492 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels

    No full text
    Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable

    Adaptive equalisation for fading digital communication channels

    Get PDF
    This thesis considers the design of new adaptive equalisers for fading digital communication channels. The role of equalisation is discussed in the context of the functions of a digital radio communication system and both conventional and more recent novel equaliser designs are described. The application of recurrent neural networks to the problem of equalisation is developed from a theoretical study of a single node structure to the design of multinode structures. These neural networks are shown to cancel intersymbol interference in a manner mimicking conventional techniques and simulations demonstrate their sensitivity to symbol estimation errors. In addition the error mechanisms of conventional maximum likelihood equalisers operating on rapidly time-varying channels are investigated and highlight the problems of channel estimation using delayed and often incorrect symbol estimates. The relative sensitivity of Bayesian equalisation techniques to errors in the channel estimate is studied and demonstrates that the structure's equalisation capability is also susceptible to such errors. Applications of multiple channel estimator methods are developed, leading to reduced complexity structures which trade performance for a smaller computational load. These novel structures are shown to provide an improvement over the conventional techniques, especially for rapidly time-varying channels, by reducing the time delay in the channel estimation process. Finally, the use of confidence measures of the equaliser's symbol estimates in order to improve channel estimation is studied and isolates the critical areas in the development of the technique — the production of reliable confidence measures by the equalisers and the statistics of symbol estimation error bursts

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    Code-aided iterative techniques in OFDM systems

    Get PDF
    Inspired by the 'turbo principle', this thesis deals with two iterative technologies in orthogonal frequency division multiplexing (OFDM) systems: iterative interference cancelation in space-frequency block coded OFDM (SFBC-OFDM) and iterative channel estimation/ tracking in OFDM Access (OFDMA) with particular application to Worldwide Inter-operability for Microwave Access (WiMAX) systems. The linear matched filter (MF) decoding in SFBC-OFDM is simple yet obtains maximumlikelihood (ML) performance based on the assumption that the channel frequency response remains constant within a block. However, frequency response variations gives rise to inter-channel interference (lCI). In this thesis, a parallel interference cancelation (PIC) approach with soft iterations will be proposed to iteratively eliminate ICI in G4 SFBC-OFDM. Furthermore, the information from outer convolutional decoder is exploited and fed back to aid the inner PIC process to generate more accurate coded bits for the convolutional decoder. Therefore, inner and outer iterations work in a collaborative way to enhance the performance of interference cancelation. Code-aided iterative channel estimation/tracking has the ability of efficiently improving the quality of estimation/tracking without using additional pilots/training symbols. This technique is particularly applied to OFDMA physical layer ofWiMAX systems according to the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard. It will be demonstrated that the performance of the pilot-based channel estimation in uplink (UL) transmission and the channel tracking based on the preamble symbol in downlink (DL) transmission can be improved by iterating between the estimator and the detector the useful information from the outer convolutional codes. The above two issues will be discussed in Chapter 5 and Chapter 6, and before this, Chapter 2 to Chapter 4 will introduce some background techniques that are used throughout the thesis
    corecore