112 research outputs found

    A Quantum Approach to the Discretizable Molecular Distance Geometry Problem

    Full text link
    The Discretizable Molecular Distance Geometry Problem (DMDGP) aims to determine the three-dimensional protein structure using distance information from nuclear magnetic resonance experiments. The DMDGP has a finite number of candidate solutions and can be solved by combinatorial methods. We describe a quantum approach to the DMDGP by using Grover's algorithm with an appropriate oracle function, which is more efficient than classical methods that use brute force. We show computational results by implementing our scheme on IBM quantum computers with a small number of noisy qubits.Comment: 17 page

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    The interval ordering problem

    Get PDF
    For a given set of intervals on the real line, we consider the problem of ordering the intervals with the goal of minimizing an objective function that depends on the exposed interval pieces (that is, the pieces that are not covered by earlier intervals in the ordering). This problem is motivated by an application in molecular biology that concerns the determination of the structure of the backbone of a protein. We present polynomial-time algorithms for several natural special cases of the problem that cover the situation where the interval boundaries are agreeably ordered and the situation where the interval set is laminar. Also the bottleneck variant of the problem is shown to be solvable in polynomial time. Finally we prove that the general problem is NP-hard, and that the existence of a constant-factor-approximation algorithm is unlikely

    An algorithm to enumerate all possible protein conformations verifying a set of distance constraints

    Get PDF
    International audienceBackground: The determination of protein structures satisfying distance constraints is an important problem in structural biology. Whereas the most common method currently employed is simulated annealing, there have been other methods previously proposed in the literature. Most of them, however, are designed to find one solution only. Results: In order to explore exhaustively the feasible conformational space, we propose here an interval Branch-and-Prune algorithm (iBP) to solve the Distance Geometry Problem (DGP) associated to protein structure determination. This algorithm is based on a discretization of the problem obtained by recursively constructing a search space having the structure of a tree, and by verifying whether the generated atomic positions are feasible or not by making use of pruning devices. The pruning devices used here are directly related to features of protein conformations. Conclusions: We described the new algorithm iBP to generate protein conformations satisfying distance constraints, that would potentially allows a systematic exploration of the conformational space. The algorithm iBP has been applied on three α-helical peptides
    • …
    corecore