23,775 research outputs found

    Competition between the Modulation Instability and Stimulated Brillouin Scattering in a Broadband Slow Light Device

    Full text link
    We observe competition between the modulation instability (MI) and stimulated Brillouin scattering (SBS) in a 9.2-GHz broadband SBS slow light device, in which a standard 20-km-long single-mode LEAF fibre is used as the SBS medium. We find that MI is dominant and depletes most of the pump power when we use an intense pump beam at ~1.55 {\mu}m, where the LEAF fibre is anomalously dispersive. The dominance of the MI in the LEAF-fibre-based system suppresses the SBS gain, degrading the SBS slow light delay and limiting the SBS gain-bandwidth to 126 dB \cdot GHz. In a dispersion-shifted highly nonlinear fibre, the SBS slow light delay is improved due to the suppression of the MI, resulting in a gain-bandwidth product of 344 dB \cdot GHz, limited by our available pump power of 0.82 W

    A comparison of forensic evidence recovery techniques for a windows mobile smart phone

    Get PDF
    <p>Acquisition, decoding and presentation of information from mobile devices is complex and challenging. Device memory is usually integrated into the device, making isolation prior to recovery difficult. In addition, manufacturers have adopted a variety of file systems and formats complicating decoding and presentation.</p> <p>A variety of tools and methods have been developed (both commercially and in the open source community) to assist mobile forensics investigators. However, it is unclear to what extent these tools can present a complete view of the information held on a mobile device, or the extent the results produced by different tools are consistent.</p> <p>This paper investigates what information held on a Windows Mobile smart phone can be recovered using several different approaches to acquisition and decoding. The paper demonstrates that no one technique recovers all information of potential forensic interest from a Windows Mobile device; and that in some cases the information recovered is conflicting.</p&gt

    Triple-wavelength fiber ring laser based on a hybrid gain medium actively mode-locked at 10 GHz

    Get PDF
    A fiber ring laser based on a hybrid gain medium that produces three simultaneously mode-locked wavelength channels is presented. The lithium niobate based modulator used to actively mode-lock the laser cavity at 10 GHz is birefringence compensated to reduce its polarization sensitivity. A Lyot filter defines the lasers multiwavelength spectrum which has a wavelength spacing of 1 nm. The polarization sensitive nature of the laser cavity and its affect on the performance of the laser is discussed

    Project SPACE: Solar Panel Automated Cleaning Environment

    Get PDF
    The goal of Project SPACE is to create an automated solar panel cleaner that will address the adverse impact of soiling on commercial photovoltaic cells. Specifically, we hoped to create a device that increases the maximum power output of a soiled panel by 10% (recovering the amount of power lost) while still costing under 500andoperatingforupto7.0years.Asuccessfuldesignshouldoperatewithouttheuseofwater.Thiswillhelpsolarpanelarraysachieveaproductionoutputclosertotheirmaximumpotentialandsavecompaniesoncostsassociatedenergygeneration.Thecurrentapparatusutilizesabrushcleaningsystemthatcleansonsetcleaningcycles.Thedeviceusesthecombinationofageartrain(with48pitchDelringears)anda12VDCmotortospinbotha5.00footlong,0.25inchdiametervacuumbrushshaftanddrivetwosetsoftwowheels.Thepowersourceforthedrivetrainisa12Vdeepcyclelead−acidbattery.Ourlightweightdesigneliminateswaterusageduringcleaningandreducesthepotentialdangersstemmingfrommanuallabor.Ourdesign’sretailpricewasestimatedtobearound500 and operating for up to 7.0 years. A successful design should operate without the use of water. This will help solar panel arrays achieve a production output closer to their maximum potential and save companies on costs associated energy generation. The current apparatus utilizes a brush cleaning system that cleans on set cleaning cycles. The device uses the combination of a gear train (with 48 pitch Delrin gears) and a 12V DC motor to spin both a 5.00 foot long, 0.25 inch diameter vacuum brush shaft and drive two sets of two wheels. The power source for the drive train is a 12V deep cycle lead-acid battery. Our light weight design eliminates water usage during cleaning and reduces the potential dangers stemming from manual labor. Our design’s retail price was estimated to be around 700 with a payback period of less than 3.5 years. To date, we have created a device that improves the efficiency of soiled solar panels by 3.5% after two runs over the solar panel. We hope that our final design will continue to expand the growth of solar energy globally

    Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode

    Get PDF
    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (∌3.4⋅104\sim 3.4\cdot 10^4 at 8.3⋅10−38.3 \cdot 10^{-3} mbar) of the fundamental mechanical mode at ∌73\sim 73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (∌87\sim 87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale

    Group-delay measurement of frequency-converting devices using a comb generator

    Get PDF
    We propose a new method for the measurement of (group) delay from the radio-frequency (RF) input to the intermediate-frequency (IF) output of a mixer or a receiver. The method is particularly convenient for measuring the change in group delay with the local-oscillator (LO) tuning frequency of the receiver since the method does not require access to, or even knowledge of, the LO signal. The method employs a calibrated comb (impulse) generator. Other required equipment is limited to a reference signal generator and a digitizer of modest bandwidth, allowing the measurement to rely on a low-frequency generator and an oscilloscope. Simulated and measured data are presented to verify the approach
    • 

    corecore