101,793 research outputs found

    First-Year and Multiyear Sea Ice Incidence Angle Normalization of Dual-Polarized Sentinel-1 SAR Images in the Beaufort Sea

    Get PDF
    Automatic and visual sea ice classification of SAR imagery is impeded by the incidence angle dependence of backscatter intensities. Knowledge of the angular dependence of different ice types is therefore necessary to account for this effect. While consistent estimates exist for HH polarization for different ice types, they are lacking HV polarization data, especially for multiyear sea ice. Here we investigate the incidence angle dependence of smooth and rough/deformed first-year and multiyear ice of different ages for wintertime dual-polarization Sentinel-1 C-band SAR imagery in the Beaufort Sea. Assuming a linear relationship, this dependence is determined using the difference in incidence angle and backscatter intensities from ascending and descending images of the same area. At cross-polarization rough/deformed first-year sea ice shows the strongest angular dependence with -text{0.11} dB/1{circ } followed by multiyear sea ice with -text{0.07} dB/text{1}{circ }, and old multiyear ice (older than three years) with -text{0.04} dB/text{1}{circ }. The noise floor is found to have a strong impact on smooth first-year ice and estimated slopes are therefore not fully reliable. At co-polarization, we obtained slope values of -0.24, -0.20, -text{0.15}, and -text{0.10} dB/text{1}{circ } for smooth first-year, rough/deformed first-year, multiyear, and old multiyear sea ice, respectively. Furthermore, we show that imperfect noise correction of the first subswath influences the obtained slopes for multiyear sea ice. We demonstrate that incidence angle normalization should not only be applied to co-polarization but should also be considered for cross-polarization images to minimize intra ice type variation in backscatter intensity throughout the entire image swath

    Noise or music? Investigating the usefulness of normalisation for robust sentiment analysis on social media data

    Get PDF
    In the past decade, sentiment analysis research has thrived, especially on social media. While this data genre is suitable to extract opinions and sentiment, it is known to be noisy. Complex normalisation methods have been developed to transform noisy text into its standard form, but their effect on tasks like sentiment analysis remains underinvestigated. Sentiment analysis approaches mostly include spell checking or rule-based normalisation as preprocess- ing and rarely investigate its impact on the task performance. We present an optimised sentiment classifier and investigate to what extent its performance can be enhanced by integrating SMT-based normalisation as preprocessing. Experiments on a test set comprising a variety of user-generated content genres revealed that normalisation improves sentiment classification performance on tweets and blog posts, showing the model’s ability to generalise to other data genres

    Cross-language Text Classification with Convolutional Neural Networks From Scratch

    Get PDF
    Cross language classification is an important task in multilingual learning, where documents in different languages often share the same set of categories. The main goal is to reduce the labeling cost of training classification model for each individual language. The novel approach by using Convolutional Neural Networks for multilingual language classification is proposed in this article. It learns representation of knowledge gained from languages. Moreover, current method works for new individual language, which was not used in training. The results of empirical study on large dataset of 21 languages demonstrate robustness and competitiveness of the presented approach

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Inherent Weight Normalization in Stochastic Neural Networks

    Get PDF
    Multiplicative stochasticity such as Dropout improves the robustness and generalizability of deep neural networks. Here, we further demonstrate that always-on multiplicative stochasticity combined with simple threshold neurons are sufficient operations for deep neural networks. We call such models Neural Sampling Machines (NSM). We find that the probability of activation of the NSM exhibits a self-normalizing property that mirrors Weight Normalization, a previously studied mechanism that fulfills many of the features of Batch Normalization in an online fashion. The normalization of activities during training speeds up convergence by preventing internal covariate shift caused by changes in the input distribution. The always-on stochasticity of the NSM confers the following advantages: the network is identical in the inference and learning phases, making the NSM suitable for online learning, it can exploit stochasticity inherent to a physical substrate such as analog non-volatile memories for in-memory computing, and it is suitable for Monte Carlo sampling, while requiring almost exclusively addition and comparison operations. We demonstrate NSMs on standard classification benchmarks (MNIST and CIFAR) and event-based classification benchmarks (N-MNIST and DVS Gestures). Our results show that NSMs perform comparably or better than conventional artificial neural networks with the same architecture
    corecore