48 research outputs found

    Advanced information processing system for advanced launch system: Hardware technology survey and projections

    Get PDF
    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS)

    The Application Of RISC Processors To Training Simulators

    Get PDF
    Report on a study of the utility of reduced instruction set computer processors as the control computers in a training simulator. Report includes a master\u27s thesis on detailed hardware design for interfacing transputer hardware to the NeXT computer

    ASSOCIATION OF RESILIENCE WITH QUALITY OF LIFE AND SELF-ESTEEM IN HEALTHCARE WORKERS OF COVID-19 HOSPITAL

    Get PDF
    Introduction: The coronavirus disease 2019 (COVID-19) pandemic has put national health systems under extremely large pressure. Health systems throughout the world demonstrated different levels of preparedness for COVID-19 pandemic. Aim: The aim of the study was to investigate the association of resilience with quality of life and self-esteem in healthcare workers of COVID-19 hospital. Methods: We performed a cross-sectional study between November 2020 and February 2021 in COVID-19 hospital at the University Clinical Hospital Mostar. A socio-demographic questionnaire specifically designed for this study, a CD-RISC-25 scale for assessing resilience, a WHOQOL-BREF questionnaire for assessing quality of life, and a RSES scale for assessing self-esteem were used for collecting data. Results: A statistically significant higher resilience was in healthcare workers who felt adequately prepared for work in COVID-19 hospital. Resilience, quality of life and self-esteem statistically significantly positively correlated with one another among healthcare workers. A healthcare worker’s resilience level was statistically significantly affected by psychological domain of the quality of life, gender, and adequate preparation. Conclusion: Resilience is positively related to the quality of life and self-esteem in healthcare workers of COVID-19 hospital at the University Clinical Hospital Mostar

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    Maximizing resource utilization by slicing of superscalar architecture

    Full text link
    Superscalar architectural techniques increase instruction throughput from one instruction per cycle to more than one instruction per cycle. Modern processors make use of several processing resources to achieve this kind of throughput. Control units perform various functions to minimize stalls and to ensure a continuous feed of instructions to execution units. It is vital to ensure that instructions ready for execution do not encounter a bottleneck in the execution stage; This thesis work proposes a dynamic scheme to increase efficiency of execution stage by a methodology called block slicing. Implementing this concept in a wide, superscalar pipelined architecture introduces minimal additional hardware and delay in the pipeline. The hardware required for the implementation of the proposed scheme is designed and assessed in terms of cost and delay. Performance measures of speed-up, throughput and efficiency have been evaluated for the resulting pipeline and analyzed

    Context flow architecture

    Get PDF

    Efficient Instruction Sequencing with Inline Target Insertion

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / MIP-8809478NCRNational Aeronautics and Space Administration / NASA NAG 1-613Office of Naval Research / N00014-88-K-065

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Compile-time optimization of near-neighbor communication for scalable shared-memory multiprocessors

    Full text link
    Scalable shared-memory multiprocessor systems are typically NUMA (nonuniform memory access) machines, where the exploitation of the memory hierarchy is critical to achieving high performance. Iterative data parallel loops with near-neighbor communication account for many important numerical applications. In such loops, the communication of partial results stresses the memory system performance. In this paper, we develop data placement schemes that minimize communication time where the near-neighbor interaction is determined by a stencil. Under a given loop partition, our compile-time algorithm partitions global data into four classes for each processor, with each class requiring specific consistency maintenance requirements. The ADAPT (Automatic Data Allocation and Partitioning Tool) system was implemented to automatically partition parallel code segments for the BBN TC2000, a scalable shared-memory multiprocessor. ADAPT caches global arrays and maintains data consistency in software through instructions that flush data from private caches. Restructuring of a fluid flow code segment by ADAPT improved performance by a factor of more than 3 on the BBN TC2000. Features in current generation pipelined processors with multiple functional units permit the overlap of memory accesses with computation. Our experiments on the BBN TC2000 show that the degree of overlap is limited by architectural parameters, such as the number of CPU registers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30342/1/0000744.pd
    corecore