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Abstract

Generalizing results of Temperley (London Mathematical Society Lecture Notes Series 13 (1974)
202), Brooks et al. (Duke Math. J. 7 (1940) 312) and others (Electron. J. Combin. 7 (2000); Israel
J. Math. 105 (1998) 61) we describe a natural equivalence between three planar objects: weighted
bipartite planar graphs; planar Markov chains; and tilings with convex polygons. This equivalence
provides ameasure-preserving bijection between dimer coverings of a weighted bipartite planar graph
and spanning trees of the corresponding Markov chain. The tilings correspond to harmonic functions
on the Markov chain and to “discrete analytic functions” on the bipartite graph.
The equivalence is extended to infinite periodic graphs, and we classify the resulting “almost

periodic” tilings and harmonic functions.
© 2004 Published by Elsevier Inc.
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1. Introduction

In [11], Temperley gave a bijection between the set of spanning trees of ann×n grid and
the set of perfect matchings (dimer coverings) of a(2n− 1)× (2n− 1) grid with a corner
removed. This bijection was generalized in[10] to a weight-preserving bijection (the KPW
construction) from the set of in-directed spanning trees (also known as arborescences)
on an arbitrary weighted, directed planar graphGT to the set of perfect matchings on a
related graphGD. The construction is useful in statistical mechanics because certain types
of events in the spanning tree model can be easily computed using dimer technology,
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for example winding numbers of branches and local statistics. For dimer models arising
from a spanning tree model, moreover, the spanning tree formulation provides other useful
information. In particular Wilson’s algorithm[12] for generating spanning trees can be
used to rapidly simulate dimer configurations. Moreover, the spanning tree formulation
identifies natural boundary conditions (“Temperleyan” boundary conditions) for the dimer
model which allows asymptotic computation of many properties, in particular conformal
invariance properties of dimers[6]. However in the paper[10] it was not known if every
dimer model on a bipartite planar graph corresponded to a spanning tree model on a related
graph.
Aseemingly unrelated construction is the constructionof a “Smith diagram” fromaplanar

resistor network[1]. This is a tiling of a plane region with squares of arbitrary sizes, which
is associated in a bijective way to a critical-point-free harmonic function on the network
with unit resistances (there is a square in the tiling for each edge in the graph, whose size
is proportional to the current flow through the edge). This construction was generalized
in [7] to planar Markov chains (graphs with transition probabilities), where a harmonic
function gives a tiling withtrapezoids. It was not known at the time what if any graphical
correspondence was natural forgeneralpolygonal tilings.
In the current paper we extend the above equivalences and describe a correspondence

between these three typesofobjects:weightedbipartiteplanargraphs,planarMarkovchains,
and tilings with general convex polygons.
In particular from a weighted bipartite planar graphGD we can construct a tilingT of a

plane region with convex polygonal tiles, and a planar Markov chainGT , in an essentially
bijective way (that is, up to natural equivalences). There is a tile inT for each “white” vertex
of GD, whose shape is determined by adiscrete analytic function(see definitions below).
The graphGT is a graph on the 1-skeleton of the tiles, with transitions determined by their
Euclidean geometry. The tilings are therefore representations of discrete analytic functions
on the bipartite planar graphGD, which correspond to harmonic functions on the Markov
chainGT .
An importantapplicationof this construction is that it providesaconverse to theTemperley-

KPW construction. That is, starting with the finite weighted bipartite planar graphGD, one
constructs a Markov chainGT and a measure-preserving bijection from the dimer model
onGD to the spanning tree process onGT . This dimer/spanning tree correspondence has
a number of important consequences. Firstly, it was used in[9] in a fundamental way to
classifyGibbsmeasures on dimermodels on infinite periodic planar graphs. Secondly, since
spanning trees can be sampled efficiently[12], the construction provides a way to sample
efficiently from bipartite planar dimer models. Previously the only (provably efficient) way
to sample general planar bipartite dimer models was to do exact computations of joint edge
probabilities. A third application[8] is that it allows one to compute the asymptotics of
dimer correlations and height fluctuations in terms of the Green’s function onGT .
In Section 5, we discuss how the construction extends in the case of infinite periodic

graphs.This ismotivatedby thestudyof thedimermodel onperiodic graphs, see[2,9].Given
any periodic planar bipartite weighted graphGD, we produce an essentially unique “almost
periodic” planarMarkov chainGT , which extends the dimer/spanning tree correspondence.
This unicity is an important element in the classification theoremof ergodicGibbsmeasures
on dimer coverings ofGD described in[9].
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2. Definitions

2.1. Dimers and measures

Let GD = (V ,E) be a finite bipartite planar graph. Bipartite means that the verticesV

can be 2-colored, that is, colored black and white so that black vertices are only adjacent
to white vertices and vice versa. Let�:E → (0,∞) be a weight function on the edges.
A perfect matching, or dimer configurationM ⊂ E is a set of edges with the property
that each vertex is contained in exactly one edge inM. The weight of a matchingM is
�(M) = ∏

e∈M �(e). LetM(GD) denote the set of perfect matchings ofGD. Let � be the
probability measure onM(GD) giving a matching a probability proportional to its weight:
�(M) = 1

Z
�(M) whereZ = ∑

M∈M(GD)
�(M).

2.2. Kasteleyn matrices

If GD hasn black andn white vertices, aKasteleyn matrix(see[4]) for GD is a real
n×nmatrixK = (Ki,j ) whose rows index the black vertices and columns index the white
vertices ofGD, defined as follows. The entryKi,j is zero if there is no edge frombi to
wj , and if there is an edge of weight�(biwj ) thenKi,j = ±�(biwj ), where the signs are
chosen so that the product of signs of edges around every interior face ofK is (−1)d/2+1,
whered is the degree of the face. This property of signs is not changed if we multiply all
elements in a particular column or row ofK by −1 (because each vertex ofGD has an
even number—zero or two—of edges on each face ofGD). Moreover, such a choice of
signs always exists, and by Kasteleyn’s theorem, the determinant ofK is (up to sign) the
sum of the weights of the matchings ofGD [4]. By adiscrete analytic functionwe mean a
functionf on black vertices (resp. white vertices) which satisfiesfK = 0 (resp.Kf = 0).
This generalizes the definition of discrete analytic function onZ2 defined in[3,6]. These
functions play a role implicitly in Sections 4 and 5.

2.3. Gauge transformations

If we multiply the weights of all the edges inGD having a fixed vertex by a constant, the
measure�does not change, since exactly one of theseweights is used in every configuration.
More generally, two weight functions�1, �2 are said to begauge equivalentif �1/�2 is a
product of such operations, that is, if there are functionsf1 on white vertices andf2 on
black vertices so that for each edgewb, �1(wb)/�2(wb) = f1(w)f2(b). Gauge equivalent
weights define the same measure�.
Multiplying the ith row (resp., column) of a Kasteleyn matrixK by a positive, non-zero

constantc is equivalent to multiplying byc the weights of all of the edges ofGD incident to
bi (resp.,wi). In other words any matrix̃K obtained fromK by multiplying the rows and
columns ofK by non-zero constants will be a Kasteleyn matrix for a graph which is gauge
equivalent toGD.
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3. T-graphs and corresponding dimer/spanning-forest models

In this section, we define a family of planar graphs called T-graphs and describe a weight-
preserving correspondence between the spanning trees on a T-graph and dimer configura-
tions on a bipartite graph derived from it. This is closely related to the result of[10], who also
give a relation between spanning trees on a general planar graph and dimers on a derived
graph.
In the present context, however, our derivation can be reversed: we will see in Section 4

that for every bipartite planar graph, which isnon-degeneratein the sense that it contains
no edges which fail to be used in any perfect matching of the graph (for the purposes of
the dimer model, it makes sense to delete these edges), endowed with a generic choice of
weights, there is a gauge-equivalent graph which can be derived from a T-graph in this
way. By taking limits, the correspondence generalizes to the case when the weights are not
assumed to be generic.

3.1. Complete edges that form T-graphs

The definition of T-graph on a torus—which we use in Section 5—is quite simple. A
disjoint collectionL = {L1, L2, . . . , Ln} of open line segments in the torusR2/Z2 forms a
T-graph in the torusif ∪n

i=1 Li is closed. The term “T-graph” refers to the fact each endpoint
of a givenLi necessarily lies on the interior of someLj with j �= i. In other words, each
Li “tees into” anLj at each of its two endpoints.
We say a disjoint collectionL1, L2, . . . , Ln of open line segments inR2 forms a T-

graph inR2 if ∪n
i=1 Li is connected and contains all of its limit points except for some

setR = {r1, . . . , rm}, where eachri lies on the boundary of the infinite component ofR2

minus the closurēL of ∪n
i=1 Li . Elements inR are calledroot vertices. For example, a

single open line segment forms a T-graph with root vertices given by the two end points. A
pair of open line segments—one of which tees into the other to make the letter “T”—forms
a T-graph with three root vertices. The three open edges of a triangle also form a T-graph
with three root vertices. A partitioning of a convex polygonP into convex polygonal tiles
using a finite number of line segments will form a T-graph with root vertices at the vertices
of P if and only if it is genericin the sense that the endpoint of each of these line segments
lies either on the interior of another line segment or on the boundary ofP . (See Fig. 1.)

(a) (b)

Fig. 1. (a) Line segments that form a T-graph. (b) Line segments that do not form a T-graph.
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Note that each endpoint of a givenLi is eithera root vertex or an interior point of some
Lj . To distinguish theLi from subsegments of theLi (which we discuss later) we refer to
theLi ascomplete edges.
In subsequent subsections, we will useL to define a weighted, directed graphGT (L)

and a weighted, bipartite graphGD(L). The ultimate goal of this section will be to derive
a weight-preserving bijection between directed spanning forests onGT (L) (with specified
roots) and perfect matchings ofGD(L). When the choice ofL is clear from the context, we
write GT = GT (L) andGD = GD(L).

3.2. T-graphs and their duals

The setVT (L) of vertices ofGT is the set of points inR2 which are endpoints of at
least one of theLi . We use the termT-graph to refer to the graphGT togetherwith the
corresponding setL of line segments embedded in the torus or plane. In other words, a
T-graph is not merely a graph but rather a geometric construction which determines the
graphGT (as well as several other graphs described below). We refer to the graphGT itself
as thetree-graphof L.
A vertex v which is in the interior of a complete edgeLi (called aninterior vertex)

has exactly two edges inGT directed outwards from it: these edges point towards the two
immediate neighbors,v1 andv2, alongLi (one on each side ofv). The weights on the edge
from v to these twovi are chosen in such a way that the two weights add up to one and
are inversely proportional to the Euclidean distances|v − vi |. These weights correspond to
the transition probabilities of a Markov chain onVT (L). The root vertices are sinks ofGT

(they have no outgoing edges inGT ) and are fixed points of the Markov chain. Note that (by
our choice of transition probabilities) the expected change in Euclidean position during a
step of the Markov chain is always zero; thus, a random walk onGT—viewed as a Markov
chain on positions inR2—is a martingale. In other words, the coordinate functions on the
vertices ofGT are harmonic functions onGT away from the root vertices.
See Fig. 2 for an example of a T-graph with three roots. Note that, by convention, when

we have transitions both fromi to j and fromj to i, rather than drawing two directed edges
in the graphGT we draw a single edge with two transition probabilities, one from each end.
We defineG′

T = G′
T (L), an undirected dual graph ofGT , as follows. LetC be an arbi-

trary simple closed curve that encircles the∪n
i=1 Li and contains each of the root vertices

r1, . . . , rm in clockwise order. The vertices ofG′
T are the bounded faces ofGT ∪C (bounded

connected components ofR2\(∪n
i=1 Li ∪ C)). Faces ofGT ∪ C adjacent toC are called

outer facesofGT : they correspond toouter verticesofG′
T . Two vertices ofG′

T are connected
by an edgea of G′

T if the corresponding faces ofGT are adjacent across an edge ofGT . For
an edgee of GT we denote bye∗ its corresponding dual edge.

Lemma 3.1. If L1, L2, . . . , Ln form a T-graph, thenGT has exactlyn+1 faces(including
outer faces). HenceG′

T hasn + 1 vertices.

Proof. This follows from Euler’s formula. The line segmentsLi decompose the interior
of C into some numbern2 of open faces (open 2-cells),n1 = n open complete edges, and
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Fig. 2. The directed T-graphGT . The root vertices are the corners of the triangle.

n0 = 0 vertices. Sincen2 − n1 + n0 = 1, the Euler characteristic of the disc, the result
follows. �

3.3. Spanning trees

A spanning treeof a graphG is a subset of edges which is connected, contains no cycle,
and passes through every vertex. If the edges ofG are directed, adirected spanning tree,
or arborescence, is a spanning tree in which every vertex but one (called the root vertex)
has a unique outgoing edge. Given a subset of vertices ofG called root vertices, adirected
spanning forestis a set of edges with no cycles, passing through all vertices, each non-root
vertex having a unique outgoing edge, and each component of which is connected to a
unique root vertex.
We will employ the following correspondence between (non-directed) spanning trees in

G′
T and their (non-directed)dual spanning forestsin GT . Using the correspondence between

edges ofG′
T and edges ofGT , we can think of edge subsets of bothGT andG′

T as subsets of
the set of all edges ofGT . Using this interpretation, we state the following lemma (which
is illustrated in Fig. 3):

Lemma 3.2. The complement of a spanning treeT ofG′
T is a spanning forestF ofGT ,with

roots at the root vertices. Similarly, the complement of a spanning forestF ofGT ,with roots
at the root vertices, is a spanning treeT of G′

T .

Proof. We sketch the standard tree dualization argument. IfF is a spanning forest ofGT ,
with roots at root vertices, its complementT cannot contain any cycles inG′

T (since such a
cycle would separate at least one interior vertex ofGT from the root vertices), and it must
be connected (since otherwise, the set of edges separating two components would either
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(a) (b)

(c) (d)

Fig. 3. (a) Edges of a T-graphL and the surrounding curveC. (b) The graphGrD . This graph is the incidence
graph for the set of complete edges ofL (drawn as black vertices) and faces ofL (drawn as white vertices). (c) A
spanning forest ofF of GT , drawn with thick arrows, and the dual spanning treeT onG′

T , drawn with dotted lines
connecting vertices ofG′

T (which are faces ofGT , represented as white vertices). Each such dotted line crosses
a segment of a complete edge that isnot used inF (there is exactly one such segment for each complete edge).
(d) The marked matching corresponding toF when the dual root is taken to be the (unmatched) uppermost white
vertex.

form a cycle inGT or a path connecting two root vertices inGT ); hence it is a spanning
tree. Similarly, ifT is a spanning tree ofG′

T , its complementF cannot contain cycles of
GT (since such a cycle would separate at least one inner face ofGT from the outer faces)
and each connected component ofF contains at least one root vertex (since otherwise
the set of edges separating that component ofF from its complement would form a cycle
in GT ). �

3.4. Dimer graphs from T-graphs

Now we will define the weighted, bipartite (non-directed) graphGD = GD(L). First, we
define a slightly largerGr

D = Gr
D(L), whose black vertices are then complete edgesLi and

whose white vertices are then + 1 faces ofGT (including outer faces).
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Table 1
Summary of graphs constructed from a collection of edgesL that forms a T-graph

Graph Vertex set

GT = GT (L) Points that are endpoints of someLi .
G′
T Faces and outer faces ofGT (i.e., bounded components ofR2\(L ∪ C)).

GrD Faces and outer faces ofGT (one partite class).
Complete edges inL (other partite class).

GD Same asGrD but with one outer face (the dual root) omitted.
G′
D Faces and some outer faces ofGD (which correspond to vertices ofGT ).

The graphG′
D (which is not exactly the same asGT ) is defined precisely in Section 4.2.

A white vertexw of Gr
D is adjacent to a black vertexb of Gr

D if the faceF corresponding
tow contains a portion of theLi corresponding tob as its boundary. The weight�((w, b)) is
then given by the Euclidean length of the portion of the line segment. The graph thus defined
is planar. To see this, note that it can be drawn on top of the tilingL̄ as follows: put a white
vertex in the interior of each face, and a black vertex in the center of each complete edge.
Whenw andb are connected, draw a line fromw inside the corresponding face towards the
complete edge corresponding tob, and then along this complete edge, staying just to one
side, until the center is reached. It is not hard to see that this can be done in such a way that
the paths do not intersect.
The graphGD is formed fromGr

D by (arbitrarily) picking one of the outer white vertices
of Gr

D and removing it; we will refer to the removed vertex as thedual rootof GD. Now,GD

is a weighted bipartite graph withn white andn black vertices. To every edgee = (w, b)

in a perfect matching ofGD (wherew corresponds to a faceF andb to a complete edge
Li), we denote bySe the segment of theLi which bordersF . Because of our choice of
weights,�(M) (where� is the probability measure on perfect matchings defined in the
introduction) is proportional to

∏
e∈M |Se| where|Se| is the Euclidean length ofSe. Now,

the edge segmentSe may have vertices ofGT in its interior; these vertices divideSe into
subsegments, each of which has vertices ofGT as its endpoints and hence corresponds to
an edge ofGT . A marked matchingof GD is a matchingM of GD together with a specified
subsegmentS′

e of Se (which, again, we may interpret as an edge inGT ) for eache ∈ M. We
extend� to give a measure on random marked matchings as follows: to sample a random
markedmatching, first choose a randommatching. Then for each edgee, choose anS′

e from
among the subsegments ofSe, where probability of each subsegment is proportional to its
length. IfM ′ is a marked matching, then�(M ′) is proportional to

∏
e∈M |S′

e| (Table 1).

3.5. From dimers to trees

Let TM ′ = {S′
e : e ∈ M} be the set of edges corresponding to a marked matchingM ′ of

GD. EachS′
e corresponds to an edge ofG′

T , so we can think ofTM ′ as a subgraph ofG′
T . We

direct each such edge ofTM ′ (corresponding to someS′
e) of this graph from the face which

corresponds to a vertex ine towards the face which does not. We use this interpretation of
TM ′ (as a directed subgraph ofG′

T ) in the following lemma:
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Lemma 3.3. If M ′ is a marked matching, thenTM ′ is an in-directed spanning tree ofG′
T ,

rooted at the dual root. The dualFM ′ of TM ′ is thus a spanning forest ofGT (whenGT is
viewed as an undirected graph).

Proof. It is sufficient to prove thatTM ′ has no directed cycles, since it contains exactly one
edge pointing away from each face ofGT (excluding the dual root). This is accomplished
using Euler’s formula. Suppose thatTM ′ had a directed cycleF0, F1, . . . , Fj = F0 of
faces ofGT . Let Si be the segmentS′

e separatingFi andFi+1. Let C′ be a simple closed
curve which starts in the interior ofF0, passes throughS0 at one point, moves through the
interior ofF1, passes throughS1 at a single point, etc. until it returns toF0. Except for its
intersections with theSi ’s, each at a single point,C′ is entirely contained in the union of the
interiors of theFi . The intersection of theLi with the interior ofC′ gives a decomposition
of this interior inton2 two-cells (wheren2 is the number of faces partial or completely
contained inside the loopC′), n1 open one-cells andn0 = 0 vertices. Thus, by Euler’s
formulan2 − n1 + n0 = n2 − n1 = 1. In particularn2 + n1 is odd.
However, the sequencew0, b0, w1, b1, . . . , bj−1, wj = w0 (wherewi is thewhite vertex

of GD corresponding toFi andbi is the black vertex corresponding to the complete edge
containingSi) is a cycle inGD, alternating edges of which are contained inM. The set of
vertices inGD enclosed by this cycle must be matched only with each other in a perfect
matching (since the cycle disconnects these vertices from the rest of the graph). This is a
contradiction to the fact thatn2 + n1 is odd. �

Let�F be the measure on directed spanning forests ofGT , rooted at the root vertices, for
which �F (F) is proportional to the product of the weights of the edges inF. Since each
of the two outgoing edges of a given interior vertex has weight (by construction) inversely
proportional to its Euclidean length,�F (F) is inversely proportional to the product of the
lengths of the edges ofF; hence,�F (F) is also proportional to the product of the Euclidean
lengths of all edges ofGT which do not appear (directed one way or another) inF.
The following is the main result of this section.

Theorem 3.4. The mapM ′ → FM ′ gives a one-to-one correspondence between marked
matchings ofGD and in-directed spanning forests ofGT , rooted at R. The correspondence
is measure preserving, i.e., �(M ′) = �F (FM ′).

Proof. First, wewould like to interpretFM ′ as a directed spanning forest ofGT by orienting
each edge ofFM ′ towards its root vertex. In order to do this, we must check that ifM ′ is a
perfect matching ofGD, then the directed path alongFM ′ , from a vertexv to a root vertex,
is a directed path ofGT . To see this, note firstFM ′ contains all but one segment of each of
theLi ; thus, for every interior vertexv of GT (interior to someLi), FM ′ includes a path
from v to exactly one of the endpoints ofLi . Call this vertexv1; each of the directed edges
in the directed path fromv to v1 is a directed edge ofGT . If v1 is also an interior vertex of
someLj , then there is a path of edges inFM ′ from v1 to some endpointv2 of Lj . Iterating
this process, we must eventually produce a directed path fromv to a root (sinceFM ′ has
no cycles).
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It now follows immediately from Lemma 3.3 and our choice of weights, that�F (FM ′) is
proportional to�(M ′), since each is proportional to the same product of edge lengths. The
proof we will be complete once we show that the mapM ′ → FM ′ is invertible.
LetF be an arbitrary directed spanning forestF, rooted inR. Since only the endpoints of

a givenLi have outgoing edges pointing to vertices not onLi , each vertex ofLi belongs to
a path pointing to one of the two endpoints. It follows thatFmust include all but one of the
subsegments ofLi . By Lemma 3.2, the dual ofF is a spanning tree ofG′

T , which we may
view as being directed towards the dual root. Each faceF of GT is (besides the dual root)
is directed towards another face across an edge segment of one of theLi . Pairing ofF with
the edge segment produced in this way gives a marked matchingM ′ for whichFM ′ = F.
�

3.6. T-graphs and dimers on the torus

If L = {L1, . . . , Ln} forms a T-graph on the torus, then we can constructGT = GT (L)

exactly as above; in this case,GT (L) has no root vertices and no outer faces. Since the faces
of GT and open edgesLi give a decomposition of the torus into one-cells and two-cells,
Euler’s formula implies thatGT has exactlyn faces. We constructGD as above (with white
vertices given by facesF of GT (L), black vertices by the complete edgesLi , and edges
occurring betweenF andLi that share a line segment, weighted according to the length of
that segment). We also constructG′

T in a similar fashion.
A cycle-rooted spanning forestFofGT is a (directed) subgraphofGT—with oneoutgoing

edge fromeach vertex ofGT—which has no null-homotopic (directed) cycles (i.e., no cycles
which—when lifted to the universal cover of the torus—start and end at the same place).
The “roots” of such anF are the directed cycles ofF. Clearly, every suchF has at least one
(non-null-homotopic) directed cycle.
The dual ofF is a cycle-rooted spanning forestF′ onG′

T . Now, ifF has exactlyj cycles,
then it is not hard to see thatF′ hasj cycles as well. We can viewF′ as a directed cycle-
rooted spanning forest by directing each edge not on a cycle towards its cycle root; and then
orienting all of the edges in a given cycle one of the two possible directions (there are 2j

ways of doing this). The proof of the following is now similar to the proof of Theorem 3.4.

Theorem 3.5. There is a one-to-one weight preserving correspondence between perfect
matchings onGD and in-directed cycle-rooted spanning forestsF′ onG′

T whose dual cycle-
rooted spanning forestsF are in-directed, cycle-rooted spanning forests ofGT .

T-graphs in a torus can be extended to give periodic T-graphs on the plane, finite subsets
of which correspond to finite subgraphs of infinite lattice graphs, such as the grid graph in
Fig. 4.

4. T-graphs from dimer graphs

In this section, we describe a procedure for generatingGT fromGD that applies whenever
the so-called Kasteleyn matrix fails to have certain degeneracies. Before we begin the
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Fig. 4. A T-graphGT in the plane and the corresponding graphGrD .

construction, we will define Kasteleyn matrices and say a word about the kinds of graphs
for which these degeneracies occur.

4.1. Cuts, and breakers

Say a square matrixK is k-degenerateif it has an(n − k) × (n − k) minor whose
determinant is zero; otherwise it isk-non-degenerate. The following lemma follows from
the standard correspondence between determinants ofk minors ofK−1 and(n− k)minors
of K:

Lemma 4.1. K is 0-non-degenerate if and only if it is invertible. Assuming K is invertible,
K is k-non-degenerate if and only ifK−1 is (n − k)-non-degenerate.

Suppose nowK is a Kasteleyn matrix for a bipartite planar graphGD. The following is
immediate:

Lemma 4.2. If K and K̃ are gauge equivalent, then K is k-degenerate if and only if̃K is k
degenerate.

A bipartite graph isbalancedif it contains an equal number of black and white vertices.
A k-cut Aof a balanced bipartite graphGD is subset of the vertices for which:
1. A contains at least one white vertex,
2. A containsk more black vertices than white vertices,
3. Each edge ofGD that connectsA to its complement has a black vertex inA.
Note that ifA is a k-cut, then its complement would be ak-cut if the colors black and
white were reversed. In particular, the existence ofk cuts does not depend on which of
the two ways we choose to color the vertices. Also, ifA is ak-cut ofGD, then by adding
black vertices toA and/or removing white vertices fromA, we can constructm-cuts for any
k�m�n − 1. An obvious parity argument implies the following:
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Lemma 4.3. If A is a k-cut ofGD, then any perfect matching ofGD contains exactly k edges
which connect A to its complement; each of these edges matches a black vertex of A and a
white vertex of its complement.

A k-breakeris a subsetS of the vertices ofGD with exactlyk white andk black vertices
for which the induced subgraphGD\S of GD has no perfect matchings.

Lemma 4.4. If GD is a connected, balanced, bipartite graph, thenGD

1. has a(−1)-cut if and only if it has no perfect matching.
2. has a0-cut if and only ifGD contains unused edges(i.e., edges which occur in no perfect
matching ofGD).

3. generally has a k-cut if and only if it has a(k + 1)-breaker.

Proof. The first item is an immediate consequence of the Hall marriage theorem. That
theorem states thatGD has a perfect matching if and only if there is no setB such thatB
hasmmore white vertices than black vertices and there are fewer thanm edges connecting
white vertices ofB to its complement. A(−1)-cut is clearly such a set, withm = 1.
Conversely, givenB as described above, constructB ′ by removing fromB all of the (at
mostm− 1) white vertices ofB connected to the complement ofB, and if necessary, some
arbitrary additional white vertices (so thatm − 1 vertices are removed in all). ThenB ′ is
a (−1)-cut.
For the second item, first, it is clear that ifA is a 0-cut ofB, then all of the edges

connectingA to its complement will be unused. Conversely, ifGD has an unused edgee,
then the graphG formed by removing edgee and its two vertices fromGD will not have
any perfect matching. Therefore it will have a(−1)-cutA by part 1. The union ofA and the
black vertex ofe is a thus a 0-cut. (Aside: ifGD has aforced edge—i.e., an edgee which
occurs ineveryperfect matching ofGD—then all the edges that share vertices withe will
be unused.)
The same argument implies the third statement in the casek = 0. For largerk, if GD has

a k-cutA, then any subset of(k + 1) black vertices ofA and(k + 1) white vertices of its
complement is a(k + 1)-breaker (since the remaining set of vertices inA contains more
white than black vertices, but there are no edges connecting white vertices of this remaining
set with its complement). Conversely, ifS is a(k + 1)-breaker, thenGD\S has a(−1)-cut
A, and the unionA and the black vertices ofS is ak-cut ofGD. �

Lemma 4.5. GD has no k-breaker(or, equivalently, no (k − 1)-cut) if and only if, for a
generic choice of positive weights of the edges ofGD, the Kasteleyn matrixK = K(GD) is
k-non-degenerate.

Proof. Thedeterminant of an(n−k)×(n−k)minor of theKasteleynmatrix is a polynomial
of the edge weights. Clearly, this polynomial will be zero for a given minor precisely when
the set ofk white andk black vertices corresponding to rows and columns not in theminor is
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ak-breaker. The result follows from the fact that any non-zero polynomial in finitely many
real variables is non-zero for a generic choice of inputs.�

In this paper, we will mainly be interested in whetherK is k-degenerate fork ∈ {0,1,2}.
But we know that wheneverK is a Kasteleyn matrix (of a graph having a perfect matching)
it is k-non-degenerate fork = 0. And assumingGD has no unused edges (which we may
always assume throughout, since the perfect matching model will be unchanged if we
remove unused edges fromGD) K is generically 1-non-degenerate. We will address the
potential failure ofK to be 2-non-degenerate in a later section.

4.2. T-graphs: construction via integration of Kasteleyn flow

LetGD be a finite, weighted bipartite planar graph (with positive generic weight function
�) with n black verticesb1, b2, . . . , bn andn white verticesw1, w2, . . . , wn. SupposeGD

has a perfect matching and no unused edges. Suppose thatGD has no 1-cuts—and hence
each of the entries and two-by-two minors ofK−1 is non-zero (i.e.,K is 1-non-degenerate
and 2-non-degenerate).
We will now construct a T-graph corresponding toGD in the case thatK is 2-non-

degenerate.
First, we may think ofK as describing a linear map from the spaceRW of functions on

white vertices to the spaceRB of functions on black vertices. Letb0 be a fixed vertex on
the outer boundary ofGD. Suppose thatGD hasm black andm white vertices on its outer
boundary face. Fix a generic convexm + 1-gonQ with edge vectorsq0, . . . , qm ∈ C in
cyclic order (andq0 = − ∑m

i=1 qi). Vertices ofQ will be the root vertices ofGT . Suppose
thatAw ∈ RW assumes the valuesq1, . . . , qm in cyclic order on the white vertices on
the boundary face, and thatAw vanishes on all other white vertices ofGD. LetAb be the
function on black vertices which is equal to 1 atb0 and 0 everywhere else. Denote by1̄ the
all-ones column vector and bȳ1t its transpose. ViewAb as a column vector andAw as a
row vector.
We claim that there is a unique matrix̃K, gauge equivalent toK, for which K̃1̄ is a

non-zero multiple ofAb and1̄t K̃ = Aw. The matrixK̃ can be derived explicitly fromK
as follows. SinceK is invertible, there exists a vectorf for whichKf = Ab. Multiplying
theith column ofK by theith component off (non-zero, becauseK is 1-non-degenerate)
produces aK ′ for whichK ′1̄= Ab. Next, there exists a row vectorg for whichgK ′ = Aw.
Multiplying the j th row ofK ′ by thej th component ofg (also non-zero, since(K ′)−1 is
1-non-degenerate and nonzero entries ofAw are generic) gives the desired̃K.
We may think ofK̃ as describing a vector flow (2-component flow) onGD: sendingK̃i,j

units of flow frombi to wj . The net flow into each non-boundary white vertex and each
black vertex (exceptb0) is zero. Now, draw a dotted line from each white vertex on the
outer face ofGD to infinity, and fromb0 to infinity, so as to divide the outer face ofGD into
m + 1 outer faces; take these faces and the interior faces ofGD as the vertices of the dual
graphG′

D of GD. ThenK̃ also describes a dual flow onG′
D (obtained by rotating each edge

ninety degrees counter-clockwise) whose net flow around each non-boundary face ofG′
D is

zero; viewed in this light,K̃ is the gradient of a function� : G′
D → C.
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Now, we claim that each pair of (complex) components ofg is linearly independent
(as a pair of vectors inC = R2). To see this, leta andb be basis column vectors, so
that (K ′)−1(a) and (K ′)−1b are columns of the matrix(K ′)−1. Since the determinants
of the two-by-two minors of(K ′)−1 are non-zero, no complex component of the vector
z = (K ′)−1a + i(K ′)−1b = (K ′)−1(a + ib) is a real multiple of any other component of
that vector (in particular, all of the components ofz are non-zero). NowAw is a generic
linear combination of vectors of the above forma+ ib, so no component ofg = K−1(Aw)

is a real multiple of any other component ofg.
SinceK ′ is real, all the components of̃K in a given row are nonzero complex numbers

lying on the same line through the origin, and the directions are different in each row.
Now, extend� linearly to the edges ofG′

D, so that� maps each edge to a line segment.
For each black vertexbi of GD, corresponding to a black face ofG′

D, the� image of the
union of the edges incident tobi is a line segment, whose interior we denote byLi ; the
above argument implies that no two of theLi are parallel.
Here is the main result.

Theorem 4.6. If K is 2-non-degenerate then theL = {L1, . . . , Ln}definedabove formsaT-
graph,whose tree-graphwe denoteGT ,with root vertices at vertices ofQ,andGD = GD(L)

(up to gauge equivalence).Moreover, if v is a vertex ofG′
D, then�(v) is a vertex ofGT ; if

v corresponds to an outer face ofGD, then�(v) is a root vertex ofGT .

Proof. First, the change in�, as one moves from outer faceF of GD around a vertexv to
another outer face, is given by the flow ofK̃ into v, which is given byqi , theith component
of Aw, wheneverv is a white vertexwi , and zero whenv is any black vertex besidesb0.
By moving around the polygon in steps, it is clear that (up to an additive constant)�(F )
assumes the values of the vertices of the convex polygon in cyclic order.
Let f be an interior vertex ofG′

D. We claim that for some black face incident tof ,
with verticesf1 andf2 incident tof, �(f1) − �(f ) and�(f2) − �(f ) point in opposite
directions. Suppose otherwise. ThenK̃ would have to assume opposite signs on the entry
corresponding to each suchpair of edges(f, f1)and(f, f2). By the definition of aKasteleyn
matrix,K̃ has positive sign for an odd (resp., even) number of the edges incident tof if the
total number of edges is 0 mod 4 (resp., 2 mod 4), so this is a contradiction. It follows that
�(f ) is an interior vertex of at least oneLi . In particular, this implies that the endpoint of
eachLi is either an interior vertex of someLj or a root vertex.
It also implies amaximal principle, i.e., that for any vectoru inR2, the function�u(x) =

(�(x), u) (an inner product computed with�(x) treated as a vector inR2) has no local
maxima or minima at interior faces ofGD. That is, every interior facef (viewed as an
interior vertex inG′

D) has neighborsf1 andf2 satisfying�u(f1)��u(f1)��u(f2). For
genericu (i.e., anyu whose slope is not parallel to one of theLi ’s), the inequality can be
made strict.
Now, to show that the{Li} form a T-graph, it remains only to show that they do not

intersect one another; while proving this, we will also show that�(G′
D) partitions the

convex polygonQ into convex polygons (the white faces). First, the maximal principle
immediately implies that�(G′

D) lies inQ. Furthermore, we claim that as one movesx



R.W. Kenyon, S. Sheffield / Journal of Combinatorial Theory, Series B 92 (2004) 295–317309

clockwise around each a white interior facew of G′
D, �(x) traces out a convex polygon

in some fixed orientation (clockwise or counterclockwise; we refer to this direction as the
orientation of wand denote the polygon by�(w)). If this were not the case, then there
would have to be verticesf1, f2, f3, f4, in clockwise order aroundw and some genericu
for which �u(f1) and�u(f3) are less than both of�u(f2) and�u(f4). By the maximal
principle, we can find paths inp2 andp4 in G′

D fromf2 andf4 to root vertices along which
�u is strictly increasing and pathsp1 andp3 fromf1 andf3 to root vertices along which�u

is strictly decreasing. Now, letp be a path inG′
D formed by concatenatingp1 (reversed),

a dotted line fromf1 to f3, andp3. This path cannot intersectp2 or p4 (since�u at any
point on these two paths is greater than�u at any point onp1 or p3). However, the Jordan
curve theorem implies thatp separates its complement inG′

D into at least two connected
components and thatf2 andf4 (which lie on either side ofp across the facew) are in
separate components (this remains true even for the graph(GQ

D)
′ formed by adding toG′

D

the edges connecting each cyclically consecutive pair of outer vertices ofG′
D). Now, the

pathsp2 andp4 both lead to root vertices at which�u assumes a larger value than it does
at any point alongp, and these points are in the same component of(GQ

D)
′, a contradiction.

A similar argument shows that the outer facesw, joined with this, have this orientation.
Another similar argument applies to black faces and shows that as one movesx around
a black interior faceb of G′

D, �(x) traverses the correspondingLi exactly once in each
direction.
Next, we argue that all white faces have the same orientation. It is enough to prove that

any white faces ofG′
D (vertices ofGD) w1 andw2 incident to a common blackb have the

same orientation. Now, asx traverses the boundary of the faceb in G′
D, �(x) traces out the

correspondingLi once in each direction; divide the faces incident tob into two categories
according to the orientation of the edge shared withb. Clearly, if these faces do not all have
the same orientation, we can find two of them,w1 andw2 in opposite categories that have
opposite orientations. In this case,�(w1) and�(w2) will lie on the same side ofb; let u be
vector orthogonal toLi ; assume without loss of generality that�u assumes a larger value
on points onLi than on other points ofw1, w2. Let f1 andf3 be the points inG′

D incident
to b whose images are the endpoints ofb, and letf2 andf4 be arbitrary points ofw1 and
w2 which do not lie onb. Letp be formed by concatenating a pathp1 from f1 to a root on
which�u is strictly increasing (reversed), a dotted line fromf1 to f3, and a pathp3 from
f3 to a root vertex along which�u is strictly increasing; observing thatf2 andf4 are on
opposite sides ofp, we derive a contradiction through the Jordan curve argument described
above.
Finally, suppose that two of theLi intersect. Then there must be two facesw1 andw2

for which�(w1) and�(w2) intersect. The outer boundary of(GQ
D)

′ is mapped with some
consistent orientation toQ. Now, leth : Q → Z at x be the number of white faces�(w)
which containx in their interiors. It is clear thath assumes the value 1 near the boundary.
We claim thath is equal to one throughoutQ\�(GQ

D)
′; otherwise, there would be anx in

the interior ofQ (and not at the finitely many endpoints of anyLi or intersections of pairs
of Li) on the boundary of regions at whichh assumes different values. Such anx must lie
on someLi , and it is not hard to see that the two white faces incident tox andLi must have
opposite orientations.�



310 R.W. Kenyon, S. Sheffield / Journal of Combinatorial Theory, Series B 92 (2004) 295–317

4.3. Flat-face degeneracy

Now, suppose thatK is merely 1-non-degenerate and not necessarily 2-non-degenerate;
then we can formally construct� exactly as above; in this case, however, we cannot rule out
that some of theLi may be parallel to one another—and in fact, some of theLi may overlap.
However, the same arguments given above still imply that for each whitew, �(w) iseither
a convex face with some orientation (as described above) or a line segment traversed once
in each direction (like the black faces). In the latter case, we say�(w) is adegenerate face.
In the presence of degenerate faces, we will consider�(w) and�(b) to be incident to one
another along an edge if and only ifw andb are adjacent vertices inG′

D.
It is clear that if a white vertexw is degenerate, then�(b) is parallel to�(w) for each

blackb adjacent tow. A maximal component of the subgraph ofG′
D consisting of vertices

on which� is parallel to a given line is called aparallel componentof G′
D. Clearly, the

neighbor set of any white vertex in a parallel component is also in the parallel component.
An extreme pointof a degenerate facew is a vertexf incident tow for which�(f ) is an

endpoint of�(w). The union of�-images of a parallel component is a segment which we
call anextended complete edge. Now observe the following.

Lemma 4.7. Each parallel component P is a1-cut.

Proof. Observe that everyf which is an interior vertex of a black edge ofG′
D in a parallel

cluster is the extreme vertex for the same number of black and white faces ofG′
D. The

endpoints of the extended complete edge are extreme points of one more black vertex than
white vertices. Since every face has exactly two extreme vertices, the result follows.�

Similar arguments to those given in the proof of Theorem 4.6 imply that asx traverses
the outside of a parallel component,�(x) traverses the outside of the extended complete
edge exactly once in each direction. Similar arguments to those of Theorem 4.6 imply that
the extended complete edges form a T-graph. We say thatL = {Li} forms aT-graph with
overlapsif Li satisfies all of the T-graph conditions except that parallel pairs ofLi are
allowed to intersect (overlap) one another. The above analysis implies the following:

Theorem 4.8. Theorem4.6still holds if K is merely1-non-degenerate and not necessarily
2-non-degenerate—except that in this case, some of the white facesmay be degenerate(and
so the T-graph may have overlaps). Theorem3.4still applies to T-graphs with overlaps.

Even though some of thewhite faces are flat in the overlappingT-graphGT , we can define
a dual to the overlapping T-graph, containing these faces, using the graph structure ofGD.
After doing this, all of the arguments in the proof of Theorem 3.4 apply as before, so we still
have a martingale on the T-graph and have a measure-preserving correspondence between
spanning forests and perfect matchings.
Recall that in any perfect matching, there is always exactly one edge connecting a given

1-cut to its complement, and that edge contains a black vertex of the 1-cut. It is perhaps
not surprising that when we form the T-graph, 1-cuts, in some sense, play the same role
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as single black vertices. If we had simply replaced all 1-cuts in our original graph with
single black vertices, then, for a generic choice of weights, the T-graph would not have any
degenerate white faces.

4.4. Extending the correspondence to degenerate weighted graphs

Recall from Lemma 4.5 that if we remove the unused edges fromGD, then the Kasteleyn
matrix forGD is 1-non-degenerate (and hence Theorems 3.4 and 4.8 apply) for a generic
choice of weight functions�. Suppose, however, that the Kasteleyn matrix forGD is not
1-non-degenerate for a particular choice of weight function�. Then we would like to take
a generic sequence of weights�i converging to�, look at the limit (or some subsequential
limit) of the correspondingT-graphs, and show that themeasure-preserving correspondence
described in Theorem 3.4 still holds for the limiting object. The problem is that, as Fig. 1
makes clear, the limit of a sequence of T-graphs need not be a T-graph at all; in fact, some
of the edge segments and faces may shrink to single points.
For practical computational applications, it may be sufficient to have the correspondence

between dimers and spanning forests for a generic choice of weights. But a word of caution
is in order. Consider the dimer model whose T-graph is given by the right diagram in Fig.
1; if weights�i tend to a limit� in such a way that the T-graphs have the graph on the left as
a limit, then the shrinking small triangle in the center of the diagram will become a “trap”
for the random walk on the T-graph, in that the expected amount of time that a walk spends
on these three vertices before existing towards a root vertex tends to infinity; sampling
algorithms that rely on random walks will perform poorly for weights approximating�. In
this case, however, one can simplify the limiting problem by reducing the three vertices in
the small triangle at the center to single vertex. The probability tends to one that only one
of the “long” directed edges (i.e., edges whose lengths are not tending to zero) extending
outward from these three vertices will appear in a random tree; given a spanning tree of the
“reduced” graph, it is possible to work out which “short” edges appear in the graph. The
details of this and more general versions of this reduction are left to the reader.

5. Periodic and almost periodic T-graphs

5.1. Definitions for almost periodic T-graphs

In this section, we prove some results about T-graphs which are motivated by the study
of ergodic Gibbsmeasures on tilings of infinite periodic planar graphs. More on this subject
can be found in[9], who cite the results of this section. Our first aim here is to construct
from periodic bipartite planar graphs (and under certain conditions on the weights) infinite
T-graphs with a property called “almost periodicity.”
LetGD be embedded in the torusR2/Z2 and letG∞

D be the doubly periodic lift toR2 (we
assume thatG∞

D is connected). As before, assume thatGD hasn white andn black vertices.
Denote byvj,k the vertex ofG∞

D which lies in the square[j, j + 1)× [k, k + 1) and whose
projection to the torus is the vertexv ∈ GD. For the sake of simplicity we will assume
throughout this section thatGD has no unused edges and that it has generic weights. The
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non-generic weight case requires a slightly finer analysis which we choose not to go into
here.
A functionf on the vertices ofGD is (�,�)-periodic if f (vj+x,k+y) = �x�yf (vj,k) for

all (vj,k) ∈ G∞
D . Sayf is almost periodicif it is (�,�)-periodic and� and� have modulus

one (but are not necessarily roots of unity). In this case, we write� = e2�ia and� = e2�ib.
If a andb are rational, thenf is doubly periodic with some period.
For a fixed(�,�) the linear space of(�,�)-periodic functions is 2n-dimensional and is

parametrized by the space of functions on one period ofG∞
D—which we can represent as

a single copy ofGD. It has a natural basis consisting of functions�v whose value is 1 at
v ∈ [0,1)2 and zero at other vertices in the fundamental domain. LetK be a Kasteleyn
matrix forGD andK∞ an infinite-dimensional Kasteleyn matrix forG∞

D which is a lift of
K. We can think ofK∞ as a linear function from the set of functions on the black vertices
of G∞

D to functions on the white vertices ofG∞
D . Since this function maps(�,�)-periodic

functions to(�,�)-periodic functions, it induces a linear map from then-dimensional space
of functions on the black vertices ofGD to then-dimensional space of functions on white
vertices ofGD. Denote byK�,� the matrix of this linear map in the basis{�v}.
The determinant detK�,� is a polynomial function of� and�; in particular for certain

(�,�) (corresponding to zeros of this polynomial function) thematrixK�,� has a non-trivial
null space, and hence we can find(�,�)-periodic functionsf andg satisfyingK∞f = 0
andgK∞ = 0. If the polynomial detK�,� happensto have a zero(�,�) that lies on the unit
torusof complex variable pairs that both havemodulusone, thenf andg arealmost periodic.
If, furthermore,f andg happento be nowhere zero, then we can define an infinite T-graph
as follows. First, observe that the functioñK∞

1 (vw) = f (v)g(w)K∞(v,w) on edgesvw
of G∞

D is a nowhere zero flow. The dual of this flow is the gradient of a function�1 onG′
D.

Similarly the dual ofK̃∞
2 (vw) = f (v)g(w)K∞(v,w) is the gradient of a function�2 on

G′
D (whereḡ denotes the complex conjugate ofg). We may assume (multiplyingg(w) by a

generic modulus one complex number if necessary) thatg(w) + g(w) = 2Reg(w) is also
nowhere zero. Then we can think ofK̃ = K̃1 + K̃2 as an infinite Kasteleyn matrix and
� = �1 + �2 as the corresponding T-graph. We will call a mapping� from (G∞

D )′to R2,
constructed in this way, analmost periodic T-graph mapping. See Fig. 5.
We remark that, given a fixed�, the number of�,� on the unit torus for which det

K�,� = 0 also plays a fundamental role in[9], where it is shown that the minimal specific
free energy ergodic Gibbs measure on perfect matchings of the infinite weighted graphG∞

D

is smoothif the corresponding polynomialK�,� has 0 roots on the unit torus andrough if
it has 2 roots (necessarily complex conjugates) on the unit torus (in the non-generic case of
a single root, it is rough only whend

d� detK�,� = d
d� detK�,� = 0). The terms “smooth”

and “rough” come from the statistical physics literature and are defined in[9]. The main
goal of this section is to prove that when the choice of weights is generic, the number of
modulus-one values of(�,�) that are roots of detK�,� always belongs to the set{0,2}.

5.2. Generic points on the variety of almost periodic T-graphs

WriteR+ for the set of strictly positive real numbers,C+ for the set of non-zero complex
numbers, andwritePk for k-dimensional complex projective space. Suppose that|V | = 2n,
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Fig. 5.Almost periodic T-graphmapping of the honeycomb graph, with periodic edgeweights 4, 5, and 6 according
to direction. The edges of the graph shown correspond to black vertices of the honeycomb lattice; the triangular
faces of the graph shown correspond to white vertices of the honeycomb lattice.

and define a varietyX ⊂ R
|E|
+ × C2+ × Pn−1 by

X = {(�, �,�, f ) : K�,�f = 0}.
Heref is anelement inPn−1,which is aone-dimensional subspaceofCn, andbyK�,�f = 0
we mean that this subspace lies in the null space ofK�,�. By abuse of notation, iff is a
non-zero function on the black vertices ofGD, we will also usef to denote the element of
Pn−1 given by the linear span off . Denote byX̃ the subset ofX consisting of points for
which |�| = |�| = 1. Denote by Adj(K�,�) theadjugatematrix ofK�,�, whose entries are
the(n− 1)× (n− 1)minors ofK�,� (so thatK�,�Adj(K�,�) = detK�,�). It is easily seen
that Adj(K�,�) is identically equal to zero if and only if the rank ofK�,� is less thann− 1;
and if the rank ofK�,� is exactlyn−1, then at least one column of Adj(K�,�) is a non-zero
vector whose span is the null space ofK�,�. The following is the main result of this section:

Theorem 5.1. The varietyX̃ is irreducible. For a generic choice of�, there are either zero
or two quadruples(�, �,�, f ) in X. When the latter is the case and� is generic, then the
corresponding�,�, f are such thatAdj(K�,�) has rankn − 1, all of its coordinates are
non-zero, and f is given by any column of the(rank one) matrixAdj(K�,�).

Let us say a word about the significance of this theorem to T-graph classification be-
fore we prove it. By obvious symmetry, Theorem 5.1 implies that for generic�, there are
either zero or exactly two quintuples(�, �,�, f, g) with gK�,� = 0 andfK�,�. Recall

that our almost periodic T-graphs were defined to have gradient given byK̃∞(vw) =
2f (v)Re(g(w))K∞(v,w). Sincef andg are uniquely determined up to complex conju-
gacy and multiplication by a constant factor, this implies that the almost periodic T-graph is
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completely determined up to rotations (which arise from multiplyingf by a modulus one
constant), constant rescalings (which arise from multiplying eitherg or f by a real con-
stant), reflection (which comes from complex conjugacy), translations of the image space
(which arise from the fact that̃K∞ only determines the T-graph mapping up to an additive
constant) and “translation of the domain, or a limit of such translations.” To explain the
last symmetry, note that multiplying bothf andg by �m�n is equivalent to composing
the T-graph mapping with translation of the domain by(m, n). If one of�,� is irrational,
then we can achieve any modulus one number as a limit of numbers of the form�m�n.
We summarize these observations informally by saying that “the almost periodic T-graph
mapping corresponding to� is unique up to affine orthogonal transformations of the image
and translations of the domain.” We say two T-graphs are equivalent if one can be obtained
from the other via a symmetry of this sort. Note, of course, that if� and� are both rational,
then multiplyingf andg by a modulus one number isnotnecessarily the same as a domain
translation, or even a limit of such translations. In this case, there is a one parameter family
of T-graph equivalency classes.
We will now prove Theorem 5.1 in stages, beginning with the following lemma. First,

denote byX′ the projection ofX onto its first three coordinates(�, �,�); i.e.,X′ is the zero
set of the polynomialP(�, �,�) = detK�,�.

Lemma 5.2. The varietyX′ is irreducible. Moreover, for a generic point(�, �,�) onX′,
the matrixAdj(K�,�) has no zero entries, and the f for which(�, �,�, f ) ∈ X is unique.

Proof. Clearly,P is affine linear as a function of�(e), that isP = �(e)Pe + P ′
e, wherePe

andP ′
e do not involve�(e). If we could writeP = P1P2, then each�(e)must occur in either

P1 orP2, but not both. Since the multiplicity of the�(e)terms determine the multiplicity of
� and� in each monomial, this implies that there is no cancellation when multiplying out
P1 timesP2 (i.e., there are no monomials that can represented as a product of a monomial
in P1 and a monomial inP2 in two different ways). Thus, each monomial inP1 times a
monomial ofP2 corresponds to a matching. LetE1, E2 be the set of edges represented in
P1, P2, respectively, andV1, V2 their vertices. If an edgee connected a vertexv1 of V1 to
a vertexv2 of V2, then its weight couldnot occur in eitherP1 or P2, since if it occurred
in a monomial of, say,P1, then the product of that monomial with a monomial ofP2 that
included a factor of�(e′)with e′ incident tov2 (such amonomial exists by definition) would
notcorrespond to a matching, since it would involve two edges incident tov2. Thuse must
be unused, a contradiction. Thus, ifP = P1P2, then one of thePi—say,P2—must be
a function of� and� alone. Since each combination of edge weights corresponding to a
matching occurs in exactly one monomial ofP , we conclude thatP2 is a monomial in�
and�.
Furthermore,P is irreducible when considered as a polynomial in both the edge weights

and�,�, except for a monomial factor in� and�. That is, ifP = P1(�, �,�)P2(�, �,�)
then one of thePi consists of a single monomial in� and�. To see this, note that by the
previous result, we may assume without loss of generality thatP2 is a polynomial in�,�
alone; and since we are assuming� �= 0,� �= 0, the variety is not changed if we divide out
by this term so thatP is an irreducible polynomial.
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Fix an edgee and consider the polynomialPe as defined above. SinceP is irreducible and
e occurs in a proper subset of the set of all matchings, the zero set of�(e)P (e), intersected
with X′, forms a proper subvariety ofX′. In other words, on a generic subset ofX′, none
of the entries of Adj(K�,�) corresponding to an edge inGD are zero. Since Adj(K�,�) has
rank at most one, and every row and column has a non-zero entry, we conclude that every
entry of Adj(K�,�) is non-zero andf is the span of any column of Adj(K�,�). �

Lemma 5.3. For a generic choice of weights�, every pair�,� for which(�, �,�) ∈ X is
such thatAdj(K�,�) has no zero entries, and the f for which(�, �,�, f ) ∈ X is unique.

Proof. Lemma 5.2 implies that forgenericedge weights�, P andPe have no common
factor as functions of� and� except for monomial factors. To see this, by irreducibility
note that there exist polynomialsQ1 = Q1(�,�, w) andQ2 = Q2(�,�, w) such that
PQ1 + PeQ2 = Q(�, w) whereQ is a nonzero polynomial depending only on� and the
weightsw, not on�. Similarly there existQ3,Q4 such thatPQ3 + PeQ4 = Q′(�, w)
whereQ′ is a non-zero polynomial independent of�. Plugging in generic values forw, Q
andQ′ will still be nonzero, but any common factor ofP andPe is a common factor ofQ
andQ′ which is impossible. SoP andPe have no common factor for genericw.
Therefore,when� is fixedgenerically, byBezout’s theoremP andPe—viewedaspolyno-

mials in� and�—have a finite number of common zeros. By genericity none of these zeros
lies on the unit torus (since for any positive realx, we can choose�x so thatP(�, �,�) =
P�x ,x�,x�; and replacing� with such a�x , for a generic choice ofx, preserves the genericity
of the weights). �

Lemma 5.4. Any almost periodic T-graph mapping� is unbounded as a function of(G∞
D )′.

Moreover if u is any vector inR2\{0}, then(�, u) is unbounded if it is not identically equal
to a constant(in which case� is degenerate—i.e., its image is contained in a line).

Proof. Suppose thatf is (�,�)-periodic andg is (�, �)-periodic with � = e2�ic and
� = e2�id . ThenK̃∞

1 (vj,k, wj+0,k+m) is a function of0,m whose real and imaginary parts
can both be written in the form cos(a0+ bm+ x) cos(c0+ dm+ y) times a constant, for
somex andy.
If � were bounded onG′

D, then the corresponding martingale on the T-graph would
almost surely converge (by the martingale convergence theorem), and there would thus
have to be a path of verticesv1, v2, . . . for which�(vi) converges to a constant. We claim
that this is impossible. It is enough to show that for some	, the set of edges(vw)∗ for
which 0< K̃∞(v,w) < 	 has no infinite cluster. For someN > |GD|, we can always find
	 small enough so that the distance between any two clusters of(0,m) ∈ Z2 (viewed as
points inZ2) on which 0< cos(a0 + bm + x) < 	1/2 is at least 2N times the diameter of
the largest such cluster, and similarly for clusters on which 0< cos(c0+ dm+ y) < 	1/2.
(This is trivial if a andb are rational, since the function is periodic in that case; if they are
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irrational, then we can find	0 for which there is no integer pair(n1, n2) for whichn1a+n2b

is less than	0 (modulo 2�) and|n1 + n2|�2N . Choose	0 small enough that there can’t
be two values differing by	0 (modulo 2�) with cosines	 apart.) Now, it is clear that the
largest cluster of0,m on which even one of these statements holds is at most 2N ; since the
gradient of� has norm at least	 when neither statement holds, we conclude that� cannot
be bounded.
The same argument shows that there cannot exist a non-zero vectoru ∈ R2 for which

the inner product(�(v), u) is bounded as a function ofv, unless(�(v), u) is constant. �

Lemma 5.5. If � is generic, then the maximum number of linearly independent, almost
periodic solutions toK∞f = 0 (or similarly, solutions togK∞ = 0) is two. If there are
two solutions, which are(�,�)- and(�, �)-periodic, then� = �̄ and� = �̄.

Proof.For each� and�, the left null space ofK�,� has the same dimension as the right null
space. Now, suppose thatf is �,�-periodic andg is �, �-periodic with� = e2�ic and� =
e2�id . Then as in the proof of Lemma 5.4,K̃∞(vj,k, wj+0,k+m) is a function of0,m whose
real and imaginary parts can both bewritten in the form cos(a0+bm+x) cos(c0+dm+y)

times a constant, for somex andy. Let S be a cycle inG′
D; if we lift it to (G∞

D )′, then
its endpoints are its starting points plus an integer pair,(n1, n2). Now, we would like to
determine the asymptotics of�1 and�2 (whose derivative is the dual of̃K

∞) alongS∞ (a
periodic lifting ofS toG∞

D ). Expanding the cosines in exponentials, this involves adding up
|S| separate sequences (functions of0) of the form:

n1∑

0=1

e2�i[(x+0a)±(y+0c)]

and|S| sequences of the corresponding form form.
Clearly,� will remain bounded independently ofx andy, provideda �= ±cmod 2� and

b �= ±d mod 2�. In fact we must take the same sign for both equalities: unless(a, b) =
±(c, d) mod 2� it is possible to find an independent pair of integer vectors(m1, n1) and
(m2, n2) for which am1 + bn1 �= ±(cm1 + dn1) mod 2� and similarlyam2 + bn2 �=
±(cm2+dm2)mod 2�. TakingS1 andS2 to be corresponding paths, wemay deduce that�
is bounded unless(�,�) and(�, �) are either equal to one another or conjugates; by Lemma
5.4(�,�) and(�, �) are either equal to one another or conjugates.
Now suppose we have(a, b) = ±(c, d). Then for the sums corresponding to steps inS,

n1∑

0=1

cos(x + 0a) cos(y ± 0a)

is approximately linearas a function ofn1, that is, equal to a linear function plus a
bounded function. If there were three linearly independent solutionsf1, f2, f3 to Kf =
0, and�1,�2,�3 are formed usingg and f1, f2, f3, then a linear combination of the
�1,�2,�3 would be approximately the linear function zero (i.e., bounded), a contradiction,
by Lemma 5.4.
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Finally, since it is clear that(�,�) is not real (i.e., not equal to±1) for a generic choice
of �, so any almost periodicf or g will be a strictly non-real function, that is, linearly
independent from its complex conjugate, which is also a zero ofK∞. �

Now, Theorem 5.1 now follows immediately from Lemmas 5.3 and 5.5.
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