138 research outputs found

    Design and implementation of high quality H.264 video streaming over wireless mesh networks

    Get PDF
    Wireless multimedia home servers are the next generation of home entertainment systems. From a single broadband connection entering a residence, the multimedia stream is transmitted to television headsets and other peripherals by using only wireless links. The provision of high quality time-critical multimedia services in indoor environment is very challenging due to high attenuation and multi-path fading caused by the walls and contention in the shared channel. In this thesis, we demonstrate that the newly proposed wireless standard on wireless mesh networks can help improve the coverage while supporting Quality of Service requirements of both multimedia and data users, when the video packets are given EDCA priorities based on their importance according to the new high definition video streaming standard H.264. We support our hypothesis by presenting test results gathered from both simulations and from a real implementation test bed, where we observe very low delay and very few packet losses in video stream and almost no loss in perceived video quality even in the presence of high contending neighboring data traffi

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Analysis of an IEEE 802.11-based protocol for real-time applications in agriculture

    Get PDF
    La tesi descrive un sistema originale basato sullo standard IEEE 802.11 per il monitoraggio ed il controllo remoto in tempo reale di una macchina agricola attraverso dispositivi commerciali quali smartphones e tablet. Le prestazioni del sistema sono state attentamente caratterizzate, sia dal punto di vista teorico che da quello pratico, tramite numerose sessioni di misure sperimentali. Opportune soluzioni alle problematiche riscontrate sono proposte, evidenziando sostanziali miglioramentiopenEmbargo temporaneo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    Experimental analysis of WiMAX and meshed Wi-Fi quality of service

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA indústria das telecomunicações tem sofrido uma evolução enorme nosúltimos anos. Tanto em termos de comunicações sem fios, como em termos deligações de banda larga, assistiu-se a uma adesão massiva por parte domercado, o que se traduziu num crescimento enorme, já que a tecnologia temque estar um passo à frente da procura, de forma a suprir as carências dosconsumidores. Assim, a evolução persegue um objectivo claro: possibilidadede possuir conectividade de banda larga em qualquer lugar e instante. Nestecontexto, aparecem as tecnologias WiMAX (Worldwide Interoperability forMicrowave Access) e WI-FI em Malha como possibilidades para atingir estefim. O tema desta dissertação incide no estudo das tecnologias de WiMAX e WI-FIem Malha, mais concretamente no estudo da Qualidade de Serviço (QoS)providenciada pelas normas IEEE 802.16 e IEEE 802.11s para serviços deVoIP e VoD. Esta tese apresenta a arquitectura desenvolvida para a correcta integração deQoS para serviços em tempo real no acesso à banda larga sem fios depróxima geração. De seguida, apresenta testes efectuados com osequipamentos disponíveis de WiMAX e WI-FI em Malha, de forma a mostrar ocorrecto comportamento da atribuição extremo-a-extremo de QoS nos cenáriosescolhidos com serviços em tempo real, bem como os efeitos da mobilidade natecnologia WI-FI em Malha. ABSTRACT: The telecommunication industry has suffered a massive evolution throughoutpast years. In terms of wireless communications, as well as broadbandconnections, we’ve seen a massive adoption by the market, which conductedinto an enormous growth, since the technology must always be one step aheadof the demand, in order to be to fulfill the needs of the consumers. Therefore,the evolution pursues one clear goal: the possibility to establish a broadbandconnection anywhere and anytime. In this context, the WiMAX (WorldwideInteroperability for Microwave Access) and Meshed WI-FI technologies appearas possibilities to reach this goal. The subject of this thesis is the study of both the WiMAX and Meshed WI-FItechnologies, and more concretely the study of the QoS provided by theIEEE802.16 and IEEE 802.11s standards to VoIP and VoD services. This thesis presents the architecture developed to provide the correctintegration of QoS for real-media traffic in next generation broadband wirelessaccess. It presents tests carried out with the available WiMAX and Meshed WI-FI equipments, to show the correct behavior in the attribution of end-to-endQoS in selected scenarios with real-time services, as well as mobility effects onWI-FI Wireless Mesh technology

    Cross-layer energy-efficient schemes for multimedia content delivery in heterogeneous wireless networks

    Get PDF
    The wireless communication technology has been developed focusing on fulfilling the demand in various parts of human life. In many real-life cases, this demand directs to most types of commonly-used rich-media applications which – with diverse traffic patterns - often require high quality levels on the devices of wireless network users. Deliveries of applications with different patterns are accomplished using heterogeneous wireless networks using multiple types of wireless network structure simultaneously. Meanwhile, content deliveries with assuring quality involve increased energy consumption on wireless network devices and highly challenge their limited power resources. As a result, many efforts have been invested aiming at high-quality and energy-efficient rich-media content deliveries in the past years. The research work presented in the thesis focuses on developing energy-aware content delivery schemes in heterogeneous wireless networks. This thesis has four major contributions outlined below: 1. An energy-aware mesh router duty cycle management scheme (AOC-MAC) for high-quality video deliveries over wireless mesh networks. AOC-MAC manages the sleep-periods of mesh devices based on link-state communication condition, reducing their energy consumption by extending their sleep-periods. 2. An energy efficient routing algorithm (E-Mesh) for high-quality video deliveries over wireless mesh networks. E-Mesh evolves an innovative energy-aware OLSR-based routing algorithm by taking energy consumption, router position and network load into consideration. 3. An energy-aware multi-flow-based traffic load balancing scheme (eMTCP) for multi-path content delivery over heterogeneous wireless networks. The scheme makes use of the MPTCP protocol at the upper transport layer of network, allowing data streams to be delivered across multiple consequent paths. Meanwhile, this benefit of MPTCP is also balanced with energy consumption awareness by partially off-loading traffic from the paths with higher energy cost to others. 4. A MPTCP-based traffic-characteristic-aware load balancing mechanism (eMTCP-BT) for heterogeneous wireless networks. In eMTCP-BT, mobile applications are categorized according to burstiness level. eMTCP-BT increases the energy efficiency of the application content deliveries by performing a MDP-based distribution of traffic delivery via the available wireless network interfaces and paths based on the traffic burstiness level

    Performance Optimization of Network Protocols for IEEE 802.11s-based Smart Grid Communications

    Get PDF
    The transformation of the legacy electric grid to Smart Grid (SG) poses numerous challenges in the design and development of an efficient SG communications network. While there has been an increasing interest in identifying the SG communications network and possible SG applications, specific research challenges at the network protocol have not been elaborated yet. This dissertation revisited each layer of a TCP/IP protocol stack which basically was designed for a wired network and optimized their performance in IEEE 802.11s-based Advanced Metering Infrastructure (AMI) communications network against the following challenges: security and privacy, AMI data explosion, periodic simultaneous data reporting scheduling, poor Transport Control Protocol (TCP) performance, Address Resolution Protocol (ARP) broadcast, and network interoperability. To address these challenges, layered and/or cross-layered protocol improvements were proposed for each layer of TCP/IP protocol stack. At the application layer, a tree-based periodic time schedule and a time division multiple access-based scheduling were proposed to reduce high contention when smart meters simultaneously send their reading. Homomorphic encryption performance was investigated to handle AMI data explosion while providing security and privacy. At the transport layer, a tree-based fixed Retransmission Timeout (RTO) setting and a path-error aware RTO that exploits rich information of IEEE 802.11s data-link layer path selection were proposed to address higher delay due to TCP mechanisms. At the network layer, ARP requests create broadcast storm problems in IEEE 802.11s due to the use of MAC addresses for routing. A secure piggybacking-based ARP was proposed to eliminate this issue. The tunneling mechanisms in the LTE network cause a downlink traffic problem to IEEE 802.11s. For the network interoperability, at the network layer of EPC network, a novel UE access list was proposed to address this issue. At the data-link layer, to handle QoS mismatch between IEEE 802.11s and LTE network, Dual Queues approach was proposed for the Enhanced Distributed Channel Access. The effectiveness of all proposed approaches was validated through extensive simulation experiments using a network simulator. The simulation results showed that the proposed approaches outperformed the traditional TCP/IP protocols in terms of end to end delay, packet delivery ratio, throughput, and collection time

    Layer 2 Path Selection Protocol for Wireless Mesh Networks with Smart Antennas

    Get PDF
    In this thesis the possibilities of smart antenna systems in wireless mesh networks are examined. With respect to the individual smart antenna tradeoffs, a routing protocol (Modified HWMP, MHWMP) for IEEE 802.11s mesh networks is presented, that exploits the full range of benefits provided by smart antennas: MHWMP actively switches between the PHY-layer transmission/reception modes (multiplexing, beamforming and diversity) according to the wireless channel conditions. Spatial multiplexing and beamforming are used for unicast data transmissions, while antenna diversity is employed for efficient broadcasts. To adapt to the directional channel environment and to take full benefit of the PHY capabilities, a respective MAC scheme is employed. The presented protocol is tested in extensive simulation and the results are examined.:1 Introduction 2 Wireless Mesh Networks 3 IEEE 802.11s 4 Smart Antenna Concepts 5 State of the Art: Wireless Mesh Networks with Smart Antennas 6 New Concepts 7 System Model 8 Results and Discussion 9 Conclusion and Future Wor
    corecore