1,432 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Improving the reliability of optimised link state routing in a smart grid neighbour area network based wireless mesh network using multiple metrics

    Get PDF
    © 2017 by the authors; licensee MDPI. Reliable communication is the backbone of advanced metering infrastructure (AMI). Within the AMI, the neighbourhood area network (NAN) transports a multitude of traffic, each with unique requirements. In order to deliver an acceptable level of reliability and latency, the underlying network, such as the wireless mesh network (WMN), must provide or guarantee the quality-of-service (QoS) level required by the respective application traffic. Existing WMN routing protocols, such as optimised link state routing (OLSR), typically utilise a single metric and do not consider the requirements of individual traffic; hence, packets are delivered on a best-effort basis. This paper presents a QoS-aware WMN routing technique that employs multiple metrics in OLSR optimal path selection for AMI applications. The problems arising from this approach are non deterministic polynomial time (NP)-complete in nature, which were solved through the combined use of the analytical hierarchy process (AHP) algorithm and pruning techniques. For smart meters transmitting Internet Protocol (IP) packets of varying sizes at different intervals, the proposed technique considers the constraints of NAN and the applications' traffic characteristics. The technique was developed by combining multiple OLSR path selection metrics with the AHP algorithm in ns-2. Compared with the conventional link metric in OLSR, the results show improvements of about 23% and 45% in latency and Packet Delivery Ratio (PDR), respectively, in a 25-node grid NAN

    Molecular quantum spin network controlled by a single qubit

    Full text link
    Scalable quantum technologies will require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. Here we present the working principle of such a basic unit, engineered using molecular chemistry, whose control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular sidegroups separated by a few nanometers. We demonstrate the readout and coherent manipulation of very few (6\leq 6 ) of these S=1/2S=1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show, that it is feasible to use spin-labeled peptides as a resource for a molecular-qubit based network, while at the same time providing simple optical readout of single quantum states through NV-magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.Comment: Author name typ

    Photovoltaic and Thermal solar concentrator integrated into a dynamic shading device

    Get PDF

    Overlay networks for smart grids

    Get PDF

    On Reliability of Smart Grid Neighborhood Area Networks

    Get PDF
    With the integration of the advanced computing and communication technologies, smart grid system is dedicated to enhance the efficiency and the reliability of future power systems greatly through renewable energy resources, as well as distributed communication intelligence and demand response. Along with advanced features of smart grid, the reliability of smart grid communication system emerges to be a critical issue, since millions of smart devices are interconnected through communication networks throughout critical power facilities, which has an immediate and direct impact on the reliability of the entire power infrastructure. In this paper, we present a comprehensive survey of reliability issues posted by the smart grid with a focus on communications in support of neighborhood area networks (NAN). Specifically, we focus on network architecture, reliability requirements and challenges of both communication networks and systems, secure countermeasures, and case studies in smart grid NAN. We aim to provide a deep understanding of reliability challenges and effective solutions toward reliability issues in smart grid NAN

    Parallel detrended fluctuation analysis for fast event detection on massive PMU data

    Get PDF
    ("(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")Phasor measurement units (PMUs) are being rapidly deployed in power grids due to their high sampling rates and synchronized measurements. The devices high data reporting rates present major computational challenges in the requirement to process potentially massive volumes of data, in addition to new issues surrounding data storage. Fast algorithms capable of processing massive volumes of data are now required in the field of power systems. This paper presents a novel parallel detrended fluctuation analysis (PDFA) approach for fast event detection on massive volumes of PMU data, taking advantage of a cluster computing platform. The PDFA algorithm is evaluated using data from installed PMUs on the transmission system of Great Britain from the aspects of speedup, scalability, and accuracy. The speedup of the PDFA in computation is initially analyzed through Amdahl's Law. A revision to the law is then proposed, suggesting enhancements to its capability to analyze the performance gain in computation when parallelizing data intensive applications in a cluster computing environment
    corecore