1,738 research outputs found

    COLAB:A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

    Get PDF
    Funding: Partially funded by the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Many-core Systems (EP/P020631/1) and ABC: Adaptive Brokerage for Cloud (EP/R010528/1); Royal Academy of Engineering under the Research Fellowship scheme.Increasingly prevalent asymmetric multicore processors (AMP) are necessary for delivering performance in the era of limited power budget and dark silicon. However, the software fails to use them efficiently. OS schedulers, in particular, handle asymmetry only under restricted scenarios. We have efficient symmetric schedulers, efficient asymmetric schedulers for single-threaded workloads, and efficient asymmetric schedulers for single program workloads. What we do not have is a scheduler that can handle all runtime factors affecting AMP for multi-threaded multi-programmed workloads. This paper introduces the first general purpose asymmetry-aware scheduler for multi-threaded multi-programmed workloads. It estimates the performance of each thread on each type of core and identifies communication patterns and bottleneck threads. The scheduler then makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor's time. We evaluate our approach using the GEM5 simulator on four distinct big.LITTLE configurations and 26 mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average depending on the hardware setup.Postprin

    A Novel Side-Channel in Real-Time Schedulers

    Full text link
    We demonstrate the presence of a novel scheduler side-channel in preemptive, fixed-priority real-time systems (RTS); examples of such systems can be found in automotive systems, avionic systems, power plants and industrial control systems among others. This side-channel can leak important timing information such as the future arrival times of real-time tasks.This information can then be used to launch devastating attacks, two of which are demonstrated here (on real hardware platforms). Note that it is not easy to capture this timing information due to runtime variations in the schedules, the presence of multiple other tasks in the system and the typical constraints (e.g., deadlines) in the design of RTS. Our ScheduLeak algorithms demonstrate how to effectively exploit this side-channel. A complete implementation is presented on real operating systems (in Real-time Linux and FreeRTOS). Timing information leaked by ScheduLeak can significantly aid other, more advanced, attacks in better accomplishing their goals

    Network Traffic Control Design and Evaluation

    Get PDF
    Recently, the term bufferbloat has been coined to indicate the uncontrolled growth of the network queueing time. A number of network traffic control strategies have been proposed to control network queueing delay. Active Queue Management (AQM) algorithms such as RED, CoDel and PIE have been proposed to drop packets before the network queues become full and to notify upper layers, e.g., transport protocols, about possible congestion status. Innovative packet schedulers such as FQ-CoDel, have been introduced to prioritize flows which do not build queues. Strategies to reduce device buffering, e.g., BQL, have been proposed to increase the effectiveness of packet schedulers. Network experimentation through simulators such as ns-3, one of the most used network simulators, allows the study of bufferbloat and to evaluate solutions in a controlled environment. In this work, we aligned the ns-3 queueing system to the Linux one, one of the most used networking stacks. We introduced in ns-3 a traffic control module modelled after the Linux one. Our design allowed the introduction in ns-3 of schedulers such as FQ-CoDel and of algorithms to dynamically size the buffers such as BQL. Also, we devised a new emulation methodology to overcome some limitations and increase the emulation fidelity. Then, by using the new emulation methodology, we validated the traffic control module with its AQM algorithms (RED, CoDel, FQ-CoDel and PIE). Our experiments prove the high fidelity of network emulation and the high accuracy of the traffic control module and AQM algorithms. Then, we show two proposals of design and evaluation of traffic control strategies by using ns-3. Firstly, we designed and evaluated a traffic control layer for the backlog management in 3GPP stacks. The approach improves significantly the flows performance in LTE networks. Secondly, we highlighted possible design flaws in rate based AQM algorithms and proposed an alternative flow control approach. The approach allows the improvement of the effectiveness of AQM algorithms. Our work will allow researchers to design and evaluate in a more accurate manner traffic control strategies through ns-3 based simulation and emulation and to evaluate the accuracy of other modules implemented in ns-3

    Quality of Service in Software Defined Networking

    Get PDF
    Software Defined Networking SDN promises to provide a powerful way to introduce Quality of Service QoS concepts in today s communication networks SDN programmatically modifies the functionality and behavior of network devices using single high level program Software Defined Networking SDN instantiation OpenFlow has been designed according to these properties The realization of Quality of Service QoS concepts becomes possible in a flexible and dynamic manner with SDN This paper focuses on the existing architectures parameter such as response time switch capacity and bandwidth isolation that is calculated here Although concepts of QoS are well researched they were not realized in communication networks due to high implementation complexity and realization costs OpenFlow as the best-known SDN standard so far defines a standard protocol for network control These observations of switch variety may provide SDN application developer s insights when realizing QoS concepts in an SDN-based networ
    • …
    corecore