
Discrete Applied Mathematics 160 (2012) 1094–1103

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The interval ordering problem

Christoph Dürr a, Maurice Queyranne b,c, Frits C.R. Spieksma d, Fabrice Talla Nobibon e,f,∗,
Gerhard J. Woeginger g
a CNRS, Université Pierre et Marie Curie, LIP6, F-75252 Paris Cedex 05, France
b Sauder School of Business at the University of British Columbia, Vancouver, Canada
c CNRS, France
d University of Leuven, Operations Research Group, Naamsestraat 69, B-3000 Leuven, Belgium
e PostDoc researcher for Research Foundation Flanders, Center for Operations Research and Business Statistics (ORSTAT), Faculty of Business and Economics,
KULeuven, Leuven, Belgium
f Scientific collaborator Centre for Quantitative methods and Operations Management (QuantOM), HEC-Management School, University of Liège, Belgium
g Technical University of Eindhoven, Netherlands

a r t i c l e i n f o

Article history:
Received 18 October 2010
Received in revised form 7 December 2011
Accepted 14 December 2011
Available online 10 January 2012

Keywords:
Dynamic programming
Bottleneck problem
NP-hard
Exposed part
Agreeable intervals
Laminar intervals

a b s t r a c t

For a given set of intervals on the real line, we consider the problem of ordering the
intervals with the goal of minimizing an objective function that depends on the exposed
interval pieces (that is, the pieces that are not covered by earlier intervals in the ordering).
This problem is motivated by an application in molecular biology that concerns the
determination of the structure of the backbone of a protein.

We present polynomial-time algorithms for several natural special cases of the problem
that cover the situation where the interval boundaries are agreeably ordered and the
situation where the interval set is laminar. Also the bottleneck variant of the problem is
shown to be solvable in polynomial time. Finally we prove that the general problem is NP-
hard, and that the existence of a constant-factor-approximation algorithm is unlikely.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider a set I of n intervals Ij = [aj, bj) for j = 1, 2, . . . , n on the real line. The length of interval Ij is denoted by
|Ij| = bj − aj. As usual, the length of a union of disjoint intervals is the sum of the lengths of the individual intervals. For an
interval Ij and a subset S ⊂ I of the intervals, we define Ij \


I∈S I to be that part of interval Ij that is not covered by the

union of the intervals in S; throughout this text this uncovered part will be called the exposed part of Ij relative to subset
S. Notice that the exposed part depends upon S and in general need not be an interval. (If the intervals in I are pairwise
disjoint, then of course the exposed part of any interval I relative to any set S of intervals not containing I is the interval I
itself.)

We investigate an interval ordering problem that is built around a cost function f that assigns to every interval of length
p a corresponding real cost f (p). The cost of a set S of pairwise disjoint intervals is the sum of the costs of the individual
intervals in S. The cost of an ordering α =


α(1), α(2), . . . , α(n)


of all n intervals is the result of summing up in that order,

∗ Corresponding author at: PostDoc researcher for Research Foundation Flanders, Center for Operations Research and Business Statistics (ORSTAT),
Faculty of Business and Economics, KULeuven, 3000 Leuven, Belgium. Tel.: +32 16326960; fax: +32 16 32 66 24.

E-mail addresses: christoph.durr@lip6.fr (C. Dürr), maurice.queyranne@sauder.ubc.ca (M. Queyranne), Frits.Spieksma@econ.kuleuven.be
(F.C.R. Spieksma), Fabrice.TallaNobibon@econ.kuleuven.be, tallanob@gmail.com (F.T. Nobibon), gwoegi@win.tue.nl (G.J. Woeginger).

0166-218X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2011.12.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82400949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dam.2011.12.020
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:christoph.durr@lip6.fr
mailto:maurice.queyranne@sauder.ubc.ca
mailto:Frits.Spieksma@econ.kuleuven.be
mailto:Fabrice.TallaNobibon@econ.kuleuven.be
mailto:tallanob@gmail.com
mailto:gwoegi@win.tue.nl
http://dx.doi.org/10.1016/j.dam.2011.12.020

C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103 1095

for every interval, the cost of its exposed part with respect to the previous intervals. Formally, the problem is defined as
follows.

Definition 1 (The Interval Ordering Problem). Given a function f : R → R and n intervals I1, . . . , In over the real line, find
an ordering α ∈ Σn such that the cost

n
k=1

f

Iα(k) \

k−1
j=1

Iα(j)




,

is minimized, where Σn denotes the set of all the permutations of {1, 2, . . . , n}.

Observe that the interval ordering problem becomes trivial, if all intervals are pairwise disjoint (since then all orderings
yield the same cost). In the rest of this paper, an instance of the interval ordering problem is represented by


I, f


where I

is the set of intervals and f is the cost function.

Example 1. Consider the instance that consists of the five intervals I1 = [0, 1), I2 = [1, 2), I3 = [2, 3), I4 = [3, 6) and
I5 = [0, 5), and the cost function f (x) = 2x. An optimal solution for this instance is given by the sequence α = (1, 2, 3, 5, 4)
with a total cost of 12.

This example illustrates that in general an optimal solutionwill not sequence the intervals in order of increasing length (and
it can be verified that in Example 1 no such sequence can yield the optimal objective value). The next example illustrates
that also the following natural greedy algorithm fails: ‘‘Always select the interval with the smallest exposed part relative to the
intervals sequenced so far’’. In fact, the greedy algorithm can be arbitrarily bad, as witnessed by the following example.

Example 2. Consider a family of instances, where each instance consists of 2k−1 intervals: A1 = [0, 2k), A2 = [2k−ϵ, 4k),
A3 = [4k− ϵ, 6k), . . . , Ak = [2k(k− 1) − ϵ, 2k2), B1 = [k− ϵ, 2k2), B2 = [3k− ϵ, 2k2), B3 = [5k− ϵ, 2k2), . . . , Bk−1 =

[2k2 − 3k − ϵ, 2k2), for some constants k, ϵ > 0 with the cost function f (x) = 2x.

A greedy sequence is (A1 , A2, . . . , Ak−1, Ak, Bk−1, Bk−2, . . . , B1) and achieves a cost of k22k
+ k− 1, whereas the optimal

solution is (Ak, Bk−1, Ak−1, Bk−2, . . . , A2, B1, A1) and has the cost of 22k+ϵ
+ (2k− 3)2k

+ 2k−ϵ . The ratio between both costs
can be made arbitrarily large, by choosing appropriate k and small ϵ > 0.

The contributions of this paper are twofold: on the positive side, we describe polynomial-time algorithms for some
natural and fairly general special cases of the problem. On the negative side, we establish the computational complexity
(NP-hardness) and the in-approximability of the problem.

The paper is organized as follows. In Section 2, we describe the motivating real world application (in molecular biology)
that stands behind the interval ordering problem. In Section 3, we formulate and present a number of special cases of the
problem that can be solved in polynomial time. In Section 4, we present complexity and in-approximability results. We
conclude in Section 5.

2. Motivation

The interval ordering problem studied in this paper is motivated by a special case of the so-called distance geometry
problem [8,6,7,5]. Formally, an instance of the latter consists of an undirected graph G(V , E) with positive edge weights
d : E → R+. The goal is to find an embedding of the vertices into some Euclidean space, say p : V → R2, satisfying the
requested distances, i.e. for every edge (u, v), we must have ∥p(u) − p(v)∥ = d(u, v). This problem appears in the areas of
graph drawing, localizing wireless sensors, and also in protein folding as we now explain.

The protein folding problem consists of computing the spatial structure of a protein. To simplify the notations, we restrict
the problem to the 2-dimensional space; this does not alter its essence. A protein is a huge molecule consisting of many

1096 C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103

Fig. 1. All 8 possible embeddings of a 5 vertex instance. The embedding described by the bit-string 000 is depicted with solid lines.

different atoms linked together. Consider a simplified version of this problemwhereweonlywant to determine the structure
of the backbone of the protein, that is, we are interested in determining the position of the main string of atoms. The exact
sequence of atoms is known, and different approaches are being used in practice to determine their spatial structure. One
possibility is to use Nuclear Magnetic Resonance (NMR) to determine the distances between some pairs of atoms. The goal
is then to reconstruct a folding that matches the measured distances. This problem, also called 3-dimensional discretizable
molecular distance geometry problem, is NP-hard (see [6]), and different algorithms have been proposed for it; we refer to [7]
for a recent overview.

Formally in the problem of reconstructing the backbone of a protein, we are given a vertex set V = {1, 2, . . . ,m},
enumerating all the atoms of the backbone, together with distances d(i, j) for some pairs i, j ∈ V . It is a common assumption
that all d(i, j) with i + 1 ≤ j ≤ i + 2 are given and |d(i, i + 1) − d(i + 1, i + 2)| < d(i, i + 2) < d(i, i + 1) + d(i + 1, i + 2)
for all i = 1, . . . ,m− 2. The first assumption is motivated by the fact that the NMR reveals distances between atoms which
are close to each other. The second assumption is motivated by the chemical fact that in general atoms in molecules are not
in co-linear positions. We call d(i, j) a short range distance if i + 1 ≤ j ≤ i + 2, and a long range distance otherwise.

These assumptions give the problem a combinatorial structure. By translation invariance, without loss of generality we
can place vertex 1 in the origin (0, 0). By rotation invariance, without loss of generality we can place vertex 2 in (d(1, 2), 0).
Now for vertex 3 there are only two positions respecting the distance d(1, 3), which are the two intersection points of the
circle of radius d(1, 3) centered at (0, 0), and the circle of radius d(2, 3) centered at (d(1, 2), 0). In a similar manner, there
are exactly two possible positions of vertex i + 2 relative to the segment between vertices i and i + 1. Therefore with fixed
positions for vertices 1 and 2, there are exactly 2m−2 embeddings satisfying the short range distances. We could describe
each embedding by a binary string x3, x4, . . . , xm, where bit xi is 1 if and only if the triangle formed by vertices i− 2, i− 1, i
is oriented clockwise. But in order to circumvent the symmetry inherent to this problem, we describe each embedding by a
binary string y3, y4, . . . , ym, where yj = x3 ⊕ x4 ⊕ · · · ⊕ xj. See Fig. 1 for illustration.

Now every long range distance d(i, j) implies a constraint on the unknown binary string y. It enforces the bits
yi+3, yi+4, . . . , yj to those positions that yield an embedding such that atoms i and j are at the right distance. The problem
now is to find, as efficiently as possible, values for the bits satisfying all measured distance constraints. Let us now state
some notation to arrive at a formal definition of the problem.

Notation. If a > b then [a, b] is the empty interval. For any a ≤ b by {0, 1}[a,b] we denote the set of all bit strings of length
b− a+ 1 indexed from a to b. If [a, b] ⊆ [c, d] and y ∈ {0, 1}[c,d] then we denote by y[a, b] the restriction of y to the indices
from a to b. We use {0, 1}m as a shortcut notation for {0, 1}[1,m].

Definition 2 (The BitString-Reconstruction Problem (BSRP)). We are given an integer m, and n triplets (ai, bi, Ti) where
1 ≤ ai < bi ≤ m, Ti : {0, 1}[ai,bi] → {0, 1}. The function Ti is an oracle that returns 1 at a single element of the domain. The
goal of the BSRP is to find a bit string y ∈ {0, 1}m, such that for all i = 1, . . . , nwe have Ti(y[ai, bi]) = 1.

The idea is that a triplet in BSRP corresponds to a given distance between atoms i and j with i + 3 ≤ j in the folding
problem. Formally, a triplet is defined by (a = i, b = j, T) where T is the Boolean function, that accepts a bit string z if and

C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103 1097

only if z = y[a, b] for every bit string y ∈ {0, 1}m describing an embedding where i and j are at the given distance d(i, j).
At this point we assume that there is a unique bit string z with this property. In two dimensions, this is equivalent to fixing
the position of the third vertex and in three dimensions this boils down to fixing the fourth vertex as well. Already with this
strong simplification, we are facing a non-trivial and interesting algorithmic problem.

A straightforward algorithm to solve BSRP employs a brute force approach (see [8] for a similar method called Branch-
and-Prune algorithm): by letting ξ be a symbol representing an unspecified bit, the idea of brute-force search is to start
with a completely unspecified string y = ξ n

∈ {0, 1, ξ}
n, and to refine it using the distances between atoms i and j with

|i − j| > 3. More precisely:

Algorithm 1 The BruteForce search algorithm
1: for i = 1, . . . , n do
2: Let w = y[ai, bi] and let ℓi be the number of unspecified bits in w
3: Search for z such that Ti[z] = 1, ranging over all 2ℓi different replacements of ξ in w
4: if found then
5: replace, in y, y[ai, bi] by z
6: else
7: exit and announce that there is no solution
8: end if
9: end for

10: Return y, replacing all remaining occurrences of ξ by an arbitrary bit

The running time of the BruteForce search algorithm is O
n

i=1 2
ℓi

and it depends on the order in which the triplets in

the instance are presented to the algorithm. The only remaining question is in which order to process the given distances. In
fact, it is our goal to find an order for the triplets in the instance of the BSRP to be passed to the BruteForce search algorithm
in order to minimize the running time. This leads to the interval ordering problem that was described in the introduction
with the following additional structure: (i) all data are integral, and (ii) the cost function f is given by f (x) = 2x.

We should point out here that the protein folding application does not necessarily give rise to instances that display the
special structures that we will discuss in Section 3: agreeable intervals, and laminar intervals.

3. Some polynomial time solvable cases

In this section, we study some special cases of the interval ordering problem that can be solved in polynomial time. We
first consider the casewhere the intervals are agreeable.We derive anO(n3) dynamic programming algorithm for solving this
special case for any cost function f . When the cost function is continuous and convex, we propose a dynamic programming
algorithmwith time complexity O(n2). Next, we consider the case where the intervals are laminar and describe polynomial-
time algorithms for solving the problem when the cost function f is such that the function g(x) = f (x) − f (0) is either
super-additive or sub-additive. Finally, we study the bottleneck variant of the interval ordering problem and show that it
can be solved in polynomial time when the cost function f is either non-decreasing or non-increasing.

3.1. Agreeable intervals

We say that a set I of n intervals Ii = [ai, bi), for i = 1, 2, . . . , n is agreeable if there exists a permutation γ of {1, . . . , n}
such that aγ (1) ≤ · · · ≤ aγ (n) and bγ (1) ≤ · · · ≤ bγ (n). In other words, the ordering of the intervals induced by the left
endpoints is the same as the ordering induced by the right endpoints. For ease of exposition, we will assume in the rest
of this section that γ is the permutation identity: thus we have a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn. We can assume that
two consecutive intervals Ii and Ii+1 overlap (that is ai+1 < bi) because otherwise this would split the problem into two
sub-problems that can be solved independently. In what follows, we first consider the general case with an arbitrary cost
function f , followed by a special case where the cost function f is continuous and convex.

3.1.1. Arbitrary cost function
In this section, we consider instances


I, f


of the interval ordering problem with I agreeable and f arbitrary. Observe

that in the case of agreeable intervals, after selecting the first interval, the problem decomposes into (atmost) two unrelated
instances that are each agreeable; we will use this property to derive a dynamic programming algorithm.

For a formal definition of the decomposition, consider the set I = {I1, Ii+1 . . . , In} of agreeable intervals. We consider
the exposed parts of each of these intervals with respect to {Ij}, 1 ≤ j ≤ n. Since I is agreeable, the exposed parts are again
intervals, and we distinguish between those before Ij and those after Ij.

For convenience define b0 = a1 and an+1 = bn. For any pair of indices 0 ≤ i, k ≤ n + 1 we define the subinstance
Ii,k := {Ij ∩ [bi, ak) : i < j < k} (see Fig. 2 for an illustration). Notice that if bi ≥ ak, then Ii,k consists of k − i − 1 intervals
of zero length. Let C(i, k) be the cost of an optimum solution to


Ii,k, f


, with C(i, k) = 0 if Ii,k = ∅. We have the following

recursion.

1098 C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103

Fig. 2. The subinstance Ii,k .

Lemma 1. For 0 ≤ i < k ≤ n + 1 we have C(i, k) = 0 in case i + 1 = k, and otherwise

C(i, k) = min
i<j<k


C(i, j) + f (|Ij ∩ [bi, ak)|) + C(j, k)


.

Proof. The case i+ 1 = k follows from Ii,i+1 = {} and the remaining case follows from the fact that (1) some interval Ij has
to be selected first, and (2) after selecting that interval the problem decomposes into two unrelated instances, Ii,j and Ij,k,
each being agreeable. �

Theorem 1. The interval ordering problem

I, f


with I agreeable and f arbitrary, can be solved in O(n3).

Proof. Lemma 1 leads to a dynamic programming algorithm with O(n2) variables, each computable in linear time. �

3.1.2. Continuous and convex cost function
In this subsection, we still assume that the intervals in I are agreeable, but we consider the cost function f to be

continuous and convex. Recall that a function f defined on a convex set dom(f) is convex when f (λx + (1 − λ)y) ≤

λf (x) + (1 − λ)f (y) for all x, y ∈ dom(f), and 0 ≤ λ ≤ 1. We need the following result, due to Karamata [4] (see also
pages 30–32 in [1]).

Lemma 2. Given 2q + 2 numbers {xk, yk}, k = 0, 1, . . . , q satisfying:

• x0 ≥ x1 ≥ · · · ≥ xq, and y0 ≥ y1 ≥ · · · ≥ yq,
• for each k = 0, 1, . . . , q − 1:

k
i=0 xi ≥

k
i=0 yi, and

•
q

i=0 xi =
q

i=0 yi,

then, for any continuous, convex function f we have

q
i=0

f (xi) ≥

q
i=0

f (yi). (1)

Let

I, f


be an instance of the interval ordering problem where I is agreeable and contains n intervals Ii = [ai, bi), i =

1, . . . , n and f is continuous and convex. For a given solution to

I, f


(i.e., a sequence of intervals), we call an interval Ii

an E-interval if ai is contained in the exposed part of interval Ii relative to the set of intervals sequenced before Ii (in that
solution). Given an integer k, 1 ≤ k ≤ n, let Ik be the set containing the intervals Ii = [ai, bi) for i = k, . . . , n and let Ck be
the value of an optimal solution to the instance


Ik, f


. Notice that this definition implies that I = I1. Further, interval Ik is

an E-interval in any feasible solution to

Ik, f


.

Lemma 3. Let

I, f


be an instance of the interval ordering problem with I agreeable and f continuous and convex; and let Ik

defined as above.
If, in an optimal solution to


Ik, f


, interval Ik is the only E-interval, then

Ck = f

bk − ak


+

n
i=k+1

f

bi − bi−1


. (2)

Otherwise, in this optimal solution to

Ik, f


, let Ij with j > k be the first E-interval, i.e., the E-interval with minimal aj.

C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103 1099

Fig. 3. Recurrence relation of Ck . If Ij is the first E-interval after Ik , then the cost divides into the cost of the intervals between k and j, plus Cj .

If aj ≤ bk then j = k + 1 and

Ck = f

ak+1 − ak


+ Ck+1. (3)

If aj > bk, then

Ck = f

bk − ak


+

ℓ
i=k+1

f

bi − bi−1


+ f


aj − bℓ


+

j − ℓ − 1


f (0) + Cj, (4)

where Iℓ is the latest interval in Ik that satisfies bℓ < aj.

Proof. Wewill show that if interval Ik is the only E-interval, then the optimal sequence to

Ik, f


is simply (k, k+1, . . . , n).

Otherwise, if there is another E-interval Ij, where Ij is the first E-interval with j > k, then the optimal sequence to

Ik, f


is

the sequence of the solution to

Ij, f


followed by k, k + 1, . . . , j − 1. See Fig. 3 for illustration.

Case 1: Interval Ik is the only. E-interval.We show that α0 = (k, k+1, . . . , n) is an optimal sequence to

Ik, f


. The sequence

α0 partitions [ak, bn) into n − k + 1 nonempty segments, defined by S0 = [ak, bk), Si = [bk+i−1, bk+i) for i = 1, . . . , n − k
(this is true since the intervals are agreeable). Let σ be a permutation of {0, 1, . . . , n − k} such that |Sσ(i)| ≥ |Sσ(i+1)| for
i = 0, 1, . . . , n − k − 1; the permutation σ orders the segments induced by α0 in non-increasing length. Now, let α be
some sequence of intervals (α ≠ α0) which does not feature another E-interval apart from interval Ik. Clearly, α partitions
[ak, bn) into less than n−k+1 nonempty segments, each segment being defined by a pair from the set {ak, bk, bk+1, . . . , bn}
(indeed, notice that the only way to have n− k+ 1 segments is when α = α0). Let us suppose that α partitions [ak, bn) into
p+1 segments (1 ≤ p ≤ n−k−1) S ′

0, . . . , S
′
p satisfying |S ′

0| ≥ |S ′

1| ≥ · · · ≥ |S ′
p|. For convenience set S

′

p+1 = · · · = S ′
m = {}.

Observation. Any segment S ′

i (i = 0, 1, . . . , p) is either identical to a segment Sj for a given j ∈ {0, 1, . . . , n− k} or is a union
of consecutive intervals Sj.

This observation follows from the fact that the segments are defined by points in the set {ak bk, bk+1, . . . , bn}. We will
use this observation to argue that for eachm = 0, 1, . . . , n − k + 1:

m
i=0

|S ′

i | ≥

m
i=0

|Sσ(i)|. (5)

For any m with p ≤ m ≤ n − k, we have that
m

i=0 |S ′

i | ≥
m

i=0 |Sσ(i)|. This is because ∪
m
i=0 S

′

i = [ak, bn) and
∪

m
i=0 Sσ(i) ⊆ [ak, bn) and the segments are disjoint.
We now show that (5) is also true for m < p, by induction on m. For the base case, note that the observation above

immediately implies that |S ′

0| ≥ |Sσ(0)|. For the induction step, we assume that
m

i=0 |S ′

i | ≥
m

i=0 |Sσ(i)|. The question now
is whether

m+1
i=0

|S ′

i | ≥

m+1
i=0

|Sσ(i)| (6)

is true. Let us consider Sσ(m+1). If each Sσ(r) with r ≤ m is contained in the left-hand side of (6), then, using the induction
hypothesis

m
i=0 |S ′

i | ≥
m

i=0 |Sσ(i)|

, the validity of (6) follows. Indeed, if Sσ(m+1) is also contained in the left-hand side of

(6), the inequality is certainly valid, else we know that S ′

m+1 ≥ Sσ(m+1). If there exists an Sσ(r) with r ≤ m not contained in

1100 C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103

Fig. 4. Illustration of laminar intervals.

the left-hand side of (6), then: S ′

m+1 ≥ Sσ(r) ≥ Sσ(m+1) (where the first inequality holds because the length of a segment Sσ(j)
not contained in the left-hand side of (6) is a lower bound for S ′

j). This completes the proof of (5).
We now invoke Lemma 2 by setting q := n − k + 1, and for i = 0, 1, . . . , n − k + 1 we set xi := |S ′

i |, yi := |Si|. Clearly,
the arguments given above imply that the conditions of Lemma 2 are satisfied. Hence, when f is continuous and convex, the
cost of α is greater than or equal to the cost of α0.
Case 2: There is another E-interval Ij, where Ij is the first E-interval after Ik. For this case, we use the following observation.
Let Ip and Iq be two consecutive intervals in a solution, and suppose that they are disjoint. Then it does not matter for the
cost of the solution whether Ip or Iq is processed first of the two. Now since Ij is an E-interval, it must be processed before
all intervals Ii that contain aj (otherwise Ij is not an E-interval), and it can be processed before all intervals Ii with bi < aj.
Thus, we conclude that Ij is processed before intervals indexed by k, k + 1, . . . , j − 1. Since the intervals are agreeable, the
exposed parts (after processing Ij) of the intervals before Ij are disjoint with the intervals with index greater than j. Therefore
we can assume that the intervals with index k, . . . , j−1 are processed after the intervals with index j, . . . , n. And of course,
the latter intervals are processed optimally by a sequence of the solution to


Ij, f


. Let Iℓ with ℓ < j be the latest interval

that does not intersect interval Ij. Notice that by the choice of j, the optimal sequence of the intervals Ik, . . . , Iℓ contains only
one E-interval, namely Ik. Hence, that optimal sequence has a cost of f (bk − ak) +

ℓ
i=k+1 f (bi − bi−1). Finally, we need to

take into account the intervals Iℓ+1, . . . , Ij−1. Thus, we incur f (aj − bℓ) for the exposed part between bℓ and aj, corresponding
to interval Iℓ+1, and we incur a cost of f (0) for each of the remaining intervals. Notice that all intervals Iℓ+1, . . . , Ij−1 are
completely covered in this sequence. This completes the proof of this lemma. �

Theorem 2. The interval ordering problem

I, f


with I agreeable and f convex and continuous, can be solved in O(n2).

Proof. The O(n2)-time complexity of the dynamic program following from Lemma 3 (see Eqs. (2) and (3)) is explained by
the fact that there are n variables and each is a minimization over O(n) values. �

3.2. Laminar intervals

Let

I, f


be an instance of the interval ordering problem where I contains n intervals Ii = [ai, bi), for i = 1, 2, . . . , n.

We say that the set I of intervals is laminar if for any two intervals Ii and Ij in I, either Ii ∩ Ij = ∅ or one is included in the
other. See Fig. 4 for an illustration.

An ordering α respects the inclusions if for any two intervals Ii and Ij with Ii (Ij we have that i appears before j in α.

Lemma 4. Let

I, f


be an instance of the interval ordering problem with I laminar. If the function g defined by g(x) =

f (x) − f (0) is super-additive i.e., g(x + y) ≥ g(x) + g(y) then any ordering that respects the inclusions is an optimal solution to
I, f


.

Proof. Let α be an arbitrary order of optimal cost. We will show that there is another order respecting the inclusions and
having a cost not greater than that of α.

Suppose that α does not respect the inclusions. Then there is a pair i, j with Ii (Ij and j appears before i in α. Let α′ be
the result of placing j right after i in the order α. Let x be the length of the exposed part of Ij in α′, and y be the length of the
exposed part of Ii in α′. Then x + y is the length of the exposed part of Ij in α. Therefore the contribution of Ii and Ij to the
cost of α is f (x + y) + f (0) while their contribution to the cost of α′ is f (x) + f (y).

Since g is super-additive, it follows that f (x + y) + f (0) ≥ f (x) + f (y). We conclude that the cost of α′ is not more than
the cost of α. By repeating the argument, we eventually obtain an inclusion respecting order with optimal cost. �

An inclusion respecting order can be found simply by sorting the intervals in increasing order of their lengths, breaking
ties arbitrarily.

Theorem 3. The interval ordering problem

I, f


with I laminar and f such that the function g(x) = f (x) − f (0) is super-

additive, can be solved in O(n log n) time

Proof. Immediate. �

We show in Section 4 that the time complexity of any exact algorithm for solving this problem cannot be better than the
time complexity of algorithms for sorting. Thus, when restricting ourselves to comparison-based algorithms, the bound in
Theorem 3 is the best possible (see [2]).

C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103 1101

Remark 4. Notice that the problem

I, f


with I laminar and f such that the function g(x) = f (x) − f (0) is sub-additive,

can also be solved in O(n log n) time by sorting the intervals in decreasing order of their lengths.

3.3. Bottleneck variant of the interval ordering problem

In this subsection, we consider the bottleneck variant of the interval ordering problem. Referring to the application
described in Section 2, instead of looking for the exact complexity O

n
i=1 2

ℓi

of the BruteForce search algorithm, we focus

on themaximumpower of two that dominates this complexity. Hence, solving the bottleneck variant gives us a solution that
is an approximation of the optimal solution to the interval ordering problem. The bottleneck variant is explicitly defined as
follows.

Definition 3 (The Bottleneck Interval Ordering Problem (BIO)). Given a function f and a set I = {I1, . . . , In} of intervals over
the real line, find an ordering α ∈ Σn that minimizes the value

max
k=1,...,n

f

Iα(k) \

k−1
j=1

Iα(j)




.

A greedy algorithm for this variant would iteratively select the interval with the smallest exposed part. A formal
description is given in Algorithm 2.

Algorithm 2 Smallest Exposed Part Algorithm
1: for every i = 1, . . . , n, let I ′i := Ii be the exposed part of the i-th interval
2: Let S = {1, . . . , n} be the set of yet unselected intervals
3: for j = 1, . . . , n do
4: Identify i ∈ S such that |I ′i | is minimal.
5: α(j) := i
6: S := S\{i}
7: for k ∈ S do
8: update I ′k := I ′k\I

′

i
9: end for

10: end for
11: Return α

In the rest of this section we prove that Algorithm 2 solves instances of BIO when the cost function f is non-decreasing.
Our proof is based on the following lemmas.

Lemma 5. Let

I, f


be an instance of BIO with a non-decreasing cost-function f . There exists an optimal solution to


I, f


starting with a smallest interval.

Proof. We prove this result by contradiction. Let

I, f


be an instance of BIO with a non-decreasing cost-function f .

Assume that each optimal sequence to

I, f


does not start with a smallest interval. Consider an optimal sequence α =

α(1), . . . , α(i0), . . . , α(n)

to

I, f


with the corresponding optimal value val(α). Clearly, val(α) ≥ f


|Iα(1)|


. Let Iα(i0) be

the first smallest interval in α, i.e., |Iα(i0)| ≤ |Iα(j)| for all j ∈ {1, . . . , n} and |Iα(i0)| < |Iα(j)| for all j ∈ {1, . . . , i0 −1}. Consider
now the sequence α′

=

α(i0), α(1), . . . , . . . , α(n)


where α(i0) is moved to the first position in α. It is clear that this move

only affects the intervals that were sequenced before Iα(i0) in α. Further, since f is non-decreasing, and the length of each
affected interval cannot have become larger, and |Iα(i0)| ≤ |Iα(1)|, we conclude that the objective value achieved by α′ does
not exceed val(α). Therefore, α′ is also an optimal sequence to


I, f


, which is a contradiction. �

Given an arbitrary instance

I, f


of BIOwith n intervals and Ii0 ∈ I a smallest interval, we define the Ii0-reduced instance

Īi0 , f

with n − 1 intervals as follows. For any interval Ij ∈ I,

1. if Ij ≠ Ii0 and Ij ∩ Ii0 = ∅ then Ij ∈ Īi0 ;
2. if Ij ≠ Ii0 and Ij ∩ Ii0 ≠ ∅ then Ij \ Ii0 ∈ Īi0 .

Furthermore, the real line is adapted accordingly such that Ij \ Ii0 is an interval for all j ≠ i0.

Lemma 6. Let

I, f


be an instance of BIO with a non-decreasing cost-function f . Let Ii0 ∈ I be a smallest interval and αi0 be an

optimal sequence to

Īi0 , f


. Then


i0, αi0


is an optimal sequence to


I, f


.

1102 C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103

Proof. Let val(αi0) be the total cost of the optimal solution αi0 to

Īi0 , f


.

1. If f

|Ii0 |


≥ val(αi0) then


i0, αi0


is clearly an optimal sequence to


I, f


(recall that Ii0 is a smallest interval).

2. On the other hand, suppose that f

|Ii0 |


< val(αi0). Lemma 5 implies that there exists an optimal sequence α′ to


I, f


starting with Ii0 . After selecting Ii0 , the instance that remains is


Īi0 , f


, for which αi0 is optimal. Therefore, (i0, αi0) is an

optimal solution to

I, f


.

Theorem 5. The Bottleneck Interval Ordering problem

I, f


with I arbitrary and f non-decreasing can be solved in O(n2).

Proof. This result follows from Lemmas 5 and 6. �

Remark 6. Notice that if the function f is non-increasing then the instances of BIO with this cost function can be solved
with an O(n2)-time algorithm similar to Algorithm 2where in line 6 instead of taking the interval with the smallest exposed
part, we take the interval with the longest exposed part.

4. Complexity results

This section presents a number of negative results on the computational complexity of the interval ordering problem. Our
first result shows that even the easy special cases discussed in Section 3.1 are not completely straightforward, and shows
the optimality of the algorithm given in Section 3.2.

Theorem 7. The interval ordering problem is at least as hard as the SORTING problem, even if (a) the intervals are agreeable, or
if (b) the intervals form a laminar set. Consequently, every comparison-based algorithm for these special cases will have a time
complexity Ω(n ln n).

Proof. Let x1, . . . , xn be an arbitrary sequence of positive real numbers that form an instance of the SORTING problem. We
construct a corresponding instance of the interval ordering problem that consists of the intervals Ij = [0, xj) for j = 1, . . . , n,
together with the cost function f (x) = 2x. Note that this set of intervals is agreeable and laminar.

Note that the cost function f (x) is such that g(x) = f (x) − f (0) is super-additive on the positive real numbers. This
observation easily yields that the optimal ordering of the intervals must sequence them by increasing right endpoint, and
hence induces a solution to the SORTING problem. �

Next, we will discuss the computational complexity of the interval ordering problem. We will show that there is little
hope for finding a polynomial-time algorithm for solving the interval ordering problem in general. The reduction is from the
following variant of the NP-hard PARTITION problem [3, problem SP12].
Instance: A finite set {q1, q2, . . . , qn} of n positive integers with sum 2Q ; an integer k.
Question: Does there exists an index set J ⊆ {1, . . . , n} with |J| = k, such that


j∈J qj =


j∉J qj = Q?

Lemma 7. Let I be an instance of PARTITION and N be an integer such that 2N−1 > 2nQ + k. Then there exists an instance

I, f


of the interval ordering problem that can be built from I in polynomial time and that satisfies the following conditions:

(i) If I is a YES-instance of PARTITION, then the total cost of an optimal sequence to

I, f


is at most 2nQ + n − k.

(ii) If I is a NO-instance of PARTITION, then the total cost of an optimal sequence to

I, f


is at least 2N

+ 2nQ + n − k.

Proof. Consider an arbitrary instance I of PARTITION. We build the instance

I, f


of the interval ordering problem as

follows. The cost function f : N → N is defined by f (x) = 0 if x is a power of two, and by f (x) = x otherwise. The set I
consists of n+ 2 intervals. First, for i = 1, . . . , n there is a so-called element-interval of length ℓi = 2nqi + 1. These element-
intervals are pairwise disjoint andput back to back, so that they jointly cover the interval from0 to L :=

n
i=1 ℓi = 2n+1Q+n.

Second, there is a so-called dummy-interval of length ℓn+1 = 2N
− 2nQ − k that goes from L to L + ℓn+1. Third, there is the

so-calledmain-interval that covers all other intervals, and that goes from 0 to L+ℓn+1; hence the length of themain-interval
is 2N

+ 2nQ + n − k. Clearly, this construction of

I, f


can be done in polynomial time. Next, we prove (i) and (ii).

(i) Assume that I is a YES-instance of PARTITION, and let J ⊆ {1, . . . , n} be the corresponding index set. First select the
element-intervals that correspond to the qi with i ∉ J , then themain-interval, followed by the remaining element-intervals,
and finally the dummy-interval. For the first batch of element-intervals we pay a cost of 2nQ + n − k. The exposed part of
the main-interval then has length 2N , which yields a cost of 0. This reduces the exposed part of all remaining intervals down
to length 0. The overall total cost is then 2nQ + n − k.

(ii) Now assume that I is a NO-instance of PARTITION. We claim that in this case no sequencing can ever turn the length
of the exposed part of themain-interval into a power of 2. Then the total cost is proportional to the total length, and hence at
least 2N

+2nQ +n− k. It remains to prove the claim.We distinguish two cases. The first case deals with the time before the
dummy-interval is sequenced. At such a point in time the length of the exposed part of the main-interval equals the length
of the dummy-interval plus the length of the currently unsequenced element-intervals. The length of the dummy-interval is
2N

−2nQ −k > 2N−1. The length of the dummy interval plus the length of all element-intervals is 2N
+2nQ +n−k < 2N+1.

C. Dürr et al. / Discrete Applied Mathematics 160 (2012) 1094–1103 1103

Hence the only candidate power of 2 would be 2N . But in this case the subset of the element-intervals would have a total
length of 2nQ + n − k, which would correspond to a solution to the PARTITION instance I; a contradiction. The second case
deals with the time after the dummy-interval has been sequenced. At such a point in time the length of the exposed part of
the main-interval equals the length of the remaining unsequenced element-intervals. But the total length of such a subset
can never be a power of 2. �

Of course, Lemma 7 immediately yields the NP-hardness of the interval ordering problem. We will also derive from it
the inapproximability of this problem. Suppose for the sake of contradiction that there is a polynomial-time approximation
algorithm with some finite worst-case guarantee θ . Pick an arbitrary instance I of PARTITION, and choose an integer N
sufficiently large so that

2N >

θ − 1


2nQ + n − k


. (7)

Then N is roughly n + logQ + log θ , and hence its length is polynomially bounded in the size of instance I . We construct
the instance


I, f


of the interval ordering problem as indicated in the proof of Lemma 7, and feed it into the approximation

algorithm. The answer allows us to decide in polynomial time whether instance I is a YES-instance or a NO-instance of
PARTITION.

Theorem 8. The interval ordering problem is NP-hard. Furthermore, the interval ordering problem does not possess any
polynomial-time approximation algorithm with constant worst-case guarantee, unless P = NP.

5. Conclusion

This paper studies the problem of ordering a given set of intervals on the real line to minimize the total cost, where the
cost incurred for an interval depends on the length of its exposed part when it is processed. We were motivated to consider
this problem by an application in molecular biology. Our work proposes polynomial-time algorithms for some special cases
of the problem. Furthermore, we prove that the problem is NP-hard and is unlikely to have a constant-factor-approximation
algorithm.

Some interesting special cases of our problem remain open. For instance, when the cost function is continuous and
convex, (and without any assumption on the structure of the intervals), the complexity of the problem is not settled.
In particular, the case f (x) = 2x is interesting (note that our NP-hardness construction does not yield anything for this
particular cost function). Finally, it would be interesting to see other special cases that can be solved in polynomial time.

Acknowledgments

We thank an anonymous reviewer, as well as Leo Liberti, for comments on an earlier version of this manuscript.
Gerhard Woeginger has been supported by the Netherlands Organization for Scientific Research (NWO), grant

639.033.403, by DIAMANT (an NWOmathematics cluster), and by BSIK grant 03018 (BRICKS: Basic Research in Informatics
for Creating the Knowledge Society).

Maurice Queyranne’s research was supported in part by a Discovery grant from the Natural Sciences Research Council
(NSERC) of Canada.

References

[1] E.F. Beckenbach, R. Bellman, Inequalities, third printing, Springer-Verlag, 1971.
[2] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd ed., McGraw-Hill, 2002.
[3] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Co., 1979.
[4] J. Karamata, Sur une inégalité relative aux functions convexes, Publications Mathématiques de l’Université Belgrade 1 (1932) 145–148.
[5] C. Lavor, J. Lee, A.L.L. Liberti, A. Mucherino, M. Sviridenko, Optimization Letters (2011) doi:10.1007/s11590-011-0302-6.
[6] C. Lavor, L. Liberti, N. Maculan, A. Mucherino, Computational Optimization and Applications (2011) doi:10.1007/s10589-011-9402-6.
[7] C. Lavor, L. Liberti, N. Maculan, A. Mucherino, European Journal of Operational Research (2011) doi:10.1016/j.ejor.2011.11.007.
[8] A. Mucherino, C. Lavor, L. Liberti, Optimization Letters (2011) (Online first article).

http://dx.doi.org/doi:10.1007/s11590-011-0302-6
http://dx.doi.org/doi:10.1007/s10589-011-9402-6
http://dx.doi.org/doi:10.1016/j.ejor.2011.11.007

	The interval ordering problem
	Introduction
	Motivation
	Some polynomial time solvable cases
	Agreeable intervals
	Arbitrary cost function
	Continuous and convex cost function

	Laminar intervals
	Bottleneck variant of the interval ordering problem

	Complexity results
	Conclusion
	Acknowledgments
	References

