66 research outputs found

    Dimers, Tilings and Trees

    Get PDF
    Generalizing results of Temperley, Brooks, Smith, Stone and Tutte and others we describe a natural equivalence between three planar objects: weighted bipartite planar graphs; planar Markov chains; and tilings with convex polygons. This equivalence provides a measure-preserving bijection between dimer coverings of a weighted bipartite planar graph and spanning trees on the corresponding Markov chain. The tilings correspond to harmonic functions on the Markov chain and to ``discrete analytic functions'' on the bipartite graph. The equivalence is extended to infinite periodic graphs, and we classify the resulting ``almost periodic'' tilings and harmonic functions.Comment: 23 pages, 5 figure

    On product, generic and random generic quantum satisfiability

    Full text link
    We report a cluster of results on k-QSAT, the problem of quantum satisfiability for k-qubit projectors which generalizes classical satisfiability with k-bit clauses to the quantum setting. First we define the NP-complete problem of product satisfiability and give a geometrical criterion for deciding when a QSAT interaction graph is product satisfiable with positive probability. We show that the same criterion suffices to establish quantum satisfiability for all projectors. Second, we apply these results to the random graph ensemble with generic projectors and obtain improved lower bounds on the location of the SAT--unSAT transition. Third, we present numerical results on random, generic satisfiability which provide estimates for the location of the transition for k=3 and k=4 and mild evidence for the existence of a phase which is satisfiable by entangled states alone.Comment: 9 pages, 5 figures, 1 table. Updated to more closely match published version. New proof in appendi

    Graph Zeta Function and Gauge Theories

    Get PDF
    Along the recently trodden path of studying certain number theoretic properties of gauge theories, especially supersymmetric theories whose vacuum manifolds are non-trivial, we investigate Ihara's Graph Zeta Function for large classes of quiver theories and periodic tilings by bi-partite graphs. In particular, we examine issues such as the spectra of the adjacency and whether the gauge theory satisfies the strong and weak versions of the graph theoretical analogue of the Riemann Hypothesis.Comment: 35 pages, 7 Figure

    Crossings and nestings in colored set partitions

    Full text link
    Chen, Deng, Du, Stanley, and Yan introduced the notion of kk-crossings and kk-nestings for set partitions, and proved that the sizes of the largest kk-crossings and kk-nestings in the partitions of an nn-set possess a symmetric joint distribution. This work considers a generalization of these results to set partitions whose arcs are labeled by an rr-element set (which we call \emph{rr-colored set partitions}). In this context, a kk-crossing or kk-nesting is a sequence of arcs, all with the same color, which form a kk-crossing or kk-nesting in the usual sense. After showing that the sizes of the largest crossings and nestings in colored set partitions likewise have a symmetric joint distribution, we consider several related enumeration problems. We prove that rr-colored set partitions with no crossing arcs of the same color are in bijection with certain paths in \NN^r, generalizing the correspondence between noncrossing (uncolored) set partitions and 2-Motzkin paths. Combining this with recent work of Bousquet-M\'elou and Mishna affords a proof that the sequence counting noncrossing 2-colored set partitions is P-recursive. We also discuss how our methods extend to several variations of colored set partitions with analogous notions of crossings and nestings.Comment: 25 pages; v2: material revised and condensed; v3 material further revised, additional section adde

    Strings from Feynman Graph counting : without large N

    Full text link
    A well-known connection between n strings winding around a circle and permutations of n objects plays a fundamental role in the string theory of large N two dimensional Yang Mills theory and elsewhere in topological and physical string theories. Basic questions in the enumeration of Feynman graphs can be expressed elegantly in terms of permutation groups. We show that these permutation techniques for Feynman graph enumeration, along with the Burnside counting lemma, lead to equalities between counting problems of Feynman graphs in scalar field theories and Quantum Electrodynamics with the counting of amplitudes in a string theory with torus or cylinder target space. This string theory arises in the large N expansion of two dimensional Yang Mills and is closely related to lattice gauge theory with S_n gauge group. We collect and extend results on generating functions for Feynman graph counting, which connect directly with the string picture. We propose that the connection between string combinatorics and permutations has implications for QFT-string dualities, beyond the framework of large N gauge theory.Comment: 55 pages + 10 pages Appendices, 23 figures ; version 2 - typos correcte

    Subject Index Volumes 1–200

    Get PDF

    Extremal Graph Theory and Dimension Theory for Partial Orders

    Get PDF
    This dissertation analyses several problems in extremal combinatorics.In Part I, we study the following problem proposed by Barrus, Ferrara, Vandenbussche, and Wenger. Given a graph H and an integer t, what is the minimum number of coloured edges in a t-edge-coloured graph G on n vertices such that G does not contain a rainbow copy of H, but adding a new edge to G in any colour creates a rainbow copy of H? We determine the growth rates of these numbers for almost all graphs H and all t e(H).In Part II, we study dimension theory for finite partial orders. In Chapter 1, we introduce and define the concepts we use in the succeeding chapters.In Chapter 2, we determine the dimension of the divisibility order on [n] up to a factor of (log log n).In Chapter 3, we answer a question of Kim, Martin, Masak, Shull, Smith, Uzzell, and Wang on the local bipartite covering numbers of difference graphs.In Chapter 4, we prove some bounds on the local dimension of any pair of layers of the Boolean lattice. In particular, we show that the local dimension of the first and middle layers is asymptotically n / log n.In Chapter 5, we introduce a new poset parameter called local t-dimension. We also discuss the fractional variants of this and other dimension-like parameters.All of Part I is joint work with Antnio Giro of the University of Cambridge and Kamil Popielarz of the University of Memphis.Chapter 2 of Part II is joint work with Victor Souza of IMPA (Instituto de Matemtica Pura e Aplicada, Rio de Janeiro).Chapter 3 of Part II is joint work with Antnio Giro
    • …
    corecore