34 research outputs found

    A quick guide for student-driven community genome annotation

    Full text link
    High quality gene models are necessary to expand the molecular and genetic tools available for a target organism, but these are available for only a handful of model organisms that have undergone extensive curation and experimental validation over the course of many years. The majority of gene models present in biological databases today have been identified in draft genome assemblies using automated annotation pipelines that are frequently based on orthologs from distantly related model organisms. Manual curation is time consuming and often requires substantial expertise, but is instrumental in improving gene model structure and identification. Manual annotation may seem to be a daunting and cost-prohibitive task for small research communities but involving undergraduates in community genome annotation consortiums can be mutually beneficial for both education and improved genomic resources. We outline a workflow for efficient manual annotation driven by a team of primarily undergraduate annotators. This model can be scaled to large teams and includes quality control processes through incremental evaluation. Moreover, it gives students an opportunity to increase their understanding of genome biology and to participate in scientific research in collaboration with peers and senior researchers at multiple institutions

    DINeR: Database for Insect Neuropeptide Research

    Get PDF
    Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information. The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardized nomenclature to address inconsistent classification of neuropeptides

    Behavioural repeatability in larval Limnephilus lunatus Curtis, 1834 (Trichoptera) in an open-field test

    Get PDF
    This article investigates inter-individual repeatability in distance moved in an open-field test for larval Limnephilus lunatus Curtis, 1834. Repeatability across four trials (two-day trial intervals) was comparable to previous studies on arthropod species (repeatability: R = 0.37), indicating that L. lunatus is a suitable model species in this research field. Two potential nuisance factors were corrected for: (1) progressively declining activity over consecutive trials and (2) case mass:body mass ratio, affecting activity negatively. These factors require consideration in behavioural experiments on larval caddisflies. Pairwise correlations of distance moved among trial days showed that behaviour in the first trial did not correspond well with behaviour in the following trials. Re-analysing the data using only trials 2 to 4 increased the repeatability (repeatability: R = 0.50), suggesting that future studies should consider not including data derived from initial trials, as the initial trial may constitute a different context than the following ones

    Asian citrus psyllid RNAi pathway : RNAi evidence

    Get PDF
    Diaphorina citri, known as the Asian citrus psyllid, is an important pest of citrus because it transmits a phloem-limited bacteria strongly implicated in huanglongbing (citrus greening disease). Emerging biotechnologies, such as RNA interference, could provide a new sustainable and environmentally friendly strategy for the management of this pest. In this study, genome and functional analysis were performed to verify whether the RNAi core genes are present in the Asian psyllid genome and if the RNAi machinery could be exploited to develop a management strategy for this pest. Analyses of RNAi-related genes in the Asian citrus psyllid genome showed an absence of sequences encoding R2D2, a dsRNA-binding protein that functions as a cofactor of Dicer-2 in Drosophila. Nevertheless, bioassays using an in Planta System showed that the Asian citrus psyllid was very sensitive to ingested dsRNA, demonstrating a strong RNAi response. A small dose of dsRNA administered through a citrus flush was enough to trigger the RNAi mechanism, causing significant suppression of the targeted transcript, and increased psyllid mortality. This study provides evidence of a functional RNAi machinery, which could be further exploited to develop RNAi based management strategies for the control of the Asian citrus psyllid

    JBrowse: a dynamic web platform for genome visualization and analysis

    Get PDF
    BACKGROUND: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. RESULTS: Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. CONCLUSIONS: JBrowse is a mature web application suitable for genome visualization and analysis

    Relative abundance and molecular evolution of Lake Sinai Virus (Sinaivirus) clades

    Get PDF
    Lake Sinai Viruses (Sinaivirus) are commonly detected in honey bees (Apis mellifera) but no disease phenotypes or fitness consequences have yet been demonstrated. This viral group is genetically diverse, lacks obvious geographic structure, and multiple lineages can co-infect individual bees. While phylogenetic analyses have been performed, the molecular evolution of LSV has not been studied extensively. Here, I use LSV isolates from GenBank as well as contigs assembled from honey bee Sequence Read Archive (SRA) accessions to better understand the evolutionary history of these viruses. For each ORF, substitution rate variation, codon usage, and tests of positive selection were evaluated. Outlier regions of high or low diversity were sought with sliding window analysis and the role of recombination in creating LSV diversity was explored. Phylogenetic analysis consistently identified two large clusters of sequences that correspond to the current LSV1 and LSV2 nomenclature, however lineages sister to LSV1 were the most frequently detected in honey bee SRA accessions. Different expression levels among ORFs suggested the occurrence of subgenomic transcripts. ORF1 and RNA-dependent RNA polymerase had higher evolutionary rates than the capsid and ORF4. A hypervariable region of the ORF1 protein-coding sequence was identified that had reduced selective constraint, but a site-based model of positive selection was not significantly more likely than a neutral model for any ORF. The only significant recombination signals detected between LSV1 and LSV2 initiated within this hypervariable region, but assumptions of the test (single-frame coding and independence of substitution rate by site) were violated. LSV codon usage differed strikingly from that of honey bees and other common honey-bee viruses, suggesting LSV is not strongly co-evolved with that host. LSV codon usage was significantly correlated with that of Varroa destructor, however, despite the relatively weak codon bias exhibited by the latter. While codon usage between the LSV1 and LSV2 clusters was similar for three ORFs, ORF4 codon usage was uncorrelated between these clades, implying rapid divergence of codon use for this ORF only. Phylogenetic placement and relative abundance of LSV isolates reconstructed from SRA accessions suggest that detection biases may be over-representing LSV1 and LSV2 in public databases relative to their sister lineages

    Library-mediated collaborations: Data curation at the National Agricultural Library

    Get PDF
    To effectively support research activities and data stewardship, library and information professionals engage in collaborative projects that involve diverse disciplinary and institutional partnerships. While this idea is stressed in existing literature, the different ways in which librarians and domain experts working in library and information organizations engage in collaboration is rarely made explicit. This paper proposes the term library-mediated collaborations to capture the ways in which library and information professionals perform actions that facilitate, coordinate, and even create opportunities for multiple stakeholders to leverage their resources and expertise in data curation. By mediation, the paper refers to the active and critical involvement of institutional actors, in this case information professionals in a national library, in ensuring the creation and execution of a project over a period of time. The paper discusses the various manifestations of library-mediated collaborations in four data cu-ration projects currently taking place at the National Agricultural Library (NAL). A national library located within the United States Department of Agriculture (USDA), NAL has long supported the preservation of and access to agricultural information. The paper concludes by identifying important questions that information professionals may consider asking when they participate in collaborative data curation projects

    Rhodnius Prolixus: Identification of Missing Components of the IMD Immune Signaling Pathway and Functional Characterization of its Role in Eliminating Bacteria

    Get PDF
    The innate immune system in insects is regulated by specific signalling pathways. Most immune related pathways were identified and characterized in holometabolous insects such as Drosophila melanogaster, and it was assumed they would be highly conserved in all insects. The hemimetabolous insect, Rhodnius prolixus, has served as a model to study basic insect physiology, but also is a major vector of the human parasite, Trypanosoma cruzi, that causes 10,000 deaths annually. The publication of the R. prolixus genome revealed that one of the main immune pathways, the Immune-deficiency pathway (IMD), was incomplete and probably non-functional, an observation shared with other hemimetabolous insects including the pea aphid (Acyrthosiphon pisum) and the bedbug (Cimex lectularius). It was proposed that the IMD pathway is inactive in R. prolixus as an adaptation to prevent eliminating beneficial symbiont gut bacteria. We used bioinformatic analyses based on reciprocal BLAST and HMM-profile searches to find orthologs for most of the “missing” elements of the IMD pathway and provide data that these are regulated in response to infection with Gram-negative bacteria. We used RNAi strategies to demonstrate the role of the IMD pathway in regulating the expression of specific antimicrobial peptides (AMPs) in the fat body of R. prolixus. The data indicate that the IMD pathway is present and active in R. prolixus, which opens up new avenues of research on R. prolixus-T. cruzi interactions

    Digital Workflows at the National Agricultural Library and Implications for Preservation

    Get PDF
    This study was designed to surface needs for an organization-wide digital preservation infrastructure at the National Agricultural Library by examining the processes currently used at NAL in routine work with digital materials. It used an observation-based interview method to learn directly from staff members about their workflows with digital objects, combining the information gathered into models that depict their work. The report is organized to follow each of the four major digital workflows, ending with a discussion of the implications of the study for an overarching digital preservation program at the library.National Agricultural Librar
    corecore