5,672 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Methods and metrics for the improvement of the interaction and the rehabilitation of cerebral palsy through inertial technology

    Get PDF
    Cerebral palsy (CP) is one of the most limiting disabilities in childhood, with 2.2 cases per 1000 1-year survivors. It is a disorder of movement and posture due to a defect or lesion of the immature brain during the pregnancy or the birth. These motor limitations appear frequently in combination with sensory and cognitive alterations generally result in great difficulties for some people with CP to manipulate objects, communicate and interact with their environment, as well as limiting their mobility. Over the last decades, instruments such as personal computers have become a popular tool to overcome some of the motor limitations and promote neural plasticity, especially during childhood. According to some estimations, 65% of youths with CP that present severely limited manipulation skills cannot use standard mice nor keyboards. Unfortunately, even when people with CP use assistive technology for computer access, they face barriers that lead to the use of typical mice, track balls or touch screens for practical reasons. Nevertheless, with the proper customization, novel developments of alternative input devices such as head mice or eye trackers can be a valuable solution for these individuals. This thesis presents a collection of novel mapping functions and facilitation algorithms that were proposed and designed to ease the act of pointing to graphical elements on the screen—the most elemental task in human-computer interaction—to individuals with CP. These developments were implemented to be used with any head mouse, although they were all tested with the ENLAZA, an inertial interface. The development of such techniques required the following approach: Developing a methodology to evaluate the performance of individuals with CP in pointing tasks, which are usually described as two sequential subtasks: navigation and targeting. Identifying the main motor abnormalities that are present in individuals with CP as well as assessing the compliance of these people with standard motor behaviour models such as Fitts’ law. Designing and validating three novel pointing facilitation techniques to be implemented in a head mouse. They were conceived for users with CP and muscle weakness that have great difficulties to maintain their heads in a stable position. The first two algorithms consist in two novel mapping functions that aim to facilitate the navigation phase, whereas the third technique is based in gravity wells and was specially developed to facilitate the selection of elements in the screen. In parallel with the development of the facilitation techniques for the interaction process, we evaluated the feasibility of use inertial technology for the control of serious videogames as a complement to traditional rehabilitation therapies of posture and balance. The experimental validation here presented confirms that this concept could be implemented in clinical practice with good results. In summary, the works here presented prove the suitability of using inertial technology for the development of an alternative pointing device—and pointing algorithms—based on movements of the head for individuals with CP and severely limited manipulation skills and new rehabilitation therapies for the improvement of posture and balance. All the contributions were validated in collaboration with several centres specialized in CP and similar disorders and users with disability recruited in those centres.La parálisis cerebral (PC) es una de las deficiencias más limitantes de la infancia, con un incidencia de 2.2 casos por cada 1000 supervivientes tras un año de vida. La PC se manifiesta principalmente como una alteración del movimiento y la postura y es consecuencia de un defecto o lesión en el cerebro inmaduro durante el embarazo o el parto. Las limitaciones motrices suelen aparecer además en compañía de alteraciones sensoriales y cognitivas, lo que provoca por lo general grandes dificultades de movilidad, de manipulación, de relación y de interacción con el entorno. En las últimas décadas, el ordenador personal se ha extendido como herramienta para la compensación de parte de estas limitaciones motoras y como medio de promoción de la neuroplasticidad, especialmente durante la infancia. Desafortunadamente, cerca de un 65% de las personas PC que son diagnosticadas con limitaciones severas de manipulación son incapaces de utilizar ratones o teclados convencionales. A veces, ni siquiera la tecnología asistencial les resulta de utilidad ya que se encuentran con impedimentos que hacen que opten por usar dispositivos tradicionales aun sin dominar su manejo. Para estas personas, los desarrollos recientes de ratones operados a través de movimientos residuales con la cabeza o la mirada podrían ser una solución válida, siempre y cuando se personalice su manejo. Esta tesis presenta un conjunto de novedosas funciones de mapeo y algoritmos de facilitaci ón que se han propuesto y diseñado con el ánimo de ayudar a personas con PC en las tareas de apuntamiento de objetos en la pantalla —las más elementales dentro de la interacción con el ordenador. Aunque todas las contribuciones se evaluaron con la interfaz inercial ENLAZA, desarrollada igualmente en nuestro grupo, podrían ser aplicadas a cualquier ratón basado en movimientos de cabeza. El desarrollo de los trabajos se resume en las siguientes tareas abordadas: Desarrollo de una metodología para la evaluación de la habilidad de usuarios con PC en tareas de apuntamiento, que se contemplan como el encadenamiento de dos sub-tareas: navegación (alcance) y selección (clic). Identificación de los tipos de alteraciones motrices presentes en individuos con PC y el grado de ajuste de éstos a modelos estándares de comportamiento motriz como puede ser la ley de Fitts. Propuesta y validación de tres técnicas de facilitación del alcance para ser implementadas en un ratón basado en movimientos de cabeza. La facilitación se ha centrado en personas que presentan debilidad muscular y dificultades para mantener la posición de la cabeza. Mientras que los dos primeros algoritmos se centraron en facilitar la navegación, el tercero tuvo como objetivo ayudar en la selección a través de una técnica basada en pozos gravitatorios de proximidad. En paralelo al desarrollo de estos algoritmos de facilitación de la interacción, evaluamos la posibilidad de utilizar tecnología inercial para el control de videojuegos en rehabilitación. Nuestra validación experimental demostró que este concepto puede implementarse en la práctica clínica como complemento a terapias tradicionales de rehabilitación de la postura y el equilibrio. Como conclusión, los trabajos desarrollados en esta tesis vienen a constatar la idoneidad de utilizar sensores inerciales para el desarrollo de interfaces de accesso alternativo al ordenador basados en movimientos residuales de la cabeza para personas con limitaciones severas de manipulación. Esta solución se complementa con algoritmos de facilitación del alcance. Por otra parte, estas soluciones tecnológicas de interfaz con el ordenador representan igualmente un complemento de terapias tradicionales de rehabilitación de la postura y el equilibrio. Todas las contribuciones se validaron en colaboración con una serie de centros especializados en parálisis cerebral y trastornos afines contando con usuarios con discapacidad reclutados en dichos centros.This thesis was completed in the Group of Neural and Cognitive Engineering (gNEC) of the CAR UPM-CSIC with the financial support of the FP7 Framework EU Research Project ABC (EU-2012-287774), the IVANPACE Project (funded by Obra Social de Caja Cantabria, 2012-2013), and the Spanish Ministry of Economy and Competitiveness in the framework of two projects: the Interplay Project (RTC-2014-1812-1) and most recently the InterAAC Project (RTC-2015-4327-1)Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Juan Manuel Belda Lois.- Secretario: María Dolores Blanco Rojas.- Vocal: Luis Fernando Sánchez Sante

    Integration of Assistive Technologies into 3D Simulations: Exploratory Studies

    Get PDF
    Virtual worlds and environments have many purposes, ranging from games to scientific research. However, universal accessibility features in such virtual environments are limited. As the impairment prevalence rate increases yearly, so does the research interests in the field of assistive technologies. This work introduces research in assistive technologies and presents three software developments that explore the integration of assistive technologies within virtual environments, with a strong focus on Brain-Computer Interfaces. An accessible gaming system, a hands-free navigation software system, and a Brain-Computer Interaction plugin have been developed to study the capabilities of accessibility features within virtual 3D environments. Details of the specification, design, and implementation of these software applications are presented in the thesis. Observations and preliminary results as well as directions of future work are also included

    Sviluppo e sperimentazione di un ambiente interattivo per il potenziamento della coordinazione visuo-motoria in bambini con ipovisione grave

    Get PDF
    In una società moderna basata sull'abilità del vedere, la vista gioca un ruolo critico in ogni momento e fase della vita di una persona. Purtroppo, non tutti "vedono" allo stesso modo. Con un team multidisciplinare che comprendeva ingegneri informatici e terapisti della Fondazione Robert Hollman, sono stati progettati e sviluppati una serie di mini giochi digitali esplicitamente rivolti a bambini con problemi di vista e che mirano a migliorare le loro abilità cognitive e/o motorio-sensoriali. Questa tesi analizza i requisiti dei giochi che hanno necessitato di un'attenta e dettagliata progettazione che tenesse conto delle caratteristiche e dei bisogni degli operatori (terapisti) e dei giocatori. Descrive anche i dettagli sull'implementazione di tre giochi. Questi si basano su un large-scale interactive environment e vengono giocati proiettando il campo sul pavimento. Sopra quest'area viene posto un sistema di motion capture che permette di tracciare la posizione dei bambini. I movimenti dei giocatori all'interno del campo vengono usati per farli interagire con gli elementi del gioco, producendo output visivi e uditivi adeguati. Infine, vengono discussi l'usabilità e la funzionalità del sistema tramite l'analisi dei dati raccolti durante uno studio pilota. Quattro terapisti e undici bambini sono stati coinvolti facendo utilizzare loro il sistema in un ambiente appositamente predisposto. I risultati hanno permesso al team di migliorare il prodotto e di definire una serie di linee guida utili a terapisti, progettisti e sviluppatori.In a modern society based on the ability to see, vision plays a critical role in every moment and stage of a person's life. Unfortunately, not everyone "sees" in the same way. With a multidisciplinary team including computer engineers and therapists from the Robert Hollman Foundation, a series of digital mini-games, explicitly aimed at children with visual impairment, were designed and developed with the aim of improving their cognitive and/or motor-sensory skills. This thesis analyses the design requirements of the games, which needed a careful and detailed design that took into account the characteristics and needs of the operators (therapists) and players. It also details the implementation of three games based on a large-scale interactive environment that are played by projecting the field onto the floor. Above this area a motion capture system is placed to track the position of the children. The players' movements within the field are used to make them interact with the game elements, producing appropriate visual and auditory outputs. Finally, the usability and functionality of the system are discussed through the analysis of data collected during a pilot study. Four therapists and eleven children has been involved making them use the system in a specially designed environment. The results allowed the team to improve the final product and to define a set of guidelines useful for designers, developers, and therapists

    Creative Haptic Interface Design for the Aging Population

    Get PDF
    Audiovisual human-computer-interfaces still make up the majority of content to the public; however, haptic interfaces offer unique advantage over the dominant information infrastructure, particularly for users with a disability or diminishing cognitive and physical skills like the elderly. The tactile sense allows users to integrate new, unobstructive channels for digital information into their sensorium, one that is less likely to be overwhelmed compared to vision and audition. Haptics research focus on the development of hardware, improving resolution, modality, and fidelity of the actuators. Despite the technological limitations, haptic interfaces are shown to reinforce physical skill acquisition, therapy, and communication. This chapter will present key characteristics intuitive tactile interfaces should capture for elderly end-users; sample projects will showcase unique applications and designs that identify the limitations of the UI

    An investigation into gaze-based interaction techniques for people with motor impairments

    Get PDF
    The use of eye movements to interact with computers offers opportunities for people with impaired motor ability to overcome the difficulties they often face using hand-held input devices. Computer games have become a major form of entertainment, and also provide opportunities for social interaction in multi-player environments. Games are also being used increasingly in education to motivate and engage young people. It is important that young people with motor impairments are able to benefit from, and enjoy, them. This thesis describes a program of research conducted over a 20-year period starting in the early 1990's that has investigated interaction techniques based on gaze position intended for use by people with motor impairments. The work investigates how to make standard software applications accessible by gaze, so that no particular modification to the application is needed. The work divides into 3 phases. In the first phase, ways of using gaze to interact with the graphical user interfaces of office applications were investigated, designed around the limitations of gaze interaction. Of these, overcoming the inherent inaccuracies of pointing by gaze at on-screen targets was particularly important. In the second phase, the focus shifted from office applications towards immersive games and on-line virtual worlds. Different means of using gaze position and patterns of eye movements, or gaze gestures, to issue commands were studied. Most of the testing and evaluation studies in this, like the first, used participants without motor-impairments. The third phase of the work then studied the applicability of the research findings thus far to groups of people with motor impairments, and in particular,the means of adapting the interaction techniques to individual abilities. In summary, the research has shown that collections of specialised gaze-based interaction techniques can be built as an effective means of completing the tasks in specific types of games and how these can be adapted to the differing abilities of individuals with motor impairments
    corecore