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Abstract- Software Defined Networking (SDN) promises to 
provide a powerful way to introduce Quality of Service (QoS) 
concepts in today’s communication networks.

 

In SDN the 
behavior and the functionality of the network devices is 
programmatically modified using a single high-level program. 
Software Defined Networking (SDN) instantiation OpenFlow is 
designed according to these properties. The realization of the 
Quality of Service (QoS) concepts becomes understandable 
with SDN in a convenient way. This paper focuses on the 
existing architectures parameters such as response time, 
switch capacity and bandwidth isolation and we evaluate 
these parameters here. Although concepts of QoS are well 
researched, it is hard to understand that due to high 
implementation complexity and realization costs. OpenFlow as 
the best-known SDN standard so far defines a standard 
protocol for network control. These observations of switch 
variety may provide SDN application developer’s insights 
when realizing QoS concepts in an SDN-based network. 
Keywords:

 

SDN, QoS, ROIA, NOX, ForCES, MPLSTE, 
RSVP, FE, CE, HTB, SFQ, RED, QoS.

 

I.

 

Introduction

 

DN provides network functionality and also the 
behavior of network devices. The data-plane is 
forward through the network, such as packets and 

the hardware that is used to forward it, such as, 
switches. The control-plane represents all logic and 
devices that are responsible for deciding how and to 
where data in the data-plane is to be sent. In SDN, 
network operator can manage networking elements by 
running software on an external server. We can easily 
understand SDN against traditional network by a simple 
example, suppose if we want to deliver a packet in the 
network it has to change its route multiple times for 
finding the optimal path. But in SDN it automatically 
traces the entire possible and shortest route for 
delivering the packets. By separating the control plane 
from data plane in SDN, some controller increased its 
flexibility in deploying new services (e.g., virtual private 
network, cloud computing), programmability in open 
API, reliability in converged IP network. In few controllers 

installing control software remotely from forwarding 
element reduces the complexity of the forwarding 
element but increases the dependability of the network.  

   Real-time Online Interactive Applications 
(ROIA) is connecting high numbers of user applications 
such as multiplayer online games, simulation base                 
e-learning etc. In ROIA the reaction of user happens 
virtually and immediately. ROIA provides High Quality of 
Service on underlying network. Resource Reservation 
Protocol (RSVP) is one kind of traditional technique for 
controlling QoS for reserving network bandwidth. It is 
mainly static by nature and not suitable for changing 
demands of ROIA dynamically. There is a problem for 
SDN is to design the Northbound API. It defines the 
communication between the controller and high-level 
program [1]. 

   Packet scheduling is essential for entire 
supporting applications on Software-Defined Networking 
(SDN) model. However, on OpenFlow/SDN, QoS is only 
performed with bandwidth guarantees and by a well-
known FIFO scheduling. QoSFlow module adds 
extensions to the standard software switch (datapath) of 
Open Flow 1.0. During the starting time of the QoSFlow 
project, the specification 1.0 of Open Flow was the latest 
stable version and was used in the project. Even though 
OF 1.3 has brought a new mechanism for rate limiting, 
but as well as the Open Flow 1.0, we are able to use 
FIFO instead of other packet schedulers to achieve 
different treatments to the packets. The Open Flow 
datapath plus QoS modules form the QoSFlow datapath 
[2]. This datapath is a user space implementation where 
queues are located in the kernel space. The QoS 
module opens a channel with the kernel through Netlink 
and Packet socket families to connect both user and 
kernel space. Thus, the packet schedulers can be 
instantiated to enable traffic shaping and enqueueing of 
flows. The components called Traffic Shaping, Packet 
Schedulers and enqueueing that constructs the QoS 
module of the QoSFlow datapath. 

    Network operating systems (NOX) 
applications will be written as centralized programs on 
high level of instability in network resources, unlike 
algorithms distributed from lower back [3, 4] 
applications. The network operating system does not 
manage the network itself; It provides a programming 
interface with high level objects (such as CPU 
processing power, memory, disk storage volume, link 
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power, etc.) of network resources, which enables 
network application programs to handle secure and 
functional complex tasks on a wide variety of networks 
[3]. The NOX, however, fails in providing the obligatory 
functions for QoS-ensured software defined networking 
(SDN) [5] accommodation provisioning on carrier grade 
provider Internet, such as QoS-vigilant virtual network 
embedding, end-to-end network QoS assessment, and 
collaborations among control elements in other domain 
network. 

II. Related Work 

Previous work on providing QoS using Open 
Flow has three categories. First, studies deploying 
dynamic QoS in an SDN environment [6], [7], [8]. 
Second, studies on switch diversity [9], [10], [11], 
[12].Third, research on network performance resulting 
from QoS with OpenFlow- enabled switches [13], [14]. 

Some of the work done in the area of SDN 
based on demand provisioning of network resources, is 
targeted towards automated, policy-based network 
provisioning [15, 16], while the other is targeted towards 
traffic engineering across Wide Area Networks (WANs) 
[17, 18]. Dynamic allocation of network resources is also 
required inside the data centers, and many studies 
address this challenge. As an example, an OpenFlow-
based algorithm for allocation of bandwidth resources 
between virtual machines in data centers is presented in 
[19], while in [20] the authors describe a platform for 
integrated provisioning of computing, storage and 
network resources in data centers.  

However, most of the related work focuses on 
the service logic for QoS-aware resource provisioning, 
leaving out the details of how the network resources are 
managed and provisioned in the data plane. In some of 
the papers, such as [21], the authors mention that the 
proposed QoS architecture dependent on traffic 
classification and rate limiting at the edge of the 
network, although no description about how the 
reservation of logical resources inside the SDNC 
enforces in the forwarding devices. 

The work that is closest to the one presented 
here is [22], which defines a data plane QoS 
architecture for SDN based on similar principles (i.e. a 
combination of queues and rate limiters), but with 
different constraints for the resources. The current paper 
contains a definition of how the resources are managed 
inside the SDN in order to provide deterministic QoS. 

When monitoring the QoS it is an advantage 
that a network problem resulting in decayed 
performance will affect a whole class of flows that share 
some properties (i.e. routed through an overloaded 
device and use the same QoS class). It is sufficient to 
monitor a representative subset of the network flows 
which makes QoS Monitoring eligible for sampling. 

III. Description of the Existing 
Architectures 

 Existing Architectures 

1. ROIA 
2. Multiple Packet Scheduler 
3. NOX 

1. ROIA 
Real-time Online Interactive Applications (ROIA) 

connects wide number of users who interact with the 
applications and with each other with proper 
authentication, i.e., a replication to a user’s action 
transpires virtually and immediately. Typical 
representatives of ROIA are multiplayer online computer 
games, simulation-based e-learning, and serious 
gaming. Due to a large, variable number of users, with 
intensive and dynamic interactions, ROIA make high 
Quality of Service (QoS) demands on the underlying 
network. Furthermore, these demands may continuously 
change, depending on the number of users and the 
actual application state: in a shooter game, a high 
packet loss in a combat state may have fatal 
consequences on QoS, whereas it is less relevant when 
a player is exploring the terrain. 

ROIA Applications has two parts, a static and a 
dynamic part. Static part has non-changeable and 
landscape objects. The other one dynamic part has 
non-playing characters controlled by server. These 
objects can change their state at any time. Figure 1 
shows the structure of a ROIA.  

 

Figure 1: Structure of a ROIA and its real-time loop 

In this architecture only one ROIA process 
serves the connected ROIA clients and a group of ROIA 
processes distributes among several machines. For the 
processing of ROIA in an infinite loop the application 
state executes repeatedly in real time which is called 
real-time loop [23]. Single loop iteration has three 
important steps. Firstly, the user takes input and 
transmits it via a network and ROIA process receives 
that. Then to calculate the application state we can 
apply the user input and processing methods to current 
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application state. After that, the loop transfers the 
updated state to the client. 

2. Multiple Packet Scheduler 
The Open Flow data path plus QoS modules 

form the QoSFlow datapath. This path is a utilizer space 
implementation and locates in the kernel space. The 
QoS module opens a channel with the kernel through 
Netlink and Packet socket families to connect both 
utilizer and kernel space. Thus, the packet schedulers 
can be instantiated to enable traffic shaping and 
enqueueing of flows. Figure 2 shows the components 
like Traffic Shaping, Packet Schedulers and enqueueing 
that constructs the QoS module of the QoSFlow 
datapath, and their relationships. 

 
Figure 2: QoS module which has been added to the 

standard OpenFlow datapath 
• Traffic Shaping and Packet Schedulers: These 

components use Netlink socket family to manipulate 
OFPT_QOS_QUEUEING_DISCIPLINE message 
type, which is a new extension of the message to 
represent the QoS messages in OF protocol. 

Hence, the Traffic Shaping and Packet 
Schedulers components administer the QoS messages 
receipt from control plane by splitting the bandwidth size 
in queues and by attaching or detaching packet 
schedulers for these queues, respectively. 

To connect the kernel, these components open 
a Netlink socket channel and send a Netlink message 
through it. The Netlink message is the type of message 
that Linux kernel accepts for network resources 
management. In this way, the QoS messages maps to 
Netlink messages. 
• Enqueueing: It is the component responsible for 

operating OFPT_FLOW_MOD messages of the of 
protocol. This message modifies the state of the 
flow table, where each entry contains header fields, 
counters, and actions for matching packets or flow 
packets. 

The enqueueing mechanism maps flow to 
queues using the skb-> priority of kernel’s data 
structure called sk_buff. This configuration establish 

through the use of the SO_PRIORITY option of the 
Packet socket family. Since user space cannot access 
such data structure directly.  

The QoS development strategy for OF enabling 
networks is to overcome the packet scheduling issues. 
The primary goal of QoSFlow is to allow control of 
multiple packet schedulers. In another word, QoSFlow 
brings the traffic control of Linux to become part of OF 
networks. Our proposal extends the OF protocol 1.0 and 
the standard data path based on it. This way, 
developers can deploy their applications, for instance, a 
control of bandwidth according to need with one or 
more packet schedulers on the network. Currently, 
QoSFlow provides control of the following packet 
schedulers: HTB (Hierarchical Token Bucket) [24], RED 
(Randomly Early Detection) [25], and SFQ (Stochastic 
Fairness Queuing) [26]. 

Currently, QoSFlow controls the following 
packet schedulers: HTB, SFQ, and RED where the HTB 
is a classfull, while SFQ and RED are classless queuing 
discipline. Thus, the current QoSFlow features come 
from these Linux kernel packet schedulers. 

• HTB: It allows splitting the bandwidth according to 
the size of the network. By default, the Linux kernel 
automatically attaches a FIFO packet scheduler to 
each bandwidth segment. It creates logical links 
which are slower than the physical link. 

• SFQ: This belongs to fair queuing algorithm. The 
SFQ schedules the packets transmission based on 
information about the IPv4/v6 source and 
destination address, and TCP/UDP source port to 
assign each flow to each hash bucket, on the 
enqueueing phase. 

• RED: It drops packets in a queue gradually. It 
performs a tail drop like FIFO, but smartly. Such 
packet scheduler has a threshold value to mark 
packets to be discarded after queue length 
becomes greater than the threshold value. 

3. NOX 

Network operating system (NOX) enables 
management applications to be constructed as 
centralized programs over high-level abstractions of 
network resources as an inverse to the distributed 
algorithms over low-level addresses [22, 23]. The 
network operating system does not manage the network 
itself; it provides a programming interface with high-level 
abstractions of network resources (e.g., memory, disk 
storage volume, CPU processing power, disk storage 
volume, link capacity, etc.) that enable network 
application programs to perform complicated tasks 
safely and efficiently on a broad heterogeneity of 
networking technologies [22]. The NOX, however, fails in 
giving the necessary functions for QoS-guaranteed 
Software Defined Networking (SDN) [24] service 
provisioning on bearer grade provider Internet, such as 
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QoS-aware virtual network seating, end-to-end network 
QoS measurement, and cooperation among control 
elements with other domain network. 

IV. Comparison among the Existing 
ARCHITECTURES 

1. ROIA 

a. The Response time of ROIA 

 
 
 
 

Table 1:

 

Calculation of the Response Time with ROIA

 
Number of 

Clients

 

Response Time 
(ROIA) ms

 
5

 

1.03

 

10

 

1.19

 

15

 

1.22

 

20

 

1.35

 

25

 

1.29

 

30

 

1.07

 

35

 

1.48

 

40

 

1.21

 

45

 

1.34

 

50

 

1.09

 

55

 

1.42

 

60

 

1.3

 

65

 

1.15

 

70

 

1.45

 

 

Figure 3: Response Time of ROIA

 

   

 

  

Number of 
Clients 

Throughput 
(ROIA) in 

milliseconds 
(ms) 

5 0.97087 

10 
0.84033 

15 
0.81967 

20 
0.74074 

25 
0.77519 

30 
0.93457 

35 
0.67567 

40 
0.82644 

45 
0.74626 

50 
0.91743 

55 
0.70422 

60 
0.76923 

65 
0.86959 

70 
0.68965 

 

Figure 4: Throughput of ROIA 

2. Multiple Packet Scheduler 

a. The Response time of Multiple Packet Scheduler 
Figure 5 shows the graph of the calculation of 

Response Time with Multiple Packet Schedulers [2] of 
Table 3. 
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Figure 3 shows the graph of the calculation of 
Response Time with ROIA [1] of Table 1.

b. Throughput of ROIA
The Figure 4 shows the graph of the calculation 

of Throughput with ROIA [1] of Table 2.

Table 2: Calculation of the Throughput with ROIA



 
 

Number 
of Clients

 

Response 
Time 

(HTB) ms

 

Response 
Time 

(SFQ) ms

 

Response 
Time 

(RED) ms

 

5 1.28

 

0.1

 

0.55

 

10

 

2.56

 

0.2

 

1.1

 

15

 

3.84

 

0.3

 

1.65

 

20

 

5.12

 

0.4

 

2.2

 

25

 

6.4

 

0.5

 

2.75

 

30

 

7.68

 

0.6

 

3.3

 

35

 

8.96

 

0.7

 

3.85

 

40

 

10.24

 

0.8

 

4.4

 

45

 

11.52

 

0.9

 

4.95

 

50

 

12.8

 

1 5.5

 

55

 

14.08

 

1.1

 

6.05

 

60

 

15.36

 

1.2

 

6.6

 

65

 

16.64

 

1.3

 

7.15

 

70

 

17.92

 

1.4

 

7.7

 

 

Figure 5: Response Time of Multiple Packet Schedulers

 

  

   
 
 

Table 4:

 

Calculation of the Throughput with Multiple 
Packet Schedulers

 

Number 
of 

Clients

 

Throughput 
(HTB) ms

 

Throughput 
(SFQ) ms

 

Throughput 
(RED) ms

 

5

 

0.12206

 

0.15625

 

0.0284

 

10

 

0.244125

 

0.3125

 

0.05681

 

15

 

0.36618

 

0.46875

 

0.08522

 

20

 

0.48825

 

0.625

 

0.113635

 

25

 

0.6103125

 

0.78125

 

0.14204

 

30

 

0.732375

 

0.9375

 

0.17045

 

35

 

0.8544375

 

1.09375

 

0.19886

 

40

 

0.9765

 

1.25

 

0.22727

 

45

 

1.09856

 

1.40625

 

0.25567

 

50

 

1.220625

 

1.5625

 

0.28408

 

55

 

1.34268

 

1.71875

 

0.31249

 

60

 

1.46472

 

1.875

 

0.340905

 

65

 

1.58678

 

2.03125

 

0.36931

 

70

 

1.70884.

 

2.1875

 

0.39772

 

 

Figure 6: Throughput of Multiple Packet Schedulers
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2. Multiple Packet Scheduler

a. The Response time of Multiple Packet Scheduler
Figure 5 shows the graph of the calculation of 

Response Time with Multiple Packet Schedulers [2] of 
Table 3.

Table 3: Calculation of the Response Time with Multiple 
Packet Schedulers

b. The Throughput of Multiple Packet Scheduler
Figure 6 shows the graph of the calculation of 

Throughput with Multiple Packet Schedulers [2] of    
Table 4.



Table 5:

 

Calculation of the Response Time with NOX

 

Number of

 

Clients

 

Response Time            
(NOX) ms

 

5 0.7948

 

10

 

0.983

 

15

 

0.8542

 

20

 

0.808

 

25

 

0.888

 

30

 

0.899

 

35

 

0.9585

 

40

 

0.97

 

45

 

0.787

 

50

 

0.9095

 

55

 

0.755

 

60

 

0.7777

 

65

 

0.842

 

70

 

0.7888

 

 

Figure 7:

 

Response Time of NOX

 

 

Throughput of NOX

 

Figure 8 shows the graph of the calculation of 
Throughput with NOX [27] of Table 6.

 

Table 6:

 

Calculation of the Throughput with NOX

 

Number of Clients

 

Throughput (NOX) ms

 

5 0.09

 

10

 

0.091

 

15

 

0.08

 

20

 

0.075

 

25

 

0.0859

 

30

 

0.0848

 

35

 

0.079

 

40

 

0.082

 

45

 

0.072

 

50

 

0.0797

 

55

 

0.0976

 

60

 

0.0776

 

65

 

0.0923

 

70

 

0.0948

 

 

Figure 8: Throughput of NOX

 

V.

 

Comparison among ROIA, Multiple 
Packet

 

Scheduler, and NOX

 

a)

 

Response Time

 

The response time of HTB is better than the 
response time of ROIA, NOX, SFQ and RED packet 
scheduler shown in figure 9.

 

 

Figure 9: Response time of Existing Architectures

 

b)

 

Throughput

 

The throughput of ROIA is better than of HTB, 
NOX, SFQ and RED packet scheduler in the 
transmission of first 24 packets, for other 46 packets 
Throughput of SFQ packet scheduler is better than 
ROIA, NOX, RED and SFQ packet scheduler shown in 
figure 10. 
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3. NOX

The Response time of NOX
Figure 7 shows the graph of the calculation of 

Response Time with NOX [27] of Table 5.

a.

b.



 

Figure 10: The throughput of Existing Architectures
 

VI.
 

Conclusion and Future Work
 

Software Defined Network is an emerging topic 
for the modern era. It is  an  idea  which  has  recently  
reignited  the  interest  of  network  researchers  for 
programmable networks.  Enabling added-value 
services is the major target for this work. Not only this 
but also ensuring the security is another purpose for this 
work. Software Defined Networking (SDN) enables an 
easy  and flexible  realization of existing dynamic  
Quality  of Service  (QoS)  mechanisms  in  today’s  
communication  networks.  Although  SDN  and,  in 
particular,  OpenFlow  claims  to  provide  a  
standardized  interface,  the  existing  diversity  of 
OpenFlow  enabled  switches  leads  to different 
behavior 

 
for  the  same  QoS  mechanisms. As 

compared to the response time of existing architectures 
HTB packet scheduler is better. In case of throughput, 
SFQ packet scheduler is better. We will improve Quality 
of Service (QoS) in SDN by designing an efficient 
architecture and implement that in any network 
emulator. In the future, we will work with Switch 
Capacity, Number of Queues Impact, QoE Evaluation, 
and Bandwidth Isolation.
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