2,064 research outputs found

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    Knots and distributive homology: from arc colorings to Yang-Baxter homology

    Full text link
    This paper is a sequel to my essay "Distributivity versus associativity in the homology theory of algebraic structures" Demonstratio Math., 44(4), 2011, 821-867 (arXiv:1109.4850 [math.GT]). We start from naive invariants of arc colorings and survey associative and distributive magmas and their homology with relation to knot theory. We outline potential relations to Khovanov homology and categorification, via Yang-Baxter operators. We use here the fact that Yang-Baxter equation can be thought of as a generalization of self-distributivity. We show how to define and visualize Yang-Baxter homology, in particular giving a simple description of homology of biquandles.Comment: 64 pages, 29 figures; to be published as a Chapter in: "New Ideas in Low Dimensional Topology", World Scientific, Vol. 5

    Using shifted conjugacy in braid-based cryptography

    Full text link
    Conjugacy is not the only possible primitive for designing braid-based protocols. To illustrate this principle, we describe a Fiat--Shamir-style authentication protocol that be can be implemented using any binary operation that satisfies the left self-distributive law. Conjugation is an example of such an operation, but there are other examples, in particular the shifted conjugation on Artin's braid group B\_oo, and the finite Laver tables. In both cases, the underlying structures have a high combinatorial complexity, and they lead to difficult problems

    Left-Garside categories, self-distributivity, and braids

    Get PDF
    In connection with the emerging theory of Garside categories, we develop the notions of a left-Garside category and of a locally left-Garside monoid. In this framework, the connection between the self-distributivity law LD and braids amounts to the result that a certain category associated with LD is a left-Garside category, which projects onto the standard Garside category of braids. This approach leads to a realistic program for establishing the Embedding Conjecture of [Dehornoy, Braids and Self-distributivity, Birkhauser (2000), Chap. IX]

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    Invariant functionals on completely distributive lattices

    Full text link
    In this paper we are interested in functionals defined on completely distributive lattices and which are invariant under mappings preserving {arbitrary} joins and meets. We prove that the class of nondecreasing invariant functionals coincides with the class of Sugeno integrals associated with {0,1}\{0,1\}-valued capacities, the so-called term functionals, thus extending previous results both to the infinitary case as well as to the realm of completely distributive lattices. Furthermore, we show that, in the case of functionals over complete chains, the nondecreasing condition is redundant. Characterizations of the class of Sugeno integrals, as well as its superclass comprising all polynomial functionals, are provided by showing that the axiomatizations (given in terms of homogeneity) of their restriction to finitary functionals still hold over completely distributive lattices. We also present canonical normal form representations of polynomial functionals on completely distributive lattices, which appear as the natural extensions to their finitary counterparts, and as a by-product we obtain an axiomatization of complete distributivity in the case of bounded lattices
    • …
    corecore