
© 2018. Md. Alam Hossain, Mohammad Nowsin Amin Sheikh, Monishanker Halder, Sujan Biswas & Md. Ariful Islam Arman. This is a
research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium,
provided the original work is properly cited.

Quality of Service in Software Defined Networking
By Md. Alam Hossain, Mohammad Nowsin Amin Sheikh, Monishanker Halder,

Sujan Biswas & Md. Ariful Islam Arman
 Jessore University of Science and Technology

Abstract- Software Defined Networking (SDN) promises to provide a powerful way to introduce
Quality of Service (QoS) concepts in today’s communication networks. In SDN the behavior and the
functionality of the network devices is programmatically modified using a single high-level program.
Software Defined Networking (SDN) instantiation OpenFlow is designed according to these
properties. The realization of the Quality of Service (QoS) concepts becomes understandable with
SDN in a convenient way. This paper focuses on the existing architectures parameters such as
response time, switch capacity and bandwidth isolation and we evaluate these parameters here.
Although concepts of QoS are well researched, it is hard to understand that due to high
implementation complexity and realization costs. OpenFlow as the best-known SDN standard so far
defines a standard protocol for network control. These observations of switch variety may provide
SDN application developer’s insights when realizing QoS concepts in an SDN-based network.

Keywords: SDN, QoS, ROIA, NOX, ForCES, MPLSTE, RSVP, FE, CE, HTB, SFQ, RED, QoS.

GJCST-E Classification: C.2.m

QualityofServiceinSoftwareDefinedNetworking

Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: E
Network, Web & Security

Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Volume 18 Issue 3 Version 1.0 Year 2018

Quality of Service in Software Defined
Networking

Md. Alam Hossain α, Mohammad Nowsin Amin Sheikh σ, Monishanker Halder ρ, Sujan Biswas Ѡ
& Md. Ariful Islam Arman¥

Abstract- Software Defined Networking (SDN) promises to
provide a powerful way to introduce Quality of Service (QoS)
concepts in today’s communication networks.

In SDN the
behavior and the functionality of the network devices is
programmatically modified using a single high-level program.
Software Defined Networking (SDN) instantiation OpenFlow is
designed according to these properties. The realization of the
Quality of Service (QoS) concepts becomes understandable
with SDN in a convenient way. This paper focuses on the
existing architectures parameters such as response time,
switch capacity and bandwidth isolation and we evaluate
these parameters here. Although concepts of QoS are well
researched, it is hard to understand that due to high
implementation complexity and realization costs. OpenFlow as
the best-known SDN standard so far defines a standard
protocol for network control. These observations of switch
variety may provide SDN application developer’s insights
when realizing QoS concepts in an SDN-based network.
Keywords:

SDN, QoS, ROIA, NOX, ForCES, MPLSTE,
RSVP, FE, CE, HTB, SFQ, RED, QoS.

I.

Introduction

DN provides network functionality and also the
behavior of network devices. The data-plane is
forward through the network, such as packets and

the hardware that is used to forward it, such as,
switches. The control-plane represents all logic and
devices that are responsible for deciding how and to
where data in the data-plane is to be sent. In SDN,
network operator can manage networking elements by
running software on an external server. We can easily
understand SDN against traditional network by a simple
example, suppose if we want to deliver a packet in the
network it has to change its route multiple times for
finding the optimal path. But in SDN it automatically
traces the entire possible and shortest route for
delivering the packets. By separating the control plane
from data plane in SDN, some controller increased its
flexibility in deploying new services (e.g., virtual private
network, cloud computing), programmability in open
API, reliability in converged IP network. In few controllers

installing control software remotely from forwarding
element reduces the complexity of the forwarding
element but increases the dependability of the network.

 Real-time Online Interactive Applications
(ROIA) is connecting high numbers of user applications
such as multiplayer online games, simulation base
e-learning etc. In ROIA the reaction of user happens
virtually and immediately. ROIA provides High Quality of
Service on underlying network. Resource Reservation
Protocol (RSVP) is one kind of traditional technique for
controlling QoS for reserving network bandwidth. It is
mainly static by nature and not suitable for changing
demands of ROIA dynamically. There is a problem for
SDN is to design the Northbound API. It defines the
communication between the controller and high-level
program [1].

 Packet scheduling is essential for entire
supporting applications on Software-Defined Networking
(SDN) model. However, on OpenFlow/SDN, QoS is only
performed with bandwidth guarantees and by a well-
known FIFO scheduling. QoSFlow module adds
extensions to the standard software switch (datapath) of
Open Flow 1.0. During the starting time of the QoSFlow
project, the specification 1.0 of Open Flow was the latest
stable version and was used in the project. Even though
OF 1.3 has brought a new mechanism for rate limiting,
but as well as the Open Flow 1.0, we are able to use
FIFO instead of other packet schedulers to achieve
different treatments to the packets. The Open Flow
datapath plus QoS modules form the QoSFlow datapath
[2]. This datapath is a user space implementation where
queues are located in the kernel space. The QoS
module opens a channel with the kernel through Netlink
and Packet socket families to connect both user and
kernel space. Thus, the packet schedulers can be
instantiated to enable traffic shaping and enqueueing of
flows. The components called Traffic Shaping, Packet
Schedulers and enqueueing that constructs the QoS
module of the QoSFlow datapath.

 Network operating systems (NOX)
applications will be written as centralized programs on
high level of instability in network resources, unlike
algorithms distributed from lower back [3, 4]
applications. The network operating system does not
manage the network itself; It provides a programming
interface with high level objects (such as CPU
processing power, memory, disk storage volume, link

S

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

21

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals

Author α σ: Assistant Professor, Dept. of Computer Science and
Engineering, Jessore University of Science and Technology, Jessore.
e-mails: alamcse_iu@yahoo.com, nowsin.jstu@gmail.com
Author ρ: Lecturer, Dept. of Computer Science and Engineering,
Jessore University of Science and Technology, Jessore.
e-mail: monicsejust@gmail.com
Author Ѡ ¥: Dept. of Computer Science and Engineering, Jessore
University of Science and Technology, Jessore.
e-mails: sujanbiswas1357@gmail.com, armanarif.cse@gmail.com

power, etc.) of network resources, which enables
network application programs to handle secure and
functional complex tasks on a wide variety of networks
[3]. The NOX, however, fails in providing the obligatory
functions for QoS-ensured software defined networking
(SDN) [5] accommodation provisioning on carrier grade
provider Internet, such as QoS-vigilant virtual network
embedding, end-to-end network QoS assessment, and
collaborations among control elements in other domain
network.

II. Related Work

Previous work on providing QoS using Open
Flow has three categories. First, studies deploying
dynamic QoS in an SDN environment [6], [7], [8].
Second, studies on switch diversity [9], [10], [11],
[12].Third, research on network performance resulting
from QoS with OpenFlow- enabled switches [13], [14].

Some of the work done in the area of SDN
based on demand provisioning of network resources, is
targeted towards automated, policy-based network
provisioning [15, 16], while the other is targeted towards
traffic engineering across Wide Area Networks (WANs)
[17, 18]. Dynamic allocation of network resources is also
required inside the data centers, and many studies
address this challenge. As an example, an OpenFlow-
based algorithm for allocation of bandwidth resources
between virtual machines in data centers is presented in
[19], while in [20] the authors describe a platform for
integrated provisioning of computing, storage and
network resources in data centers.

However, most of the related work focuses on
the service logic for QoS-aware resource provisioning,
leaving out the details of how the network resources are
managed and provisioned in the data plane. In some of
the papers, such as [21], the authors mention that the
proposed QoS architecture dependent on traffic
classification and rate limiting at the edge of the
network, although no description about how the
reservation of logical resources inside the SDNC
enforces in the forwarding devices.

The work that is closest to the one presented
here is [22], which defines a data plane QoS
architecture for SDN based on similar principles (i.e. a
combination of queues and rate limiters), but with
different constraints for the resources. The current paper
contains a definition of how the resources are managed
inside the SDN in order to provide deterministic QoS.

When monitoring the QoS it is an advantage
that a network problem resulting in decayed
performance will affect a whole class of flows that share
some properties (i.e. routed through an overloaded
device and use the same QoS class). It is sufficient to
monitor a representative subset of the network flows
which makes QoS Monitoring eligible for sampling.

III. Description of the Existing
Architectures

 Existing Architectures

1. ROIA
2. Multiple Packet Scheduler
3. NOX

1. ROIA
Real-time Online Interactive Applications (ROIA)

connects wide number of users who interact with the
applications and with each other with proper
authentication, i.e., a replication to a user’s action
transpires virtually and immediately. Typical
representatives of ROIA are multiplayer online computer
games, simulation-based e-learning, and serious
gaming. Due to a large, variable number of users, with
intensive and dynamic interactions, ROIA make high
Quality of Service (QoS) demands on the underlying
network. Furthermore, these demands may continuously
change, depending on the number of users and the
actual application state: in a shooter game, a high
packet loss in a combat state may have fatal
consequences on QoS, whereas it is less relevant when
a player is exploring the terrain.

ROIA Applications has two parts, a static and a
dynamic part. Static part has non-changeable and
landscape objects. The other one dynamic part has
non-playing characters controlled by server. These
objects can change their state at any time. Figure 1
shows the structure of a ROIA.

Figure 1: Structure of a ROIA and its real-time loop

In this architecture only one ROIA process
serves the connected ROIA clients and a group of ROIA
processes distributes among several machines. For the
processing of ROIA in an infinite loop the application
state executes repeatedly in real time which is called
real-time loop [23]. Single loop iteration has three
important steps. Firstly, the user takes input and
transmits it via a network and ROIA process receives
that. Then to calculate the application state we can
apply the user input and processing methods to current

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

22

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals 1

Quality of Service in Software Defined Networking

application state. After that, the loop transfers the
updated state to the client.

2. Multiple Packet Scheduler
The Open Flow data path plus QoS modules

form the QoSFlow datapath. This path is a utilizer space
implementation and locates in the kernel space. The
QoS module opens a channel with the kernel through
Netlink and Packet socket families to connect both
utilizer and kernel space. Thus, the packet schedulers
can be instantiated to enable traffic shaping and
enqueueing of flows. Figure 2 shows the components
like Traffic Shaping, Packet Schedulers and enqueueing
that constructs the QoS module of the QoSFlow
datapath, and their relationships.

Figure 2: QoS module which has been added to the

standard OpenFlow datapath
• Traffic Shaping and Packet Schedulers: These

components use Netlink socket family to manipulate
OFPT_QOS_QUEUEING_DISCIPLINE message
type, which is a new extension of the message to
represent the QoS messages in OF protocol.

Hence, the Traffic Shaping and Packet
Schedulers components administer the QoS messages
receipt from control plane by splitting the bandwidth size
in queues and by attaching or detaching packet
schedulers for these queues, respectively.

To connect the kernel, these components open
a Netlink socket channel and send a Netlink message
through it. The Netlink message is the type of message
that Linux kernel accepts for network resources
management. In this way, the QoS messages maps to
Netlink messages.
• Enqueueing: It is the component responsible for

operating OFPT_FLOW_MOD messages of the of
protocol. This message modifies the state of the
flow table, where each entry contains header fields,
counters, and actions for matching packets or flow
packets.

The enqueueing mechanism maps flow to
queues using the skb-> priority of kernel’s data
structure called sk_buff. This configuration establish

through the use of the SO_PRIORITY option of the
Packet socket family. Since user space cannot access
such data structure directly.

The QoS development strategy for OF enabling
networks is to overcome the packet scheduling issues.
The primary goal of QoSFlow is to allow control of
multiple packet schedulers. In another word, QoSFlow
brings the traffic control of Linux to become part of OF
networks. Our proposal extends the OF protocol 1.0 and
the standard data path based on it. This way,
developers can deploy their applications, for instance, a
control of bandwidth according to need with one or
more packet schedulers on the network. Currently,
QoSFlow provides control of the following packet
schedulers: HTB (Hierarchical Token Bucket) [24], RED
(Randomly Early Detection) [25], and SFQ (Stochastic
Fairness Queuing) [26].

Currently, QoSFlow controls the following
packet schedulers: HTB, SFQ, and RED where the HTB
is a classfull, while SFQ and RED are classless queuing
discipline. Thus, the current QoSFlow features come
from these Linux kernel packet schedulers.

• HTB: It allows splitting the bandwidth according to
the size of the network. By default, the Linux kernel
automatically attaches a FIFO packet scheduler to
each bandwidth segment. It creates logical links
which are slower than the physical link.

• SFQ: This belongs to fair queuing algorithm. The
SFQ schedules the packets transmission based on
information about the IPv4/v6 source and
destination address, and TCP/UDP source port to
assign each flow to each hash bucket, on the
enqueueing phase.

• RED: It drops packets in a queue gradually. It
performs a tail drop like FIFO, but smartly. Such
packet scheduler has a threshold value to mark
packets to be discarded after queue length
becomes greater than the threshold value.

3. NOX

Network operating system (NOX) enables
management applications to be constructed as
centralized programs over high-level abstractions of
network resources as an inverse to the distributed
algorithms over low-level addresses [22, 23]. The
network operating system does not manage the network
itself; it provides a programming interface with high-level
abstractions of network resources (e.g., memory, disk
storage volume, CPU processing power, disk storage
volume, link capacity, etc.) that enable network
application programs to perform complicated tasks
safely and efficiently on a broad heterogeneity of
networking technologies [22]. The NOX, however, fails in
giving the necessary functions for QoS-guaranteed
Software Defined Networking (SDN) [24] service
provisioning on bearer grade provider Internet, such as

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

23

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals

Quality of Service in Software Defined Networking

QoS-aware virtual network seating, end-to-end network
QoS measurement, and cooperation among control
elements with other domain network.

IV. Comparison among the Existing
ARCHITECTURES

1. ROIA

a. The Response time of ROIA

Table 1:

Calculation of the Response Time with ROIA

Number of

Clients

Response Time
(ROIA) ms

5

1.03

10

1.19

15

1.22

20

1.35

25

1.29

30

1.07

35

1.48

40

1.21

45

1.34

50

1.09

55

1.42

60

1.3

65

1.15

70

1.45

Figure 3: Response Time of ROIA

Number of
Clients

Throughput
(ROIA) in

milliseconds
(ms)

5 0.97087

10
0.84033

15
0.81967

20
0.74074

25
0.77519

30
0.93457

35
0.67567

40
0.82644

45
0.74626

50
0.91743

55
0.70422

60
0.76923

65
0.86959

70
0.68965

Figure 4: Throughput of ROIA

2. Multiple Packet Scheduler

a. The Response time of Multiple Packet Scheduler
Figure 5 shows the graph of the calculation of

Response Time with Multiple Packet Schedulers [2] of
Table 3.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

24

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals 1

Quality of Service in Software Defined Networking

Figure 3 shows the graph of the calculation of
Response Time with ROIA [1] of Table 1.

b. Throughput of ROIA
The Figure 4 shows the graph of the calculation

of Throughput with ROIA [1] of Table 2.

Table 2: Calculation of the Throughput with ROIA

Number
of Clients

Response
Time

(HTB) ms

Response
Time

(SFQ) ms

Response
Time

(RED) ms

5 1.28

0.1

0.55

10

2.56

0.2

1.1

15

3.84

0.3

1.65

20

5.12

0.4

2.2

25

6.4

0.5

2.75

30

7.68

0.6

3.3

35

8.96

0.7

3.85

40

10.24

0.8

4.4

45

11.52

0.9

4.95

50

12.8

1 5.5

55

14.08

1.1

6.05

60

15.36

1.2

6.6

65

16.64

1.3

7.15

70

17.92

1.4

7.7

Figure 5: Response Time of Multiple Packet Schedulers

Table 4:

Calculation of the Throughput with Multiple
Packet Schedulers

Number
of

Clients

Throughput
(HTB) ms

Throughput
(SFQ) ms

Throughput
(RED) ms

5

0.12206

0.15625

0.0284

10

0.244125

0.3125

0.05681

15

0.36618

0.46875

0.08522

20

0.48825

0.625

0.113635

25

0.6103125

0.78125

0.14204

30

0.732375

0.9375

0.17045

35

0.8544375

1.09375

0.19886

40

0.9765

1.25

0.22727

45

1.09856

1.40625

0.25567

50

1.220625

1.5625

0.28408

55

1.34268

1.71875

0.31249

60

1.46472

1.875

0.340905

65

1.58678

2.03125

0.36931

70

1.70884.

2.1875

0.39772

Figure 6: Throughput of Multiple Packet Schedulers

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

25

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals

Quality of Service in Software Defined Networking

2. Multiple Packet Scheduler

a. The Response time of Multiple Packet Scheduler
Figure 5 shows the graph of the calculation of

Response Time with Multiple Packet Schedulers [2] of
Table 3.

Table 3: Calculation of the Response Time with Multiple
Packet Schedulers

b. The Throughput of Multiple Packet Scheduler
Figure 6 shows the graph of the calculation of

Throughput with Multiple Packet Schedulers [2] of
Table 4.

Table 5:

Calculation of the Response Time with NOX

Number of

Clients

Response Time
(NOX) ms

5 0.7948

10

0.983

15

0.8542

20

0.808

25

0.888

30

0.899

35

0.9585

40

0.97

45

0.787

50

0.9095

55

0.755

60

0.7777

65

0.842

70

0.7888

Figure 7:

Response Time of NOX

Throughput of NOX

Figure 8 shows the graph of the calculation of
Throughput with NOX [27] of Table 6.

Table 6:

Calculation of the Throughput with NOX

Number of Clients

Throughput (NOX) ms

5 0.09

10

0.091

15

0.08

20

0.075

25

0.0859

30

0.0848

35

0.079

40

0.082

45

0.072

50

0.0797

55

0.0976

60

0.0776

65

0.0923

70

0.0948

Figure 8: Throughput of NOX

V.

Comparison among ROIA, Multiple
Packet

Scheduler, and NOX

a)

Response Time

The response time of HTB is better than the
response time of ROIA, NOX, SFQ and RED packet
scheduler shown in figure 9.

Figure 9: Response time of Existing Architectures

b)

Throughput

The throughput of ROIA is better than of HTB,
NOX, SFQ and RED packet scheduler in the
transmission of first 24 packets, for other 46 packets
Throughput of SFQ packet scheduler is better than
ROIA, NOX, RED and SFQ packet scheduler shown in
figure 10.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

26

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals 1

Quality of Service in Software Defined Networking

3. NOX

The Response time of NOX
Figure 7 shows the graph of the calculation of

Response Time with NOX [27] of Table 5.

a.

b.

Figure 10: The throughput of Existing Architectures

VI.

Conclusion and Future Work

Software Defined Network is an emerging topic
for the modern era. It is an idea which has recently
reignited the interest of network researchers for
programmable networks. Enabling added-value
services is the major target for this work. Not only this
but also ensuring the security is another purpose for this
work. Software Defined Networking (SDN) enables an
easy and flexible realization of existing dynamic
Quality of Service (QoS) mechanisms in today’s
communication networks. Although SDN and, in
particular, OpenFlow claims to provide a
standardized interface, the existing diversity of
OpenFlow enabled switches leads to different
behavior

for the same QoS mechanisms. As

compared to the response time of existing architectures
HTB packet scheduler is better. In case of throughput,
SFQ packet scheduler is better. We will improve Quality
of Service (QoS) in SDN by designing an efficient
architecture and implement that in any network
emulator. In the future, we will work with Switch
Capacity, Number of Queues Impact, QoE Evaluation,
and Bandwidth Isolation.

References Références Referencias

1.

“Improving QoS

in Real-Time Internet Applications:

From Best-Effort to Software-Defined Networks -
IEEE Xplore Document.”10 April 2014.

2.

“Control of Multiple Packet Schedulers for Improving
QoS on OpenFlow/SDN Networking - IEEE Xplore
Document.” 12 December 2013.

3.

Natasha Gude et al., “NOX: Towards an Operating
System for Networks,” editorial note submitted to
CCR.

4. ArsalanTavakoli et al, “Applying NOX to the
Datacenter,” in Proc. Of SIGCOMM Hotnet 2009.

5. DimitriStaessens et al., “Software Defined
Networking: Meeting Carrier Grade Requirements,”
in Proc. of IEEE Workshop on Local & Metropolitan
Area Networks (LANMAN), 2011.

6. P. Georgopoulos, Y. Elkhatib, M. Broadbent et al.,
“Towards network wide QoE fairness using
OpenFlow-assisted adaptive video streaming,” in
Proc. of the 2013 ACM SIGCOMM Workshop on
Future Human- Centric Multimedia Networking
(FhMN 2013), Hong Kong, China, 2013, pp. 15–20.

7. T. Zinner, M. Jarschel, A. Blenk et al., “Dynamic
application-aware resource management using
software-defined networking: implementation
prospects and challenges,” in Proc. of the 2014
IEEE Network Operations and Management
Symposium (NOMS ’14), Krakow, Poland, 2014,
pp. 1–6.

8. A Lazaris, D. Tahara, X. Huang et al., “Tango:
simplifying SDN control with automatic switch
property inference, abstraction, and optimization,” in
Proc. of the 10th ACM International on Conference
on emerging Networking Experiments and
Technologies (CoNEXT), Sydney, Australia, 2014,
pp. 199–212.

9. M. Kuzniar, P. Peresini, and D. Kostic, “What you
need to know about SDN control and data planes,”
EPFL, Lausanne, Switzerland, Tech. Rep. EPFL-
REPORT-199497, 2014.

10. V. Mann, A. Vishnoi, A. Iyer et al., “VMPatrol:
dynamic and automated QoS for virtual machine
migrations,” in Proc. of the 8th International
Conference on Network and Service Management
(CNSM), Las Vegas, USA, 2012, pp. 174–178.

11. Z. Bozakov and A. Rizk, “Taming SDN controllers in
heterogeneous hardware environments,” in Proc. of
Second European Workshop on Software Defined
Networks (EWSDN), Berlin, Germany, 2013, pp.
50 – 55.

12. M. Kuzniar, P. Peresini, and D. Kostic, “What you
need to know about sdn flow tables,” in Passive and
Active Measurement, ser. Lecture Notes in
Computer Science, J. Mirkovic and Y. Liu, Eds.
Springer International Publishing, 2015, vol. 8995,
pp. 347–359.

13. P. M. Mohan, D. M. Divakaran, and M. Gurusamy,
“Performance study of TCP flows with QoS-
supported OpenFlow in data center networks,” in
Proc. of the 19th IEEE International Conference on
Networks (ICON), Singapore, Singapore, 2013, pp.
1–6.

14. A Nguyen-Ngoc, S. Lange, S. Gebert et al.,
“Investigating isolation between virtual networks in
case of congestion for a Pronto 3290 switch,” in
Proc. of the Workshop on Software-Defined
Networking and Network Function Virtualization for

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

27

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals

Quality of Service in Software Defined Networking

Flexible Network Management (SDNFlex 2015),
Cottbus, Germany, 2015.

15. Bari, M.F., Chowdhury, S.R., Ahmed R., Boutaba,
R.: PolicyCop: an autonomic QoS policy
enforcement framework for software defined
networks. In: IEEE SDN for Future Networks and
Services, Trento, Italy, pp. 1–7, November 2013.

16. Hong, C.Y., et al.: Achieving high utilization with
software-driven WAN. In: Proceedings of the
ACM SIGCOMM, Hong Kong, China, pp. 15–26
(2013).

17. Egilmez, H.E., Dane, S.T., Bagci, K.T., Tekalp, A. M.:
OpenQoS: an openflow controller design for
multimedia delivery with end-to-end Quality of
Service over Software-Defined Networks. In:
Proceedings of the Signal and Information
Processing Association Annual Summit and
Conference, Hollywood, California, US, pp. 1–8,
December 2012.

18. Guo, J., Fangming, L., Haowen, T., Yingnan, L., Hai,
J., John, L.: Falloc: fair network bandwidth allocation
in IaaS data centers via a bargaining game
approach. In: Proceedings ofthe ICNP, Gotingen,
Germany, pp. 1–10, October 2013.

19. Benson, T., Akella, A., Shaikh, A., Sahu, S.:
CloudNaaS: a cloud networking platform for
enterprise applications. In: Proceedings of the 2nd
ACM Symposium on Cloud Computing, Cascais,
Portugal (2011)

20. Jain, S., et al.: B4: Experience with a globally-
deployed software defined WAN. ACMSIGCOMM
Comput. Commun. Rev. 43(4), 3–14 (2013).

21. Kim, W., et al.: Automated and scalable QoS control
for network convergence. In: Proceedings of the
INM/WREN, San Jose, California, US (2010).

22. M. Betts, S. Fratini, N. Davis, R. Dolin and others,
“SDN Architecture”. Open Networking Foundation
ONF SDN ARCH, Issue 1, June, 2014.

23. M. Joselli et al., “An Architeture with Automatic Load
Balancing for Real-Time Simulation and
Visualization Systems,” Journal of Computational
Interdisciplinary Sciences, vol. 1, no. 3, pp.
207–224, 2010.

24. Bert Hubert, Thomas Graf, Gregory Maxwell, Remco
Van Mook, Martijn Van Oosterhout, Paul B.
Schroeder, Jasper Spaans, and Pedro Larroy. Linux
Advanced Routing & Traffic Control HOWTO. Linux
Advanced Routing & Traffic Control, http://lartc.org/,
April 2004.

25. Sally Floyd and Van Jacobson. Random early
detection gateways for congestion avoidance.
Networking, IEEE/ACM Transactions on, 1(4):
397–413, 1993.

26. Paul E McKenney. Stochastic fairness queueing. In
INFOCOM’90. Ninth Annual Joint Conference of the
IEEE Computer and Communication Societies.’The

Multiple Facets of Integration’. Proceedings. IEEE,
pages 733–740. IEEE, 1990.

27. “On Scalability of Software-Defined Networking -
IEEE Xplore Document.” 14 February 2013.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

28

Y
e
a
r

20
18

 (

)
E

© 2018 Global Journals 1

Quality of Service in Software Defined Networking

	Quality of Service in Software Defined Networking
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Description of the ExistingArchitectures
	IV. Comparison among the ExistingARCHITECTURES
	V. Comparison among ROIA, MultiplePacketScheduler, and NOX
	a) Response Time
	b) Throughput

	VI. Conclusion and Future Work
	References Références Referencias

