figure 4.52.

Also, thermal radiation in Figure 4.57 increases entropy generation due to increase in

the emission rate of radiation, while Grashof number in Figure 4.58 increases entropy

generation as a result of increased randomness due to the increased rate of change of

momentum in the fluid as the parameter Gr increases.
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Figure 4.55: Effect of velocity slip parameter (γ) on entropy generation rate
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Figure 4.56: Effect of temperature jump parameter (kn) on entropy generation rate
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Figure 4.57: Effect of thermal radiation parameter (N) on entropy generation rate
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Figure 4.58: Effect of Grashof number (Gr) on entropy generation rate
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4.5.4 Effects of Parameters Variation on Bejan number

In this section, the contributing factors to entropy production as each of the thermo-

physical parameters is varied is presented in Figures 4.59-4.62. In Figures 4.59 and

4.62 similar result is observed, it is noticed that as the velocity slip parameter and

Grashof number increase Bejan number reduces at the lower wall with Newtonian

heating and increases at the upper wall. Furthermore, Figures 4.60 and 4.61 depict

the influence of temperature jump and radiation parameters on Bejan number, the

plots show an increase in Bejan number as the values of the parameters rise. This

implies that destruction of exergy is due to the effect of heat transfer at the upper

wall.
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Figure 4.59: Effect of velocity slip parameter (γ) on Bejan number
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Figure 4.60: Effect of temperature jump parameter (kn) on Bejan number

159



Figure 4.61: Effect of thermal radiation parameter (N) on Bejan number
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Figure 4.62: Effect of Grashof number (Gr) on Bejan number
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

In this chapter, the results of the analysis in chapter four are presented and explained.

The conclusions based on the findings are stated together with the contributions to

knowledge.

5.2 Summary of the Research Aim and Objectives

There is an increase in entropy generation as magnetic field and couple stress inverse

parameters increase, while entropy generation increases only at the upper wall for suc-

tion/injection parameter. Also, increase in magnetic field parameter increases Bejan

number while increase in couple stresses retards Bejan number. However, suction/in-

jection decreases the Bejan number at lower wall and centre of the channel. This

is an indication that both irreversibility due to heat transfer and viscous dissipation

contributed to entropy generation.

Magnetic field increased entropy generation while couple stress and porosity param-

eters decreased entropy generation. Porous media shape factor parameter, magnetic

field parameter and Brinkman number respectively increased Bejan number, while

Bejan number decreases slightly at the lower wall with a significant increase in the

middle and upper walls of the channel as Prandtl number increases. These results

indicate that irreversibility due to heat transfer dominates the flow in the middle and

upper walls of the channel.

Grashof number, magnetic field parameter, suction/injection parameter and Biot

numbers increased entropy generation rate. It is further noted that Grashof number

reduced Bejan number while magnetic field parameter, suction/injection parameter

and Biot numbers respectively retarded Bejan number. The implication of this is that
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both viscous dissipation and heat transfer contributed to entropy generation.

Entropy generation was reduced with an increase in velocity slip parameter while tem-

perature jump parameter, thermal radiation parameter and Grashof number increased

entropy generation significantly. Moreover, velocity slip parameter and Grashof num-

ber reduced Bejan number at the lower wall with Newtonian heating and increased

it at the upper wall with Newtonian cooling; while temperature jump and radiation

parameters reduced Bejan number. This implies that destruction of exergy is due to

the effect of heat transfer at the upper wall.

5.3 Conclusion

In this thesis, analysis of entropy generation due to magnetohydrodynmic couple

stress fluid in a porous channel, porous medium and vertical porous medium was

investigated. The conclusions based on this study are as follows:

(i) Magnetic field parameter ( H2) reduced fluid velocity, increased fluid tempera-

ture and enhanced entropy generation. Both irreversibility due to heat transfer

and viscous dissipation contributed to entropy generation.

(ii) Porosity parameters decreased fluid velocity and retarded the entropy generation

rate. Entropy generation due to heat transfer dominated the flow at the middle

and upper walls of the channel.

(iii) Buoyancy force increased fluid velocity, fluid temperature and entropy gener-

ation rate. Both viscous dissipation and heat transfer contributed to entropy

generation

(iv) Slip velocity parameter increases fluid velocity, increased fluid temperature and

retarded entropy generation while temperature jump parameter reduced fluid

velocity and temperature but increased entropy generation. Moreover, heat

transfer irreversibility dominated entropy generation at the upper wall.
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5.4 Contributions to Knowledge

This research has contributed the following to the existing knowledge in the study of

MHD couple stress fluid:

(i) Increase in magnetic field and buoyancy force increases entropy generation. The

implication of this is that careful measure must be put in place to avoid losses

due to rise in entropy generation.

(ii) Increase porosity reduces entropy generation rate, velocity slip and temperature

jump parameters retards entropy generation entropy generation rate.

(iii) Entropy generation is contributed by both irreversibility due to viscous dissipa-

tion and heat transfer.

(iv) The above submissions would be of interest to engineers and scientists who

applied magnetic field to fluids and lubricants to increase the load carrying

capacity and improve lubrication capacity.

(v) The findings would be useful in metallurgical industries where magnetic field is

applied to control the motion of hot fluid.

5.5 Further Study

Future work can be directed to entropy generation of a couple stress fluid in different

flow geometry like pipe flow channel as well as rotational pipe flow. Effect of parameter

like hall currents could be an interesting area of research.
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APPENDICES

Appendix A: Mathematica Codes for ADM

Subscript[u, 0][y] =

Subscript[b, 1] + Subscript[b, 2]/3!*y^3 + a^2 \!\(

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\(\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((\(-G\))\) \

\[DifferentialD]y)\) \[DifferentialD]y)\) \[DifferentialD]y)\) \

\[DifferentialD]y\)\)

-(1/24) a^2 G y^4 + Subscript[b, 1] + (y^3 Subscript[b, 2])/6

Subscript[u, 1][y] = a^2 \!\(

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\(\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((\((\ D[D[

\(\*SubscriptBox[\(u\), \(0\)]\)[y], y], y])\) - s*D[

\(\*SubscriptBox[\(u\), \(0\)]\)[y], y] + \ \ \ H^2*

\(\*SubscriptBox[\(u\), \(0\)]\)[

y])\) \[DifferentialD]y)\) \[DifferentialD]y)\) \

\[DifferentialD]y)\) \[DifferentialD]y\)\)

a^2 (-(1/720) a^2 G y^6 + (a^2 G s y^7)/5040 - (a^2 G H^2 y^8)/

40320 + 1/24 H^2 y^4 Subscript[b, 1] + (y^5 Subscript[b, 2])/120 -

1/720 s y^6 Subscript[b, 2] + (H^2 y^7 Subscript[b, 2])/5040)
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Subscript[u, 2][y] = a^2 \!\(

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\(\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((\((\ D[D[

\(\*SubscriptBox[\(u\), \(1\)]\)[y], y], y])\) - s*D[

\(\*SubscriptBox[\(u\), \(1\)]\)[y], y] + \ \ \ H^2*

\(\*SubscriptBox[\(u\), \(1\)]\)[

y])\) \[DifferentialD]y)\) \[DifferentialD]y)\) \

\[DifferentialD]y)\) \[DifferentialD]y\)\)

1/39916800 a^4 (-(1/12)

a^2 G y^8 (11880 - 2640 s y + 132 (2 H^2 + s^2) y^2 -

24 H^2 s y^3 + H^4 y^4) +

990 H^2 y^6 (56 - 8 s y + H^2 y^2) Subscript[b, 1] +

y^7 (7920 +

y (220 H^2 y + 110 s^2 y + H^4 y^3 -

22 s (90 + H^2 y^2))) Subscript[b, 2])

Subscript[u, 3][y] = a^2 \!\(

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\(\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((\((\ D[D[

\(\*SubscriptBox[\(u\), \(2\)]\)[y], y], y])\) - s*D[

\(\*SubscriptBox[\(u\), \(2\)]\)[y], y] + \ \ \ H^2*

\(\*SubscriptBox[\(u\), \(2\)]\)[

y])\) \[DifferentialD]y)\) \[DifferentialD]y)\) \

\[DifferentialD]y)\) \[DifferentialD]y\)\)
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1/20922789888000 a^6 y^8 (-a^2 G y^2 (5765760 - 1572480 s y +

131040 (H^2 + s^2) y^2 - 3360 s (6 H^2 + s^2) y^3 +

720 H^2 (H^2 + s^2) y^4 - 48 H^4 s y^5 + H^6 y^6) +

43680 H^2 (11880 - 2640 s y + 132 (2 H^2 + s^2) y^2 -

24 H^2 s y^3 + H^4 y^4) Subscript[b, 1] +

16 y (3603600 - 1081080 s y + 98280 (H^2 + s^2) y^2 -

2730 s (6 H^2 + s^2) y^3 + 630 H^2 (H^2 + s^2) y^4 -

45 H^4 s y^5 + H^6 y^6) Subscript[b, 2])

AxesStyle -> Directive[Black, 12],

PlotStyle -> {{Red}, {Black, Thick}, {Blue, Dashed}}

Subscript[u, 3][y] = a^2 \!\(

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\(\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((\((\ D[D[

\(\*SubscriptBox[\(u\), \(2\)]\)[y], y], y])\) - s*D[

\(\*SubscriptBox[\(u\), \(2\)]\)[y], y] + \ \ \ H^2*

\(\*SubscriptBox[\(u\), \(2\)]\)[

y])\) \[DifferentialD]y)\) \[DifferentialD]y)\) \

\[DifferentialD]y)\) \[DifferentialD]y\)\)

1/20922789888000 a^6 y^8 (-a^2 G y^2 (5765760 - 1572480 s y +

131040 (H^2 + s^2) y^2 - 3360 s (6 H^2 + s^2) y^3 +

720 H^2 (H^2 + s^2) y^4 - 48 H^4 s y^5 + H^6 y^6) +

43680 H^2 (11880 - 2640 s y + 132 (2 H^2 + s^2) y^2 -

24 H^2 s y^3 + H^4 y^4) Subscript[b, 1] +

16 y (3603600 - 1081080 s y + 98280 (H^2 + s^2) y^2 -
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2730 s (6 H^2 + s^2) y^3 + 630 H^2 (H^2 + s^2) y^4 -

45 H^4 s y^5 + H^6 y^6) Subscript[b, 2])

AxesStyle -> Directive[Black, 12],

PlotStyle -> {{Red}, {Black, Thick}, {Blue, Dashed}}

Subscript[u, 3][y] = a^2 \!\(

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\(\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((

\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(y\)]\((\((\ D[D[

\(\*SubscriptBox[\(u\), \(2\)]\)[y], y], y])\) - s*D[

\(\*SubscriptBox[\(u\), \(2\)]\)[y], y] + \ \ \ H^2*

\(\*SubscriptBox[\(u\), \(2\)]\)[

y])\) \[DifferentialD]y)\) \[DifferentialD]y)\) \

\[DifferentialD]y)\) \[DifferentialD]y\)\)

1/20922789888000 a^6 y^8 (-a^2 G y^2 (5765760 - 1572480 s y +

131040 (H^2 + s^2) y^2 - 3360 s (6 H^2 + s^2) y^3 +

720 H^2 (H^2 + s^2) y^4 - 48 H^4 s y^5 + H^6 y^6) +

43680 H^2 (11880 - 2640 s y + 132 (2 H^2 + s^2) y^2 -

24 H^2 s y^3 + H^4 y^4) Subscript[b, 1] +

16 y (3603600 - 1081080 s y + 98280 (H^2 + s^2) y^2 -

2730 s (6 H^2 + s^2) y^3 + 630 H^2 (H^2 + s^2) y^4 -

45 H^4 s y^5 + H^6 y^6) Subscript[b, 2])

AxesStyle -> Directive[Black, 12],

PlotStyle -> {{Red}, {Black, Thick}, {Blue, Dashed}}

Appendix B: Maple Codes for ADM

NULL;
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restart;

with(Physics);

Setup(mathematicalnotation = true);

[mathematicalnotation = true]

y__0 := A*x;

m := 1;

for n from 0 to m do y__1 := B*x^3/(6.0)+x^4/(24.0)+int(int(int(int(diff(y__0, x, x), x), x), x), x)-.1*(int(int(int(int(diff(y__0, x), x), x), x), x))-(int(int(int(int(y__0, x), x), x), x)) end do;

3 4

y__1 := 0.1666666667 B x + 0.04166666667 x

4 1 5

- 0.004166666667 A x - --- A x

120

3 4

y__1 := 0.1666666667 B x + 0.04166666667 x

4 1 5

- 0.004166666667 A x - --- A x

120

y__2 := int(int(int(int(diff(y__1, x, x), x), x), x), x)-.1*(int(int(int(int(diff(y__1, x), x), x), x), x))-(int(int(int(int(y__1, x), x), x), x));

5 6

y__2 := 0.008333333336 B x + 0.001388888889 x

6 7

- 0.0001388888889 A x - 0.0001964285714 A x

6 7
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- 0.0001388888889 B x - 0.00001984126984 x

8 7

+ 0.000004960317460 A x - 0.0001984126984 B x

8 9

- 0.00002480158730 x + 0.000002755731922 A x

y__3 := int(int(int(int(diff(y__2, x, x), x), x), x), x)-.1*(int(int(int(int(diff(y__2, x), x), x), x), x))-(int(int(int(int(y__2, x), x), x), x));

-9 12 -9 11

y__3 := 2.087675698 10 x + 5.010421676 10 x

-7 10 -8 11

- 5.483906525 10 x + 2.505210838 10 B x

-10 13 -8 10

- 1.605904383 10 A x + 5.511463844 10 B x

-10 12 9

- 6.263027095 10 A x - 0.000005483906525 B x

-8 11 8

+ 4.935265350 10 A x - 0.000004960317460 B x

-7 10 -7 9

+ 1.099537037 10 A x - 5.511463844 10 x

8 7

+ 0.00002480158730 x + 0.0001984126984 B x

- 0.00002480158730 x + 0.000002755731922 A x
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y__3 := int(int(int(int(diff(y__2, x, x), x), x), x), x)-.1*(int(int(int(int(diff(y__2, x), x), x), x), x))-(int(int(int(int(y__2, x), x), x), x));

-9 12 -9 11

y__3 := 2.087675698 10 x + 5.010421676 10 x

-7 10 -8 11

- 5.483906525 10 x + 2.505210838 10 B x

-10 13 -8 10

- 1.605904383 10 A x + 5.511463844 10 B x

-10 12 9

- 6.263027095 10 A x - 0.000005483906525 B x

-8 11 8

+ 4.935265350 10 A x - 0.000004960317460 B x

-7 10 -7 9

+ 1.099537037 10 A x - 5.511463844 10 x

8 7

+ 0.00002480158730 x + 0.0001984126984 B x

- 0.00002480158730 x + 0.000002755731922 A x

y__3 := int(int(int(int(diff(y__2, x, x), x), x), x), x)-.1*(int(int(int(int(diff(y__2, x), x), x), x), x))-(int(int(int(int(y__2, x), x), x), x));

-9 12 -9 11

y__3 := 2.087675698 10 x + 5.010421676 10 x

-7 10 -8 11

- 5.483906525 10 x + 2.505210838 10 B x
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-10 13 -8 10

- 1.605904383 10 A x + 5.511463844 10 B x

-10 12 9

- 6.263027095 10 A x - 0.000005483906525 B x

-8 11 8

+ 4.935265350 10 A x - 0.000004960317460 B x

-7 10 -7 9

+ 1.099537037 10 A x - 5.511463844 10 x

8 7

+ 0.00002480158730 x + 0.0001984126984 B x

Appendix C: Maple Codes for DTM

NULL;

restart;

with(Physics);

Setup(mathematicalnotation = true);

[mathematicalnotation = true]

F(0) := 0; F(1) := A; F(2) := 0; F(3) := B/factorial(3);

m := 40;

for n from 0 to m do F(n+4) := ((n+1)*(n+2)*F(n+2)-(n+1)*F(n+1)-F(n)+KroneckerDelta[n, 0])/((n+1)*(n+2)*(n+3)*(n+4)) end do;

print(m+4);

44

C := sum(F(k), k = 0 .. m+4);

182



28477804672091432613699015120354360913831245423045037

C := ------------------------------------------------------

664567893697112192010906452753653972579909632000000000

210145671437592761956266866310514081058696422926596173

+ ------------------------------------------------------ A

221522631232370730670302150917884657526636544000000000

4642887639345348927419139388876579349512204759223

+ -------------------------------------------------- B

26750710207990669082272932123884151373824000000000

C1 := sum(k*(k-1)*F(k), k = 0 .. m+4)+0;

17422309101445488504517525199082793689337421599

C1 := -----------------------------------------------

32691286652540367130698092192389398528000000000

496315333921825213894162384243957871116526718315307

- --------------------------------------------------- A

702503058876439949271571303122255784968192000000000

394175619417037415048982176939430816044408547364253

+ --------------------------------------------------- B

351251529438219974635785651561127892484096000000000

evalf(solve({C, C1}, {A, B}));

{A = 0.03740645580, B = -0.4513503438}

G := sum(y^i*F(i), i = 0 .. m+4);

1 7 1 3 4 /1 1 \

G := - ---- y + y A + - y B + y |-- - -- A|

5040 6 \24 24 /
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5 / 1 1 \ 6 / 1 1 1 \

+ y |--- B - --- A| + y |--- - --- A - --- B|

\120 120 / \720 720 720 /

8 / 1 1 \ 9 / 1 1 \

+ y |----- A - ----- B| + y |- ------ + ------ A|

\40320 20160 / \ 181440 181440 /

10 / 1 1 \

+ y |------- A - ------- B|

\1814400 3628800 /

11 / 1 1 1 \

+ y |- -------- + -------- A + -------- B|

\ 39916800 39916800 19958400 /

12 / 1 1 1 \

+ y |- --------- A + --------- B + ---------|

\ 479001600 479001600 239500800/

G := sum(y^i*F(i), i = 0 .. m+4);

1 7 1 3 4 /1 1 \

G := - ---- y + y A + - y B + y |-- - -- A|

5040 6 \24 24 /

5 / 1 1 \ 6 / 1 1 1 \

+ y |--- B - --- A| + y |--- - --- A - --- B|

\120 120 / \720 720 720 /
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8 / 1 1 \ 9 / 1 1 \

+ y |----- A - ----- B| + y |- ------ + ------ A|

\40320 20160 / \ 181440 181440 /

10 / 1 1 \

+ y |------- A - ------- B|

\1814400 3628800 /

11 / 1 1 1 \

+ y |- -------- + -------- A + -------- B|

\ 39916800 39916800 19958400 /

12 / 1 1 1 \

+ y |- --------- A + --------- B + ---------|

\ 479001600 479001600 239500800/
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