873 research outputs found

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    Exascale machines require new programming paradigms and runtimes

    Get PDF
    Extreme scale parallel computing systems will have tens of thousands of optionally accelerator-equiped nodes with hundreds of cores each, as well as deep memory hierarchies and complex interconnect topologies. Such Exascale systems will provide hardware parallelism at multiple levels and will be energy constrained. Their extreme scale and the rapidly deteriorating reliablity of their hardware components means that Exascale systems will exhibit low mean-time-between-failure values. Furthermore, existing programming models already require heroic programming and optimisation efforts to achieve high efficiency on current supercomputers. Invariably, these efforts are platform-specific and non-portable. In this paper we will explore the shortcomings of existing programming models and runtime systems for large scale computing systems. We then propose and discuss important features of programming paradigms and runtime system to deal with large scale computing systems with a special focus on data-intensive applications and resilience. Finally, we also discuss code sustainability issues and propose several software metrics that are of paramount importance for code development for large scale computing systems

    Physical Oscillator Model for Supercomputing

    Full text link
    A parallel program together with the parallel hardware it is running on is not only a vehicle to solve numerical problems, it is also a complex system with interesting dynamical behavior: resynchronization and desynchronization of parallel processes, propagating phases of idleness, and the peculiar effects of noise and system topology are just a few examples. We propose a physical oscillator model (POM) to describe aspects of the dynamics of interacting parallel processes. Motivated by the well-known Kuramoto Model, a process with its regular compute-communicate cycles is modeled as an oscillator which is coupled to other oscillators (processes) via an interaction potential. Instead of a simple all-to-all connectivity, we employ a sparse topology matrix mapping the communication structure and thus the inter-process dependencies of the program onto the oscillator model and propose two interaction potentials that are suitable for different scenarios in parallel computing: resource-scalable and resource-bottlenecked applications. The former are not limited by a resource bottleneck such as memory bandwidth or network contention, while the latter are. Unlike the original Kuramoto model, which has a periodic sinusoidal potential that is attractive for small angles, our characteristic potentials are always attractive for large angles and only differ in the short-distance behavior. We show that the model with appropriate potentials can mimic the propagation of delays and the synchronizing and desynchronizing behavior of scalable and bottlenecked parallel programs, respectively.Comment: 5 pages, 2 figure

    Toward Reliable and Efficient Message Passing Software for HPC Systems: Fault Tolerance and Vector Extension

    Get PDF
    As the scale of High-performance Computing (HPC) systems continues to grow, researchers are devoted themselves to achieve the best performance of running long computing jobs on these systems. My research focus on reliability and efficiency study for HPC software. First, as systems become larger, mean-time-to-failure (MTTF) of these HPC systems is negatively impacted and tends to decrease. Handling system failures becomes a prime challenge. My research aims to present a general design and implementation of an efficient runtime-level failure detection and propagation strategy targeting large-scale, dynamic systems that is able to detect both node and process failures. Using multiple overlapping topologies to optimize the detection and propagation, minimizing the incurred overhead sand guaranteeing the scalability of the entire framework. Results from different machines and benchmarks compared to related works shows that my design and implementation outperforms non-HPC solutions significantly, and is competitive with specialized HPC solutions that can manage only MPI applications. Second, I endeavor to implore instruction level parallelization to achieve optimal performance. Novel processors support long vector extensions, which enables researchers to exploit the potential peak performance of target architectures. Intel introduced Advanced Vector Extension (AVX512 and AVX2) instructions for x86 Instruction Set Architecture (ISA). Arm introduced Scalable Vector Extension (SVE) with a new set of A64 instructions. Both enable greater parallelisms. My research utilizes long vector reduction instructions to improve the performance of MPI reduction operations. Also, I use gather and scatter feature to speed up the packing and unpacking operation in MPI. The evaluation of the resulting software stack under different scenarios demonstrates that the approach is not only efficient but also generalizable to many vector architecture and efficient

    Automated Tracing of I/O Stack

    Full text link
    • …
    corecore