124 research outputs found

    Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations

    Get PDF
    In the last few years, several advances have been made in the use of radar images to detect, map and monitor ground deformations. DInSAR (Differential Synthetic Aperture Radar Interferometry) and A-DInSAR/PSI (Advanced DInSAR/Persistent Scatterers Interferometry) technologies have been successfully applied in the study of deformation phenomena induced by, for example, active tectonics, volcanic activity, ground water exploitation, mining, and landslides, both at local and regional scales. In this paper, the existing European Space Agency (ESA) archives (acquired as part of the FP7-DORIS project), which were collected by the ERS-1/2 and ENVISAT satellites operating in the microwave C-band, were analyzed and exploited to understand the dynamics of landslide and subsidence phenomena. In particular, this paper presents the results obtained as part of the FP7-DORIS project to demonstrate that the full exploitation of very long deformation time series (more than 15 years) can play a key role in understanding the dynamics of natural and human-induced hazards. © 2013 by the authors

    25 years of satellite InSAR monitoring of ground instability and coastal geohazards in the archaeological site of Capo Colonna, Italy

    Get PDF
    For centuries the promontory of Capo Colonna in Calabria region, southern Italy, experienced land subsidence and coastline retreat to an extent that the archaeological ruins of the ancient Greek sanctuary are currently under threat of cliff failure, toppling and irreversible loss. Gas extraction in nearby wells is a further anthropogenic element to account for at the regional scale. Exploiting an unprecedented satellite Synthetic Aperture Radar (SAR) time series including ERS-1/2, ENVISAT, TerraSAR-X, COSMO-SkyMed and Sentinel-1A data stacks acquired between 1992 and 2016, this paper presents the first and most complete Interferometric SAR (InSAR) baseline assessment of land subsidence and coastal processes affecting Capo Colonna. We analyse the regional displacement trends, the correlation between vertical displacements with gas extraction volumes, the impact on stability of the archaeological heritage, and the coastal geohazard susceptibility. In the last 25 years, the land has subsided uninterruptedly, with highest annual line-of-sight deformation rates ranging between -15 and -20 mm/year in 2011-2014. The installation of 40 pairs of corner reflectors along the northern coastline and within the archaeological park resulted in an improved imaging capability and higher density of measurement points. This proved to be beneficial for the ground stability assessment of recent archaeological excavations, in an area where field surveying in November 2015 highlighted new events of cliff failure. The conceptual model developed suggests that combining InSAR results, geomorphological assessments and inventorying of wave-storms will contribute to unveil the complexity of coastal geohazards in Capo Colonna. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis

    Get PDF
    An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space

    A GeoNode-based platform for an effective exploitation of advanced DInSAR measurements

    Get PDF
    This work presents the development of an efficient tool for managing, visualizing, analysing, and integrating with other data sources, the deformation time-series obtained by applying the advanced differential interferometric synthetic aperture radar (DInSAR) techniques. To implement such a tool we extend the functionalities of GeoNode, which is a web-based platform providing an open source framework based on the Open Geospatial Consortium (OGC) standards, that allows development of Geospatial Information Systems (GIS) and Spatial Data Infrastructures (SDI). In particular, our efforts have been dedicated to enable the GeoNode platform to effectively analyze and visualize the spatio/temporal characteristics of the DInSAR deformation time-series and their related products. Moreover, the implemented multi-thread based new functionalities allow us to efficiently upload and update large data volumes of the available DInSAR results into a dedicated geodatabase. The examples we present, based on Sentinel-1 DInSAR results relevant to Italy, demonstrate the effectiveness of the extended version of the GeoNode platform

    Comparison of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation

    Get PDF
    The small Baseline Synthetic Aperture Radar (SAR) Interferometry (SBI) technique has been widely and successfully applied in various ground deformation monitoring applications. Over the last decade, a variety of SBI algorithms have been developed based on the same fundamental concepts. Recently developed SBI toolboxes provide an open environment for researchers to apply different SBI methods for various purposes. However, there has been no thorough discussion that compares the particular characteristics of different SBI methods and their corresponding performance in ground deformation reconstruction. Thus, two SBI toolboxes that implement a total of four SBI algorithms were selected for comparison. This study discusses and summarizes the main differences, pros and cons of these four SBI implementations, which could help users to choose a suitable SBI method for their specific application. The study focuses on exploring the suitability of each SBI module under various data set conditions, including small/large number of interferograms, the presence or absence of larger time gaps, urban/vegetation ground coverage, and temporally regular/irregular ground displacement with multiple spatial scales. Within this paper we discuss the corresponding theoretical background of each SBI method. We present a performance analysis of these SBI modules based on two real data sets characterized by different environmental and surface deformation conditions. The study shows that all four SBI processors are capable of generating similar ground deformation results when the data set has sufficient temporal sampling and a stable ground backscatter mechanism like urban area. Strengths and limitations of different SBI processors were analyzed based on data set configuration and environmental conditions and are summarized in this paper to guide future users of SBI techniques

    An insight in cloud computing solutions for intensive processing of remote sensing data

    Get PDF
    The investigation of Earth's surface deformation phenomena provides critical insights into several processes of great interest for science and society, especially from the perspective of further understanding the Earth System and the impact of the human activities. Indeed, the study of ground deformation phenomena can be helpful for the comprehension of the geophysical dynamics dominating natural hazards such as earthquakes, volcanoes and landslide. In this context, the microwave space-borne Earth Observation (EO) techniques represent very powerful instruments for the ground deformation estimation. In particular, Small BAseline Subset (SBAS) is regarded as one of the key techniques, for its ability to investigate surface deformation affecting large areas of the Earth with a centimeter to millimeter accuracy in different scenarios (volcanoes, tectonics, landslides, anthropogenic induced land motions). The current Remote Sensing scenario is characterized by the availability of huge archives of radar data that are going to increase with the advent of Sentinel-1 satellites. The effective exploitation of this large amount of data requires both adequate computing resources as well as advanced algorithms able to properly exploit such facilities. In this work we concentrated on the use of the P-SBAS algorithm (a parallel version of SBAS) within HPC infrastructure, to finally investigate the effectiveness of such technologies for EO applications. In particular we demonstrated that the cloud computing solutions represent a valid alternative for scientific application and a promising research scenario, indeed, from all the experiments that we have conducted and from the results obtained performing Parallel Small Baseline Subset (P-SBAS) processing, the cloud technologies and features result to be absolutely competitive in terms of performance with in-house HPC cluster solution

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Radar Interferometry for Monitoring Crustal Deformation. Geodetic Applications in Greece

    Get PDF
    The chapatti and breadmaking quality of nine (eight Indian and one Australian) wheat (Triticum aestivum L.) cultivars was compared. The extension of a chapatti strip measured with a Kieffer dough extensibility rig correlated with chapatti scores for overall quality (r = 0.84), pliability (r = 0.91), hand feel (r = 0.72), chapatti eating quality (r = 0.68), and taste (r = 0.80). Overall chapatti quality also correlated with the resistance to extension of a chapatti strip (r = 0.68) when tested for uniaxial extension with a texture analyzer. The texture analyzer provided objectivity in the scoring of chapatti quality. The high-molecular-weight glutenin subunit protein composition assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis did not correlate with the overall chapatti score. A negative correlation was found between chapatti and bread scores (r = 0.77). The different requirements for chapatti and bread quality complicate the breeding of new wheat varieties and the exchange of germplasm between regions producing wheat for chapatti and those supplying bread producers
    • …
    corecore