32,745 research outputs found

    On-Line Instruction-checking in Pipelined Microprocessors

    Get PDF
    Microprocessors performances have increased by more than five orders of magnitude in the last three decades. As technology scales down, these components become inherently unreliable posing major design and test challenges. This paper proposes an instruction-checking architecture to detect erroneous instruction executions caused by both permanent and transient errors in the internal logic of a microprocessor. Monitoring the correct activation sequence of a set of predefined microprocessor control/status signals allow distinguishing between correctly and not correctly executed instruction

    A payload for investigating the influence of convection on GaAs crystal growth

    Get PDF
    A comparative study of the influence of buoyancy driven fluid flow on gallium arsenide (GaAs) crystal growth was undertaken. Crystals will be grown from melts with different degrees of convective flow including growth in the microgravity environment of space. The space growth of GaAs will be performed in a Get Away Special payload. A well insulated growth furnace was designed for both Earth-based and space-based experiments. The self contained payload will carry two such furnaces in addition to a large battery power source and a microprocessor-based control and data acquisition system for regulating the growth process with high precision. The microcomputer will also monitor the growth conditions and measure and record the acceleration in 3 axes

    Multiprocessor system design tutor : expert system approach

    Get PDF
    To increase computational bandwidth and system resilience, integration of several microprocessors in a single system becomes necessary. The overall throughput and efficiency of such a system is directly dependent on the hardware and software interconnection supported by the basic microprocessor chip. Sometimes it becomes difficult to put together all the information for design criteria and all the design related formulas. The approach made here is to continuously update the hardware and software information in the database related to a given microprocessor. This information can be accessed at any time for efficient design solution. Intel 80386 and Motorola 68020 microprocessors are reviewed in detail and all the information is stored in a database. The above approach has been implemented in the Multiprocessor System Design - Tutor (MSDT) using the Informix relational database management system. MSDT is a menu driven system implemented to help the system design engineers. MSDT stores and maintains information related to multiprocessor system design, which includes multiprocessor system requirements, microprocessor characteristics, the role of microprocessor in multiprocessor system design and interconnection network configurations and their performance factors. This information is presented to the user via the screen building utility of Informix-4GL; the user can also get a hard copy of all the information within the database by running the report generation utility. MSDT also has security password protection. The system has a good help facility available for the design process. At any given time the user can update the data in the table using this menu driven system. The system is intended to grow into a complete evaluation system based on the Informix-4GL. It is developed on the basis of Fourth Generation Language which has a screen building utility, a menu building utility, a report writer and a window manager. This system will suggest the candidate microprocessor and suitable support chips and interconnection techniques for different applications

    Use of accelerometers in the control of practical prosthetic arms

    Get PDF
    Accelerometers can be used to augment the control of powered prosthetic arms. They can detect the orientation of the joint and limb and the controller can correct for the amount of torque required to move the limb. They can also be used to create a platform, with a fixed orientation relative to gravity for the object held in the hand. This paper describes three applications for this technology, in a powered wrist and powered arm. By adding sensors to the arm making these data available to the controller, the input from the user can be made simpler. The operator will not need to correct for changes in orientation of their body as they move. Two examples of the correction for orientation against gravity are described and an example of the system designed for use by a patient. The controller for all examples is a distributed set of microcontrollers, one node for each joint, linked with the Control Area Network (CAN) bus. The clinical arm uses a version of the Southampton Adaptive Manipulation Scheme to control the arm and hand. In this control form the user gives simpler input commands and leaves the detailed control of the arm to the controller

    A smart end-effector for assembly of space truss structures

    Get PDF
    A unique facility, the Automated Structures Research Laboratory, is being used to investigate robotic assembly of truss structures. A special-purpose end-effector is used to assemble structural elements into an eight meter diameter structure. To expand the capabilities of the facility to include construction of structures with curved surfaces from straight structural elements of different lengths, a new end-effector has been designed and fabricated. This end-effector contains an integrated microprocessor to monitor actuator operations through sensor feedback. This paper provides an overview of the automated assembly tasks required by this end-effector and a description of the new end-effector's hardware and control software
    • 

    corecore