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Abstract

Generalizing results of Temperley (London Mathematical Society Lecture Notes Series 13 (1974)
202), Brooks et al. (Duke Math. J. 7 (1940) 312) and others (Electron. J. Combin. 7 (2000); Israel
J. Math. 105 (1998) 61) we describe a natural equivalence between three planar objects: weighted
bipartite planar graphs; planar Markov chains; and tilings with convex polygons. This equivalence
provides a measure-preserving bijection between dimer coverings of a weighted bipartite planar graph
and spanning trees of the corresponding Markov chain. The tilings correspond to harmonic functions
on the Markov chain and to “discrete analytic functions” on the bipartite graph.

The equivalence is extended to infinite periodic graphs, and we classify the resulting “almost
periodic” tilings and harmonic functions.
© 2004 Published by Elsevier Inc.
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1. Introduction

In[11], Temperley gave a bijection between the set of spanning treesiof argrid and
the set of perfect matchings (dimer coverings) 02a— 1) x (2n — 1) grid with a corner
removed. This bijection was generalized10] to a weight-preserving bijection (the KPW
construction) from the set of in-directed spanning trees (also known as arborescences)
on an arbitrary weighted, directed planar graphto the set of perfect matchings on a
related graplyp. The construction is useful in statistical mechanics because certain types
of events in the spanning tree model can be easily computed using dimer technology,
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for example winding numbers of branches and local statistics. For dimer models arising
from a spanning tree model, moreover, the spanning tree formulation provides other useful
information. In particular Wilson’s algorithrfil2] for generating spanning trees can be
used to rapidly simulate dimer configurations. Moreover, the spanning tree formulation
identifies natural boundary conditions (“Temperleyan” boundary conditions) for the dimer
model which allows asymptotic computation of many properties, in particular conformal
invariance properties of dimef§]. However in the pap€il0] it was not known if every

dimer model on a bipartite planar graph corresponded to a spanning tree model on a related
graph.

A seemingly unrelated construction is the construction of a “Smith diagram” from a planar
resistor networl1]. This is a tiling of a plane region with squares of arbitrary sizes, which
is associated in a bijective way to a critical-point-free harmonic function on the network
with unit resistances (there is a square in the tiling for each edge in the graph, whose size
is proportional to the current flow through the edge). This construction was generalized
in [7] to planar Markov chains (graphs with transition probabilities), where a harmonic
function gives a tiling withtrapezoids It was not known at the time what if any graphical
correspondence was natural figneralpolygonal tilings.

In the current paper we extend the above equivalences and describe a correspondence
between these three types of objects: weighted bipartite planar graphs, planar Markov chains,
and tilings with general convex polygons.

In particular from a weighted bipartite planar gra@h we can construct a tilin@ of a
plane region with convex polygonal tiles, and a planar Markov cfainn an essentially
bijective way (that is, up to natural equivalences). There is a tilefior each “white” vertex
of Gp, whose shape is determined byliacrete analytic functioffsee definitions below).

The graphGr is a graph on the 1-skeleton of the tiles, with transitions determined by their
Euclidean geometry. The tilings are therefore representations of discrete analytic functions
on the bipartite planar graghy, which correspond to harmonic functions on the Markov
chainGr .

Animportantapplication of this constructionis thatit provides a converse to the Temperley-
KPW construction. That is, starting with the finite weighted bipartite planar gfaptone
constructs a Markov chaifiy and a measure-preserving bijection from the dimer model
on Gp to the spanning tree process @n . This dimer/spanning tree correspondence has
a number of important consequences. Firstly, it was usg#l]im a fundamental way to
classify Gibbs measures on dimer models on infinite periodic planar graphs. Secondly, since
spanning trees can be sampled efficiefit¥], the construction provides a way to sample
efficiently from bipartite planar dimer models. Previously the only (provably efficient) way
to sample general planar bipartite dimer models was to do exact computations of joint edge
probabilities. A third applicationi8] is that it allows one to compute the asymptotics of
dimer correlations and height fluctuations in terms of the Green’s functigfyon

In Section 5, we discuss how the construction extends in the case of infinite periodic
graphs. Thisis motivated by the study of the dimer model on periodic graphg,8e&iven
any periodic planar bipartite weighted gragp, we produce an essentially unique “almost
periodic” planar Markov chaig; , which extends the dimer/spanning tree correspondence.
This unicity is an important element in the classification theorem of ergodic Gibbs measures
on dimer coverings ofp described irf9].
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2. Definitions
2.1. Dimers and measures

LetGp = (V, E) be a finite bipartite planar graph. Bipartite means that the vertices
can be 2-colored, that is, colored black and white so that black vertices are only adjacent
to white vertices and vice versa. LetE — (0, co) be a weight function on the edges.
A perfect matchingor dimer configurationM C E is a set of edges with the property
that each vertex is contained in exactly one edg#&/inThe weight of a matching/ is
V(M) = [1,ep vie). Let M(Gp) denote the set of perfect matchingsths. Let u be the
probability measure oM (Gp) giving a matching a probability proportional to its weight:

u(M) = 5 v(M) whereZ = 3" qg,) V(M.

2.2. Kasteleyn matrices

If Gp hasn black andn white vertices, &asteleyn matriXsee[4]) for Gp is a real
n x n matrix K = (K; ;) whose rows index the black vertices and columns index the white
vertices ofGp, defined as follows. The entr; ; is zero if there is no edge fromy to
w;, and if there is an edge of weightb, w;) thenk; ; = +v(b;w;), where the signs are
chosen so that the product of signs of edges around every interior facésaf—1)4/2+1,
whered is the degree of the face. This property of signs is not changed if we multiply all
elements in a particular column or row &f by —1 (because each vertex G has an
even number—zero or two—of edges on each facg ®f. Moreover, such a choice of
signs always exists, and by Kasteleyn’s theorem, the determinagati®{up to sign) the
sum of the weights of the matchings @§ [4]. By adiscrete analytic functiomwe mean a
function f on black vertices (resp. white vertices) which satisfiés = O (resp.K f = 0).
This generalizes the definition of discrete analytic functiorZ8rdefined in[3,6]. These
functions play a role implicitly in Sections 4 and 5.

2.3. Gauge transformations

If we multiply the weights of all the edges #y, having a fixed vertex by a constant, the
measurg: does not change, since exactly one of these weights is used in every configuration.
More generally, two weight functions, v, are said to bgauge equivalenf vy /v, is a
product of such operations, that is, if there are functign®n white vertices ang> on
black vertices so that for each edgé, vi(wb)/v2(wb) = f1(w) fo(b). Gauge equivalent
weights define the same measure

Multiplying the ith row (resp., column) of a Kasteleyn matixby a positive, non-zero
constant is equivalent to multiplying by the weights of all of the edges 6f, incident to
b; (resp.,w;). In other words any matriX obtained fromk by multiplying the rows and
columns ofK by non-zero constants will be a Kasteleyn matrix for a graph which is gauge
equivalent taGp.
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3. T-graphs and corresponding dimer/spanning-forest models

In this section, we define a family of planar graphs called T-graphs and describe a weight-
preserving correspondence between the spanning trees on a T-graph and dimer configura-
tions on a bipartite graph derived from it. This is closely related to the reqdi®hiwho also
give a relation between spanning trees on a general planar graph and dimers on a derived
graph.

In the present context, however, our derivation can be reversed: we will see in Section 4
that for every bipartite planar graph, whichnen-degeneratin the sense that it contains
no edges which fail to be used in any perfect matching of the graph (for the purposes of
the dimer model, it makes sense to delete these edges), endowed with a generic choice of
weights, there is a gauge-equivalent graph which can be derived from a T-graph in this
way. By taking limits, the correspondence generalizes to the case when the weights are not
assumed to be generic.

3.1. Complete edges that form T-graphs

The definition of T-graph on a torus—which we use in Section 5—is quite simple. A
disjoint collectionL = {L1, Lo, ..., L,} of open line segments in the tor@$/Z? forms a
T-graphinthe torugf U!_, L; is closed. The term “T-graph” refers to the fact each endpoint
of a givenL; necessarily lies on the interior of somg with j # i. In other words, each
L; “tees into” anL ; at each of its two endpoints.

We say a disjoint collectiorLq, Ly, ..., L, of open line segments i&? forms a T-
graph in R? if U?_; L; is connected and contains all of its limit points except for some
setR = {r1, ..., rn}, Wwhere each; lies on the boundary of the infinite componenﬂRﬂ‘
minus the closurd of U"_; L;. Elements inR are calledroot vertices For example, a
single open line segment forms a T-graph with root vertices given by the two end points. A
pair of open line segments—one of which tees into the other to make the letter “T"—forms
a T-graph with three root vertices. The three open edges of a triangle also form a T-graph
with three root vertices. A partitioning of a convex polygBrinto convex polygonal tiles
using a finite number of line segments will form a T-graph with root vertices at the vertices
of P if and only if it is genericin the sense that the endpoint of each of these line segments
lies either on the interior of another line segment or on the boundaPy (Bee Fig. 1.)

(a) (b)

Fig. 1. (a) Line segments that form a T-graph. (b) Line segments that do not form a T-graph.
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Note that each endpoint of a givén is eithera root vertex or an interior point of some
L ;. To distinguish the.; from subsegments of the; (which we discuss later) we refer to
the L; ascomplete edges

In subsequent subsections, we will usdo define a weighted, directed graph (L)
and a weighted, bipartite graghy (L). The ultimate goal of this section will be to derive
a weight-preserving bijection between directed spanning foresfs 6h) (with specified
roots) and perfect matchings 6f (L). When the choice of is clear from the context, we
write Gr = Gr(L) andGp = Gp(L).

3.2. T-graphs and their duals

The setVy (L) of vertices ofGr is the set of points ik2 which are endpoints of at
least one of thd.;. We use the ternT-graphto refer to the graply/; togetherwith the
corresponding sek of line segments embedded in the torus or plane. In other words, a
T-graph is not merely a graph but rather a geometric construction which determines the
graphGr (as well as several other graphs described below). We refer to the Graipgelf
as thetree-graphof L.

A vertex v which is in the interior of a complete edde (called aninterior vertey
has exactly two edges ity directed outwards from it: these edges point towards the two
immediate neighbors; andv,, alongL; (one on each side af). The weights on the edge
from v to these twov; are chosen in such a way that the two weights add up to one and
are inversely proportional to the Euclidean distarjoes v;|. These weights correspond to
the transition probabilities of a Markov chain &% (L). The root vertices are sinks ofr
(they have no outgoing edgesgi) and are fixed points of the Markov chain. Note that (by
our choice of transition probabilities) the expected change in Euclidean position during a
step of the Markov chain is always zero; thus, a random walder-viewed as a Markov
chain on positions ifit>—is a martingale. In other words, the coordinate functions on the
vertices ofGy are harmonic functions ofiy away from the root vertices.

See Fig. 2 for an example of a T-graph with three roots. Note that, by convention, when
we have transitions both froito j and fromj to i, rather than drawing two directed edges
in the graphgr we draw a single edge with two transition probabilities, one from each end.

We defineG; = G (L), an undirected dual graph gf, as follows. LetC be an arbi-
trary simple closed curve that encircles thie ; L; and contains each of the root vertices
r1, ..., rm in clockwise order. The vertices &f. are the bounded faces@f U C (bounded
connected components Rz\(uf’zl L; U (C)). Faces ofGy U C adjacent taC are called
outer face®f G7: they correspond touter vertice®f G’.. Two vertices ofj} are connected
by an edge: of G, if the corresponding faces 6F are adjacent across an edg&jef For
an edger of Gr we denote by* its corresponding dual edge.

Lemma 3.1.If L1, Lo, ..., L, form a T-graphthenGy has exactly: + 1 faces(including

outer facep Henceg,. hasn + 1 vertices

Proof. This follows from Euler’'s formula. The line segments decompose the interior
of C into some numbeii, of open faces (open 2-cells); = n open complete edges, and
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Fig. 2. The directed T-grapfiy. The root vertices are the corners of the triangle.

no = 0 vertices. Sinca, — n1 + ng = 1, the Euler characteristic of the disc, the result
follows. [

3.3. Spanning trees

A spanning tre®f a graphG is a subset of edges which is connected, contains no cycle,
and passes through every vertex. If the edge§ afre directed, airected spanning tree
or arborescence, is a spanning tree in which every vertex but one (called the root vertex)
has a unique outgoing edge. Given a subset of verticésazlled root vertices, directed
spanning foresis a set of edges with no cycles, passing through all vertices, each non-root
vertex having a unique outgoing edge, and each component of which is connected to a
unigue root vertex.

We will employ the following correspondence between (nhon-directed) spanning trees in
g7 and their (non-directedjual spanning forests G7. Using the correspondence between
edges ofj; and edges ofi7, we can think of edge subsets of bgth andg as subsets of
the set of all edges dfr. Using this interpretation, we state the following lemma (which
is illustrated in Fig. 3):

Lemma 3.2. The complement of a spanning tfEef G/ is a spanning foresF of Gr, with
roots at the root vertices. Similarlthe complement of a spanning forésof Gz, with roots
at the root verticesis a spanning tre of .

Proof. We sketch the standard tree dualization argumerft.if a spanning forest @,

with roots at root vertices, its complemehtannot contain any cycles @, (since such a

cycle would separate at least one interior vertegpffrom the root vertices), and it must

be connected (since otherwise, the set of edges separating two components would either
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Fig. 3. (a) Edges of a T-graph and the surrounding curv€. (b) The graphG’,. This graph is the incidence
graph for the set of complete edges/ofdrawn as black vertices) and faces/ofdrawn as white vertices). (c) A
spanning forest o of G7, drawn with thick arrows, and the dual spanning e G, drawn with dotted lines
connecting vertices cﬁ’T (which are faces ofjr, represented as white vertices). Each such dotted line crosses
a segment of a complete edge than@ used inF (there is exactly one such segment for each complete edge).
(d) The marked matching correspondingiavhen the dual root is taken to be the (unmatched) uppermost white
vertex.

form a cycle inGr or a path connecting two root verticesd); hence it is a spanning
tree. Similarly, if 7is a spanning tree af/, its complementF cannot contain cycles of
Gr (since such a cycle would separate at least one inner fage &om the outer faces)
and each connected component/fcontains at least one root vertex (since otherwise
the set of edges separating that componeift &bm its complement would form a cycle
inGr). O

3.4. Dimer graphs from T-graphs

Now we will define the weighted, bipartite (non-directed) gréph= Gp(L). First, we
define a slightly large¢’;, = G, (L), whose black vertices are thecomplete edges; and
whose white vertices are thet+ 1 faces ofGr (including outer faces).
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Table 1
Summary of graphs constructed from a collection of edgésat forms a T-graph

Graph Vertex set
Gr =Gr(L) Points that are endpoints of sorhe.
Q/T Faces and outer faces @f (i.e., bounded components B?\(L uQ)).
ap Faces and outer faces @f (one partite class).
Complete edges if (other partite class).
gp Same ag/, but with one outer face (the dual root) omitted.
ap Faces and some outer facegj$ (which correspond to vertices 6f).

The graprg/D (which is not exactly the same &5-) is defined precisely in Section 4.2.

A white vertexw of G, is adjacent to a black vertéxof G/, if the faceF corresponding
to w contains a portion of the; corresponding té as its boundary. The weight(w, b)) is
then given by the Euclidean length of the portion of the line segment. The graph thus defined
is planar. To see this, note that it can be drawn on top of the tiliag follows: put a white
vertex in the interior of each face, and a black vertex in the center of each complete edge.
Whenw andb are connected, draw a line frominside the corresponding face towards the
complete edge correspondingipand then along this complete edge, staying just to one
side, until the center is reached. It is not hard to see that this can be done in such a way that
the paths do not intersect.

The graphgp is formed fromgG), by (arbitrarily) picking one of the outer white vertices
of G, and removing it; we will refer to the removed vertex asdiel rootof Gp. Now, Gp
is a weighted bipartite graph withwhite andn black vertices. To every edge= (w, b)
in a perfect matching of/p (wherew corresponds to a facé andb to a complete edge
L;), we denote by, the segment of thé; which bordersF. Because of our choice of
weights,u(M) (wherey is the probability measure on perfect matchings defined in the
introduction) is proportional t¢[,.,, |S.| where|S,| is the Euclidean length of,. Now,
the edge segmerst. may have vertices afy in its interior; these vertices divid&, into
subsegments, each of which has vertice§-pfas its endpoints and hence corresponds to
an edge ofjr. A marked matchingf Gp is a matchingV of Gp together with a specified
subsegment, of S, (which, again, we may interpret as an edgéi) for eache € M. We
extendu to give a measure on random marked matchings as follows: to sample a random
marked matching, first choose a random matching. Then for eacteedysose ars’, from
among the subsegments £f, where probability of each subsegment is proportional to its
length. If M is a marked matching, then(M’) is proportional tq [,.,, IS.| (Table 1).

3.5. From dimers to trees

Let Ty = {S, : e € M} be the set of edges corresponding to a marked mataHingf
Gp. Eachs) corresponds to an edge@f, so we can think o, as a subgraph @.. We
direct each such edge @f; (corresponding to som&) of this graph from the face which
corresponds to a vertex intowards the face which does not. We use this interpretation of
Tu (as a directed subgraph 64) in the following lemma:
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Lemma 3.3. If M’ is a marked matchinghenT7,, is an in-directed spanning tree 6%,
rooted at the dual root. The dudt,; of 7, is thus a spanning forest of7 (whengGr is
viewed as an undirected graph

Proof. Itis sufficient to prove thaf,,, has no directed cycles, since it contains exactly one
edge pointing away from each face @f (excluding the dual root). This is accomplished
using Euler's formula. Suppose th@j, had a directed cycléy, Fy, ..., F; = Fp of
faces ofGr. Let S; be the segmenf, separatingF; and F; 1. Let C’ be a simple closed
curve which starts in the interior dfp, passes througkp at one point, moves through the
interior of F1, passes throughi at a single point, etc. until it returns . Except for its
intersections with thé;’s, each at a single point;’ is entirely contained in the union of the
interiors of theF;. The intersection of thé; with the interior ofC’ gives a decomposition
of this interior intony two-cells (wheren; is the number of faces partial or completely
contained inside the loog’), n1 open one-cells andy = 0 vertices. Thus, by Euler’s
formulany — n1 + ng = np — np = 1. In particulamz + n1 is odd.

However, the sequene), bo, w1, b1, ..., bj_1, w;j = wo (Wherew; is the white vertex
of Gp corresponding tdF; andbp; is the black vertex corresponding to the complete edge
containings;) is a cycle inGp, alternating edges of which are containedvin The set of
vertices inGp enclosed by this cycle must be matched only with each other in a perfect
matching (since the cycle disconnects these vertices from the rest of the graph). This is a
contradiction to the fact that, + 1 is odd. [

Let 15 be the measure on directed spanning foresgrofooted at the root vertices, for
which uz(F) is proportional to the product of the weights of the edge&irsince each
of the two outgoing edges of a given interior vertex has weight (by construction) inversely
proportional to its Euclidean length (F) is inversely proportional to the product of the
lengths of the edges ¢f; hence i (F) is also proportional to the product of the Euclidean
lengths of all edges df; which do not appear (directed one way or anothet}in

The following is the main result of this section.

Theorem 3.4. The mapM’ — F,; gives a one-to-one correspondence between marked
matchings ofjp and in-directed spanning forests @f, rooted at R. The correspondence
is measure preservinge., u(M") = pup(Fyr).

Proof. First, we would like to interpref,; as a directed spanning forest@f by orienting
each edge aofr, towards its root vertex. In order to do this, we must check thaf'ifs a
perfect matching ofp, then the directed path aloif§,/, from a vertexv to a root vertex,

is a directed path ofir. To see this, note first,,, contains all but one segment of each of
the L;; thus, for every interior vertex of Gr (interior to someL;), F), includes a path
from v to exactly one of the endpoints @f. Call this vertexv1; each of the directed edges
in the directed path from to v; is a directed edge @ 7. If v1 is also an interior vertex of
someL ;, then there is a path of edgesHy, from vy to some endpoint, of L ;. Iterating
this process, we must eventually produce a directed path fréora root (sinceFy,s has
no cycles).
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It now follows immediately from Lemma 3.3 and our choice of weights, thatF,,) is
proportional tou(M"), since each is proportional to the same product of edge lengths. The
proof we will be complete once we show that the midp— F,, is invertible.

Let F be an arbitrary directed spanning for&stooted inR. Since only the endpoints of
a givenL; have outgoing edges pointing to vertices notlgneach vertex of.; belongs to
a path pointing to one of the two endpoints. It follows tanust include all but one of the
subsegments df;. By Lemma 3.2, the dual oF is a spanning tree &, which we may
view as being directed towards the dual root. Each fac# G is (besides the dual root)
is directed towards another face across an edge segment of ond ef Bedring of F with
the edge segment produced in this way gives a marked matshirigr which 7y, = F.
O

3.6. T-graphs and dimers on the torus

If L ={L,,...,L,}formsaT-graph on the torus, then we can constfyct= Gy (L)
exactly as above; in this casgy (L) has no root vertices and no outer faces. Since the faces
of Gr and open edges; give a decomposition of the torus into one-cells and two-cells,
Euler’s formula implies thaf; has exactly: faces. We construglp as above (with white
vertices given by faceg of Gy (L), black vertices by the complete edges and edges
occurring betweeirt’ andL; that share a line segment, weighted according to the length of
that segment). We also constrigt in a similar fashion.

A cycle-rooted spanning foregtof Gr is a (directed) subgraph Gi-—with one outgoing
edge from each vertex ¢fr—which has no null-homotopic (directed) cycles (i.e., no cycles
which—when lifted to the universal cover of the torus—start and end at the same place).
The “roots” of such aifF are the directed cycles &. Clearly, every suctF has at least one
(non-null-homotopic) directed cycle.

The dual ofFis a cycle-rooted spanning foreBton G7.. Now, if 7 has exactly; cycles,
then it is not hard to see th& has; cycles as well. We can vieW as a directed cycle-
rooted spanning forest by directing each edge not on a cycle towards its cycle root; and then
orienting all of the edges in a given cycle one of the two possible directions (theré are 2
ways of doing this). The proof of the following is now similar to the proof of Theorem 3.4.

Theorem 3.5. There is a one-to-one weight preserving correspondence between perfect
matchings org, and in-directed cycle-rooted spanning foregton G/, whose dual cycle-
rooted spanning forest& are in-directed cycle-rooted spanning forests @f.

T-graphs in a torus can be extended to give periodic T-graphs on the plane, finite subsets
of which correspond to finite subgraphs of infinite lattice graphs, such as the grid graph in
Fig. 4.

4. T-graphs from dimer graphs

In this section, we describe a procedure for generd@infrom G that applies whenever
the so-called Kasteleyn matrix fails to have certain degeneracies. Before we begin the
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Fig. 4. AT-graphGr in the plane and the corresponding grafh.

construction, we will define Kasteleyn matrices and say a word about the kinds of graphs
for which these degeneracies occur.

4.1. Cuts, and breakers

Say a square matriX is k-degeneratéf it has an(n — k) x (n — k) minor whose
determinant is zero; otherwise itisnon-degenerateThe following lemma follows from
the standard correspondence between determinaktsivfors ofK ~1 and(n — k) minors
of K:

Lemma 4.1. K is 0-non-degenerate if and only if it is invertible. Assuming K is invertible
K is k-non-degenerate if and onlyAf—1 is (n — k)-non-degenerate

Suppose novK is a Kasteleyn matrix for a bipartite planar gra@p. The following is
immediate:

Lemma 4.2. If K and K are gauge equivalenthen K is k-degenerate if and onlyAf is k
degenerate

A bipartite graph isalancedf it contains an equal number of black and white vertices.
A k-cut Aof a balanced bipartite grafg is subset of the vertices for which:
1. A contains at least one white vertex,
2. A containsk more black vertices than white vertices,
3. Each edge ofjp that connectst to its complement has a black vertexdn
Note that ifA is ak-cut, then its complement would bekacut if the colors black and
white were reversed. In particular, the existencé @uts does not depend on which of
the two ways we choose to color the vertices. Alsd\ i6 ak-cut of Gp, then by adding
black vertices tad and/or removing white vertices frod, we can construet-cuts for any
k<m<n — 1. An obvious parity argument implies the following:
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Lemma 4.3. If Ais ak-cut ofGp, then any perfect matching 6f, contains exactly k edges
which connect A to its complemertch of these edges matches a black vertex of A and a
white vertex of its complement

A k-breakeris a subsef of the vertices oy with exactlyk white andk black vertices
for which the induced subgraghy, \ S of Gp has no perfect matchings.

Lemma 4.4. If Gp is a connectetbalanced bipartite graph thenGp

1. has a(—1)-cut if and only if it has no perfect matching

2. has a0-cutif and only ifG contains unused edgé<se., edges which occur in no perfect
matching oiGp).

3. generally has a k-cut if and only if it has(a + 1)-breaker

Proof. The first item is an immediate consequence of the Hall marriage theorem. That
theorem states th&p has a perfect matching if and only if there is no 8esuch thatB
hasm more white vertices than black vertices and there are feweniheaiges connecting
white vertices ofB to its complement. A(—1)-cut is clearly such a set, wite = 1.
Conversely, giverB as described above, construg'tby removing fromB all of the (at
mostm — 1) white vertices oB connected to the complementBf and if necessary, some
arbitrary additional white vertices (so that— 1 vertices are removed in all). Thei is
a(—1)-cut.

For the second item, first, it is clear thatAf is a 0O-cut of B, then all of the edges
connectingA to its complement will be unused. Converselygif has an unused edge
then the graplG formed by removing edge and its two vertices frong/p will not have
any perfect matching. Therefore it will havé-al)-cut A by part 1. The union ofA and the
black vertex ofe is a thus a 0-cut. (Aside: i has aforced edge-i.e., an edge which
occurs ineveryperfect matching off p—then all the edges that share vertices withill
be unused.)

The same argument implies the third statement in the/lcas®. For largek, if Gp has
ak-cut A, then any subset ak + 1) black vertices ofA and(k + 1) white vertices of its
complement is &k + 1)-breaker (since the remaining set of verticestitontains more
white than black vertices, but there are no edges connecting white vertices of this remaining
set with its complement). Converselydfis a(k + 1)-breaker, therjp\ S has a(—1)-cut
A, and the uniom and the black vertices df is ak-cut of Gp. [

Lemma 4.5. Gp has no k-breakefor, equivalently no (k — 1)-cuf) if and only if for a
generic choice of positive weights of the edge§ gfthe Kasteleyn matriX = K(Gp) is
k-non-degenerate

Proof. The determinant of a(h — k) x (n —k) minor of the Kasteleyn matrix is a polynomial
of the edge weights. Clearly, this polynomial will be zero for a given minor precisely when
the set ok white andk black vertices corresponding to rows and columns not in the minor is
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ak-breaker. The result follows from the fact that any non-zero polynomial in finitely many
real variables is non-zero for a generic choice of inputs.

In this paper, we will mainly be interested in whettiis k-degenerate for € {0, 1, 2}.
But we know that whenevek is a Kasteleyn matrix (of a graph having a perfect matching)
it is k-non-degenerate fdr = 0. And assuming/p has no unused edges (which we may
always assume throughout, since the perfect matching model will be unchanged if we
remove unused edges frofip) K is generically 1-non-degenerate. We will address the
potential failure ofK to be 2-non-degenerate in a later section.

4.2. T-graphs: construction via integration of Kasteleyn flow

LetGp be afinite, weighted bipartite planar graph (with positive generic weight function
v) with n black verticeshs, by, ..., b, andn white verticesw1, wo, ..., w,. SUPPOSE&p
has a perfect matching and no unused edges. Supposghes no 1-cuts—and hence
each of the entries and two-by-two minorsiof ! is non-zero (i.e.K is 1-non-degenerate
and 2-non-degenerate).

We will now construct a T-graph corresponding @@ in the case thak is 2-non-
degenerate.

First, we may think ofk as describing a linear map from the sp&® of functions on
white vertices to the spad@® of functions on black vertices. Lép be a fixed vertex on
the outer boundary dfp. Suppose thafp hasm black andn white vertices on its outer
boundary face. Fix a generic convex+ 1-gon Q with edge vectorgpo, ..., g, € Cin
cyclic order (andyo = — > "" ; g;). Vertices ofQ will be the root vertices ofjr. Suppose
thatA,, € R" assumes the values, ..., ¢, in cyclic order on the white vertices on
the boundary face, and that, vanishes on all other white vertices @f,. Let A, be the
function on black vertices which is equal to 1hgtand 0 everywhere else. Denote byhe
all-ones column vector and WY its transpose. Viewd, as a column vector and,, as a
row vector.

We claim that there is a unique matri, gauge equivalent t&, for which K1 is a
non-zero multiple of4, and1’K = A,,. The matrixK can be derived explicitly fronk
as follows. SinceX is invertible, there exists a vectgrfor which K f = A;,. Multiplying
theith column ofK by theith component off (hon-zero, becausg is 1-non-degenerate)
produces &’ for which K’1 = A;. Next, there exists a row vectgrfor whichgK’ = A,,.
Multiplying the jth row of K’ by the jth component of (also non-zero, sincek’) 1 is
1-non-degenerate and nonzero entried pfare generic) gives the desiréd

We may think ofK as describing a vector flow (2-component flow)@: sending[?i,j
units of flow fromb; to w;. The net flow into each non-boundary white vertex and each
black vertex (excepbg) is zero. Now, draw a dotted line from each white vertex on the
outer face ofjp to infinity, and frombg to infinity, so as to divide the outer face @f, into
m + 1 outer faces; take these faces and the interior facgs afs the vertices of the dual
graphg/, of Gp. ThenK also describes a dual flow @1}, (obtained by rotating each edge
ninety degrees counter-clockwise) whose net flow around each non-boundary facesof
zero; viewed in this lightK is the gradient of a functiof : g, — C.
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Now, we claim that each pair of (complex) componentgaé linearly independent
(as a pair of vectors it = R?). To see this, letz and b be basis column vectors, so
that (K")~1(a) and (K’)~1b are columns of the matrikk’)~1. Since the determinants
of the two-by-two minors of K')~1 are non-zero, no complex component of the vector
z= (KN ta+i(K")" b = (K')"Y(a + ib) is a real multiple of any other component of
that vector (in particular, all of the componentszofre non-zero). NowA,, is a generic
linear combination of vectors of the above foars- i b, so no component of = K ~1(A,,)
is a real multiple of any other componentgf

SinceK’ is real, all the components @& in a given row are nonzero complex numbers
lying on the same line through the origin, and the directions are different in each row.

Now, extendy linearly to the edges df,, so that)y maps each edge to a line segment.
For each black verte#; of Gp, corresponding to a black face 6f,, theys image of the
union of the edges incident tg is a line segment, whose interior we denotelhy the
above argument implies that no two of theare parallel.

Here is the main result.

Theorem 4.6. IfKis 2-non-degenerate thentlie= {L1, ..., L, } defined above formsaT-
graph whose tree-graph we dendfe, with root vertices at vertices of @ndGp = Gp (L)
(up to gauge equivalengeMoreover if v is a vertex o7, theny(v) is a vertex o7 ; if

v corresponds to an outer face 6}, theny(v) is a root vertex ofj7.

Proof. First, the change iy, as one moves from outer faéeof Gp around a vertex to
another outer face, is given by the flowk&finto v, which is given byy;, theith component
of A, whenevemw is a white vertexw;, and zero whem is any black vertex besidésg.
By moving around the polygon in steps, it is clear that (up to an additive congtéf)
assumes the values of the vertices of the convex polygon in cyclic order.

Let f be an interior vertex of/},. We claim that for some black face incident fo
with vertices f1 and f» incident to f, Y(f1) — W (f) andy/(f2) — y(f) point in opposite
directions. Suppose otherwise. ThE&nwould have to assume opposite signs on the entry
corresponding to each such pair of edggsf1) and( f, f2). By the definition of a Kasteleyn
matrix, K has positive sign for an odd (resp., even) number of the edges incidgiitt tioe
total number of edges is 0 mod 4 (resp., 2 mod 4), so this is a contradiction. It follows that
Y (f) is an interior vertex of at least orig. In particular, this implies that the endpoint of
eachL; is either an interior vertex of some; or a root vertex.

It also implies anaximal principlei.e., that for any vectar in R?, the function, (x) =
(Y(x), u) (an inner product computed with(x) treated as a vector i) has no local
maxima or minima at interior faces ¢fp. That is, every interior facg (viewed as an
interior vertex inG,) has neighborgy and f> satisfyingy, (f1) <y, (f1) <, (f2). For
genericu (i.e., anyu whose slope is not parallel to one of thes), the inequality can be
made strict.

Now, to show that th¢LZ;} form a T-graph, it remains only to show that they do not
intersect one another; while proving this, we will also show thé&§},) partitions the
convex polygonQ into convex polygons (the white faces). First, the maximal principle
immediately implies that/(G},) lies in Q. Furthermore, we claim that as one moves
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clockwise around each a white interior faweof G),, /(x) traces out a convex polygon
in some fixed orientation (clockwise or counterclockwise; we refer to this direction as the
orientation of wand denote the polygon hy(w)). If this were not the case, then there
would have to be verticegi, f2, f3, fa, in clockwise order around and some generic

for which y,,( f1) andy, (f3) are less than both af, (f2) andy, (fa). By the maximal
principle, we can find paths ip; andps4 in G}, from f2 and f4 to root vertices along which
¥, is strictly increasing and pathg andps from f1 and f3 to root vertices along whicth,

is strictly decreasing. Now, lgt be a path ing}, formed by concatenating; (reversed),

a dotted line fromfy to f3, andps. This path cannot intersegb or pa (Sincey, at any
point on these two paths is greater thignat any point orp1 or p3). However, the Jordan
curve theorem implies that separates its complementd, into at least two connected
components and that and f4 (which lie on either side op across the faca) are in
separate components (this remains true even for the g&g)ﬁ formed by adding t@/),

the edges connecting each cyclically consecutive pair of outer verticgg)ofNow, the
pathsp, and p4 both lead to root vertices at whiah, assumes a larger value than it does

at any point along), and these points are in the same compone({fgj/, a contradiction.
A similar argument shows that the outer faeesjoined with this, have this orientation.
Another similar argument applies to black faces and shows that as one mavesnd
a black interior faceb of G7,, Y (x) traverses the correspondiiig exactly once in each
direction.

Next, we argue that all white faces have the same orientation. It is enough to prove that
any white faces o/}, (vertices ofGp) w1 andw, incident to a common black have the
same orientation. Now, astraverses the boundary of the faci G, Y(x) traces out the
correspondind.; once in each direction; divide the faces incidenk foto two categories
according to the orientation of the edge shared witGlearly, if these faces do not all have
the same orientation, we can find two of tham,andw; in opposite categories that have
opposite orientations. In this cage(w1) andy(w2) will lie on the same side df; letu be
vector orthogonal td.;; assume without loss of generality thia} assumes a larger value
on points onL; than on other points ab, wo. Let f1 and f3 be the points irg/D incident
to b whose images are the endpointshofind letf> and f4 be arbitrary points ofv; and
w2 which do not lie orb. Let p be formed by concatenating a pathfrom f; to a root on
which, is strictly increasing (reversed), a dotted line frginto f3, and a patlpz from
f3 to a root vertex along whicly, is strictly increasing; observing thgp and f4 are on
opposite sides gb, we derive a contradiction through the Jordan curve argument described
above.

Finally, suppose that two of the; intersect. Then there must be two faecesandw
for which y/(w1) andy(w2) intersect. The outer boundary c@g)/ is mapped with some
consistent orientation t@. Now, leth : Q — Z atx be the number of white faces(w)
which containx in their interiors. It is clear that assumes the value 1 near the boundary.
We claim thath is equal to one througho@\w(gg)’; otherwise, there would be anin
the interior of Q (and not at the finitely many endpoints of ahyor intersections of pairs
of L;) on the boundary of regions at whighassumes different values. Suchamust lie
on someL;, and it is not hard to see that the two white faces incidentandL; must have
opposite orientations. [
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4.3. Flat-face degeneracy

Now, suppose thak is merely 1-non-degenerate and not necessarily 2-non-degenerate;
then we can formally construgtexactly as above; in this case, however, we cannot rule out
that some of thé.; may be parallel to one another—and in fact, some ofthmay overlap.
However, the same arguments given above still imply that for each whitg(w) is either
a convex face with some orientation (as described above) or a line segment traversed once
in each direction (like the black faces). In the latter case, we/say is adegenerate face
In the presence of degenerate faces, we will consider) andy(b) to be incident to one
another along an edge if and onlyifandb are adjacent vertices i, .

It is clear that if a white vertexo is degenerate, thep(b) is parallel toy(w) for each
blackd adjacent tav. A maximal component of the subgraphd@, consisting of vertices
on whichy is parallel to a given line is called garallel componenof G},. Clearly, the
neighbor set of any white vertex in a parallel component is also in the parallel component.

An extreme poinbf a degenerate faae is a vertexf incident tow for whichy( f) is an
endpoint ofiy(w). The union ofyy-images of a parallel component is a segment which we
call anextended complete eddéow observe the following.

Lemma 4.7. Each parallel component P iskcut

Proof. Observe that every which is an interior vertex of a black edge@j, in a parallel
cluster is the extreme vertex for the same number of black and white faggs. dfhe
endpoints of the extended complete edge are extreme points of one more black vertex than
white vertices. Since every face has exactly two extreme vertices, the result follas.

Similar arguments to those given in the proof of Theorem 4.6 imply thattesverses
the outside of a parallel componerjt(x) traverses the outside of the extended complete
edge exactly once in each direction. Similar arguments to those of Theorem 4.6 imply that
the extended complete edges form a T-graph. We saythat{L;} forms aT-graph with
overlapsif L; satisfies all of the T-graph conditions except that parallel pairs;cdre
allowed to intersect (overlap) one another. The above analysis implies the following:

Theorem 4.8. Theoren¥.6still holds if K is merelyl-non-degenerate and not necessarily
2-non-degenerate-except that in this caseome of the white faces may be degendatel
so the T-graph may have overlgpsheorens3.4 still applies to T-graphs with overlaps

Even though some of the white faces are flat in the overlapping T-gfaphe can define
a dual to the overlapping T-graph, containing these faces, using the graph struciyre of
After doing this, all of the arguments in the proof of Theorem 3.4 apply as before, so we still
have a martingale on the T-graph and have a measure-preserving correspondence between
spanning forests and perfect matchings.

Recall that in any perfect matching, there is always exactly one edge connecting a given
1-cut to its complement, and that edge contains a black vertex of the 1-cut. It is perhaps
not surprising that when we form the T-graph, 1-cuts, in some sense, play the same role
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as single black vertices. If we had simply replaced all 1-cuts in our original graph with
single black vertices, then, for a generic choice of weights, the T-graph would not have any
degenerate white faces.

4.4. Extending the correspondence to degenerate weighted graphs

Recall from Lemma 4.5 that if we remove the unused edges fpnthen the Kasteleyn
matrix for Gp is 1-non-degenerate (and hence Theorems 3.4 and 4.8 apply) for a generic
choice of weight functions. Suppose, however, that the Kasteleyn matrixdgris not
1-non-degenerate for a particular choice of weight functiofihen we would like to take
a generic sequence of weightsconverging tov, look at the limit (or some subsequential
limit) of the corresponding T-graphs, and show that the measure-preserving correspondence
described in Theorem 3.4 still holds for the limiting object. The problem is that, as Fig. 1
makes clear, the limit of a sequence of T-graphs need not be a T-graph at all; in fact, some
of the edge segments and faces may shrink to single points.

For practical computational applications, it may be sufficient to have the correspondence
between dimers and spanning forests for a generic choice of weights. But a word of caution
is in order. Consider the dimer model whose T-graph is given by the right diagram in Fig.
1; if weightsv; tend to a limitv in such a way that the T-graphs have the graph on the left as
a limit, then the shrinking small triangle in the center of the diagram will become a “trap”
for the random walk on the T-graph, in that the expected amount of time that a walk spends
on these three vertices before existing towards a root vertex tends to infinity; sampling
algorithms that rely on random walks will perform poorly for weights approximatirig
this case, however, one can simplify the limiting problem by reducing the three vertices in
the small triangle at the center to single vertex. The probability tends to one that only one
of the “long” directed edges (i.e., edges whose lengths are not tending to zero) extending
outward from these three vertices will appear in a random tree; given a spanning tree of the
“reduced” graph, it is possible to work out which “short” edges appear in the graph. The
details of this and more general versions of this reduction are left to the reader.

5. Periodic and almost periodic T-graphs
5.1. Definitions for almost periodic T-graphs

In this section, we prove some results about T-graphs which are motivated by the study
of ergodic Gibbs measures on tilings of infinite periodic planar graphs. More on this subject
can be found irf9], who cite the results of this section. Our first aim here is to construct
from periodic bipartite planar graphs (and under certain conditions on the weights) infinite
T-graphs with a property called “almost periodicity.”

LetGp be embedded in the tord¥ /72 and letG3s be the doubly periodic lift t6t? (we
assume thafy; is connected). As before, assume tigthasn white andr black vertices.
Denote byv; ; the vertex ofGgy which lies in the squargy, j + 1) x [k, k + 1) and whose
projection to the torus is the vertexe Gp. For the sake of simplicity we will assume
throughout this section th@p has no unused edges and that it has generic weights. The
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non-generic weight case requires a slightly finer analysis which we choose not to go into
here.

A function f on the vertices ofip is («, f)-periodicif f(vjyxk+y) = o f(vj ) for
all (vjx) € Gy . Say f is almost periodidf it is («, f5)-periodic andx andf have modulus
one (but are not necessarily roots of unity). In this case, we weritee?™® andf = 2™,

If @ andb are rational, thery is doubly periodic with some period.

For a fixed(«, ) the linear space afx, f§)-periodic functions is 2-dimensional and is
parametrized by the space of functions on one perio@pfwhich we can represent as
a single copy ofjp. It has a natural basis consisting of functiaiswhose value is 1 at
v € [0,1)2 and zero at other vertices in the fundamental domain.K éte a Kasteleyn
matrix for Gp and K *° an infinite-dimensional Kasteleyn matrix fGfs which is a lift of
K. We can think ofK *° as a linear function from the set of functions on the black vertices
of G to functions on the white vertices 6fy. Since this function mapg, f5)-periodic
functions to(«, )-periodic functions, it induces a linear map from thdimensional space
of functions on the black vertices ¢fp to thern-dimensional space of functions on white
vertices ofG . Denote byK,, s the matrix of this linear map in the bagis, }.

The determinant deX, 4 is a polynomial function o and ; in particular for certain
(o, B) (corresponding to zeros of this polynomial function) the makfix; has a non-trivial
null space, and hence we can fied f5)-periodic functionsf andg satisfyingk*° f = 0
andgK > = 0. Ifthe polynomial dek, s happengo have a zerg, ) that lies on the unit
torus of complex variable pairs that both have modulus one, flartg are almost periodic.

If, furthermore,f andg happerto be nowhere zero, then we can define an infinite T-graph
as follows. First, observe that the functidﬁfo(vw) = f(v)g(w)K*(v, w) on edgesyw

of G is a nowhere zero flow. The dual of this flow is the gradient of a funatippn G/,.
Similarly the dual ofK3°(vw) = f(v)g(w)K > (v, w) is the gradient of a functiog, on

G, (whereg denotes the complex conjugateg)f We may assume me (multiplying(w) by a
generic modulus one complex number if necessary)ghay + g(w) = 2Regw) is also
nowhere zero. Then we can think &f = K1 + K> as an infinite Kasteleyn matrix and

¥ = Y1 + Y, as the corresponding T-graph. We will call a mappjnfrom (G%)'to R2,
constructed in this way, ammost periodic T-graph mappingee Fig. 5.

We remark that, given a fixed, the number ofx, f on the unit torus for which det
K, p = 0 also plays a fundamental role[®], where it is shown that the minimal specific
free energy ergodic Gibbs measure on perfect matchings of the infinite weightedfgyaph
is smoothif the corresponding polynomia, s has 0 roots on the unit torus aralighif
it has 2 roots (necessarily complex conjugates) on the unit torus (in the non-generic case of
a single root, it is rough only whe# detk, 3 = dd—ﬁ detk, s = 0). The terms “smooth”
and “rough” come from the statistical physics literature and are definfd].imhe main
goal of this section is to prove that when the choice of weights is generic, the number of
modulus-one values @, f3) that are roots of dekX, ; always belongs to the s@, 2}.

5.2. Generic points on the variety of almost periodic T-graphs

Write R for the set of strictly positive real numbefs,. for the set of non-zero complex
numbers, and writ®* for k-dimensional complex projective space. Suppose that 2n,
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Fig. 5. Almost periodic T-graph mapping of the honeycomb graph, with periodic edge weights 4, 5, and 6 according
to direction. The edges of the graph shown correspond to black vertices of the honeycomb lattice; the triangular
faces of the graph shown correspond to white vertices of the honeycomb lattice.

and define a variety c R’ x C2 x P"~! by
X={,ap, f): Ky pf =0}

Heref is an elementi®"~*, which is a one-dimensional subspac&'bfand byK, pf =0
we mean that this subspace lies in the null spac& gf. By abuse of notation, if is a
non-zero function on the black vertices@, we will also usef to denote the element of
P"~1 given by the linear span of. Denote byX the subset ok consisting of points for
which |«] = |B| = 1. Denote by Ad{K, ) theadjugatematrix of K, 3, whose entries are
the(n — 1) x (n — 1) minors of K, 4 (so thatk,, gAdj(K, p) = detK, g). Itis easily seen
that Adj(K,, p) is identically equal to zero if and only if the rank &, g is less tham — 1;
and ifthe rank oK, 4 is exactlyn — 1, then at least one column of Ady,, ;) is a non-zero
vector whose span is the null spacekof 3. The following is the main result of this section:

Theorem 5.1. The varietyX is irreducible. For a generic choice of there are either zero
or two quadruplegv, o, 3, f) in X. When the latter is the case amds generic then the
correspondingy, f3, f are such thatidj(K,, 3) has rankn — 1, all of its coordinates are
non-zergand fis given by any column of tifenk ong matrix Adj (K, g).

Let us say a word about the significance of this theorem to T-graph classification be-
fore we prove it. By obvious symmetry, Theorem 5.1 implies that for genegtirere are
either zero or exactly two quintuplés, o, f, f, g) with ¢K, 3 = 0 and fK, g. Recall
that our almost periodic T-graphs were defined to have gradient givekiByw) =
2f(v)Re(g(w)) K> (v, w). Sincef andg are uniquely determined up to complex conju-
gacy and multiplication by a constant factor, this implies that the almost periodic T-graph is
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completely determined up to rotations (which arise from multiplyfngy a modulus one
constant), constant rescalings (which arise from multiplying eigher f by a real con-
stant), reflection (which comes from complex conjugacy), translations of the image space
(which arise from the fact that > only determines the T-graph mapping up to an additive
constant) and “translation of the domain, or a limit of such translations.” To explain the
last symmetry, note that multiplying botfi and g by «” " is equivalent to composing
the T-graph mapping with translation of the domain(by, n). If one of o, £ is irrational,
then we can achieve any modulus one number as a limit of numbers of thexfgftn
We summarize these observations informally by saying that “the almost periodic T-graph
mapping corresponding tois unique up to affine orthogonal transformations of the image
and translations of the domain.” We say two T-graphs are equivalent if one can be obtained
from the other via a symmetry of this sort. Note, of course, thatifd are both rational,
then multiplying f andg by a modulus one numberi®tnecessarily the same as a domain
translation, or even a limit of such translations. In this case, there is a one parameter family
of T-graph equivalency classes.

We will now prove Theorem 5.1 in stages, beginning with the following lemma. First,
denote byX’ the projection ofX onto its first three coordinatés, «, f3); i.e., X’ is the zero
set of the polynomiaP (v, «, ) = detK, g.

Lemma 5.2. The varietyX’ is irreducible. Moreoverfor a generic pointv, o, ) on X',
the matrixAdj (K, g) has no zero entriegind the f for which(v, o, 8, f) € X is unique

Proof. Clearly, P is affine linear as a function ofe), that isP = v(e) P, + P,, whereP,
andP, do notinvolvev(e). If we could writeP = P1 P>, then eacty(e) must occur in either
Py or P2, but not both. Since the multiplicity of th&e)terms determine the multiplicity of
o andf; in each monomial, this implies that there is no cancellation when multiplying out
Py times P, (i.e., there are no monomials that can represented as a product of a monomial
in P1 and a monomial inP, in two different ways). Thus, each monomial f times a
monomial of P, corresponds to a matching. LEf, E2 be the set of edges represented in
Py, P, respectively, and/’1, Vo their vertices. If an edge connected a vertex; of V; to
a vertexvo of Vo, then its weight coulehot occur in eitherPy or P, since if it occurred
in a monomial of, sayPs, then the product of that monomial with a monomialffthat
included a factor of(¢") with ¢’ incident tov, (such a monomial exists by definition) would
notcorrespond to a matching, since it would involve two edges incidemt fbhuse must
be unused, a contradiction. Thus,Af = P1P», then one of theP,—say, P.—must be
a function ofz and  alone. Since each combination of edge weights corresponding to a
matching occurs in exactly one monomial Bf we conclude thaP, is a monomial inx
andp.

FurthermoreP is irreducible when considered as a polynomial in both the edge weights
anda, f3, except for a monomial factor imand . That is, if P = P1(v, a, f) P2(v, o, )
then one of theP; consists of a single monomial inand f8. To see this, note that by the
previous result, we may assume without loss of generality Bhas a polynomial ino,
alone; and since we are assuming- 0, f # 0, the variety is not changed if we divide out
by this term so thaP is an irreducible polynomial.
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Fix an edge and consider the polynomi&l. as defined above. Sincgis irreducible and
e occurs in a proper subset of the set of all matchings, the zero sét)df(e), intersected
with X', forms a proper subvariety of’. In other words, on a generic subset®f none
of the entries of AdjK, 3) corresponding to an edge ¢fp are zero. Since AdK, ) has
rank at most one, and every row and column has a non-zero entry, we conclude that every
entry of Adj(K, p) is non-zero and is the span of any column of AdK,, 5). [

Lemma 5.3. For a generic choice of weights every paira, f for which (v, o, f) € X is
such thatAdj(K,, g) has no zero entriegnd the f for which(v, «, B, f) € X is unique

Proof. Lemma 5.2 implies that fogenericedge weights, P and P, have no common
factor as functions of and f§ except for monomial factors. To see this, by irreducibility
note that there exist polynomial3; = Q1(o, f, w) and Q2 = Q2(a, f, w) such that
PQO1+ P.Q2 = Q(a, w) WhereQ is a honzero polynomial depending only emnd the
weightsw, not onf. Similarly there existQs, Q4 such thatP Q3 + P.Q4 = Q'(f, w)
whereQ’ is a non-zero polynomial independentofPlugging in generic values far, Q
and Q’ will still be nonzero, but any common factor &fand P, is a common factor of
andQ’ which is impossible. S® and P, have no common factor for genetic

Therefore, whemis fixed generically, by Bezout's theorePrand P,—viewed as polyno-
mials ina andf—have a finite number of common zeros. By genericity none of these zeros
lies on the unit torus (since for any positive realwe can choose, so thatP (v, o, ) =
Py xa.xp; @nd replacing with such avy, for a generic choice of, preserves the genericity
of the weights). [

Lemma 5.4. Any almost perlod|c T-graph mappingis unbounded as a function(¢fy)’.
Moreover if u is any vector ift?\ {0}, then(y, u) is unbounded if it is not identically equal
to a constan{in which case) is degenerate-i.e., its image is contained in a line

Proof. Suppose thayf is («, f)-periodic andg is (y, 6)-periodic withy = e?m¢ and

5 = e2mid, ThenK°° (v] ks Wje.k+m) IS @ function oft, m whose real and imaginary parts
can both be ertten in the form c@& + bm + x) codcl + dm + y) times a constant, for
somex andy.

If  were bounded o1/, then the corresponding martingale on the T-graph would
almost surely converge (by the martingale convergence theorem), and there would thus
have to be a path of vertices, vo, ... for which y/(v;) converges to a constant. We claim
that this is impossible. It is enough to show that for samthe set of edgesvw)* for
which 0 < K (v, w) < ¢ has no infinite cluster. For somé > |Gp|, we can always find
¢ small enough so that the distance between any two clusteis af) € Z? (viewed as
points inZ?) on which 0< cogal + bm + x) < ¢¥/? is at least & times the diameter of
the largest such cluster, and similarly for clusters on whieh @S¢t + dm + y) < &'/
(This is trivial if « andb are rational, since the function is periodic in that case; if they are
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irrational, then we can fineh for which there is no integer pain1, n2) for whichnia +n2b
is less tharyg (modulo 2Zt) and|ny + n2| <2N. Chooseg small enough that there can't
be two values differing byg (modulo 2t) with cosinest apart.) Now, it is clear that the
largest cluster of, m on which even one of these statements holds is at néssihice the
gradient ofy has norm at leastwhen neither statement holds, we conclude thaannot
be bounded.

The same argument shows that there cannot exist a non-zero weetét? for which
the inner producty (v), u) is bounded as a function of unless(ys(v), u) is constant. [J

Lemma 5.5. If v is generi¢ then the maximum number of linearly independaimost
periodic solutions tak > f = 0 (or similarly, solutions tog K> = 0) is two. If there are
two solutionswhich are(a, f)- and (y, 6)-periodic thenoa = 9 and f = 6.

Proof. For eachx and, the left null space ok, s has the same dimension as the right null

space. Now, suppose thatis o, f-periodic andg is y, 6-periodic withy = ¢2%¢ andd =
¢?™d Then as in the proof of Lemma 5. (vj k> Wjte.k+m) iS @function oft, m whose

real and imaginary parts can both be written in the form{c6s$ bm +x) coScl+dm+y)

times a constant, for someandy. Let S be a cycle inG,; if we lift it to (G%)’, then

its endpoints are its starting points plus an integer gair, n2). Now, we would like to

determine the asymptotics ¢f andy, (whose derivative is the dual & >°) alongS> (a

periodic lifting of S to G%'). Expanding the cosines in exponentials, this involves adding up

|S| separate sequences (functiongbf the form:

ni
Z 2Til(x+ta)£(y+Lo)]
=1

and|S| sequences of the corresponding formsfor
Clearly,y will remain bounded independently efandy, provideda # +c¢ mod 2t and
b # +d mod 2r. In fact we must take the same sign for both equalities: unless) =
+(c, d) mod 2t it is possible to find an independent pair of integer vectors, n1) and
(m2, np) for which am1 + bn1 # +(cm1 + dn1) mod 2t and similarlyamy + bny #
+(cm2+dm3) mod 2t. TakingS1 andS; to be corresponding paths, we may deduceithat
is bounded unlesg, ) and(y, J) are either equal to one another or conjugates; by Lemma
5.4 (o, §) and(y, 9) are either equal to one another or conjugates.
Now suppose we hau@, b) = +(c, d). Then for the sums corresponding to step$,in

ni

> costx + €a) cos(y + La)
=1

is approximately linearas a function ofn, that is, equal to a linear function plus a
bounded function. If there were three linearly independent solutfang;, f3 to Kf =

0, andy4, Y, Y5 are formed using and f1, f2, f3, then a linear combination of the
V1, Yo, Y3 would be approximately the linear function zero (i.e., bounded), a contradiction,
by Lemma 5.4.
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Finally, since it is clear that:, f) is not real (i.e., not equal t&x1) for a generic choice
of v, so any almost periodi¢ or g will be a strictly non-real function, that is, linearly
independent from its complex conjugate, which is also a ze#o®f [

Now, Theorem 5.1 now follows immediately from Lemmas 5.3 and 5.5.
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