
The Return of Synthetic Benchmarks

Ajay M. Joshi*, Lieven Eeckhout**, and Lizy K. John*

*ECE, The University of Texas at Austin

**ELIS, Ghent University, Belgium
{ajoshi, ljohn}@ece.utexas.edu, leeckhou@elis.ugent.be

Abstract

 This paper describes a framework, BenchMaker, for

constructing parameterized, scalable, synthetic benchmarks

from a set of hardware-independent program characteristics.

We show that with a suitable choice of a few inherent

program characteristics related to the instruction mix,

instruction-level parallelism, control flow behavior, and

memory access patterns, it is possible to generate a synthetic

benchmark whose performance directly relates to that of a

real-world application. The parameterized nature of this

framework enables the construction of synthetic benchmarks

that allow researchers to explore a wider range of the

application behavior space, even when no benchmarks yet

exist. We evaluate the applicability and the usefulness of

BenchMaker for studying the impact of program

characteristics on performance and how they interact with

processor microarchitecture.

1. Introduction
 Estimating and comparing the performance of

computer systems has always been a challenging task faced

by computer architects and researchers. One of the classic

and most popular techniques to measure the performance of a

computer system is to characterize its behavior when

executing a representative workload. Typically, the

representative workload is a benchmark program or a set of

benchmark programs that is believed to be representative of

typical applications that could be executed on the computer

system. Since the early days of computer development,

benchmark programs have evolved from simple hand-coded

synthetic benchmarks, such as Whetstone [CURN76] and

Dhrystone [WEIC84], to standardized benchmark suites such

as SPEC CPU, SPECjbb, EEMBC, TPC, etc.

 Although the advent of standardized benchmark

suites has streamlined the process of performance comparison

between different computer systems, architects and

researchers face several challenges when using benchmarks in

industry product development and academic research:

� Benchmarks only represent a sample of the application

behavior space – The application programs that are being

run on computer systems constantly evolve, and given the

diversity of these application domains, benchmark

programs only represent a sample of the performance

spectrum. There may be several application characteristics

for which standardized benchmarks do not exist. This

makes it difficult to project the processor performance for

such applications.

� Benchmarks are rigid and measure performance at a

single-point – A benchmark typically measures the

performance of a computer system for a set of workload

characteristics. This may make it difficult to get statistical

confidence in the evaluation. Typically, it is not easy to

vary the benchmark characteristics to understand whether a

performance anomaly is an artifact of the benchmark or a

characteristic of the underlying system. Moreover, the

rigid nature of benchmarks makes it difficult to isolate and

study the effect of individual workload characteristics on

performance.

� Benchmark suites are costly to develop, maintain, and

upgrade – Typically, architects and researchers use

prevailing benchmarks to make processor design decisions.

However, it is known that as emerging applications evolve,

benchmark characteristics drift with time and an optimal

design using benchmarks of today may not be optimal for

applications of tomorrow. This problem has been aptly

described as: “Designing tomorrow’s microprocessors

using today’s benchmarks built from yesterday’s

programs” [WEIC97] [YI06]. Therefore, it is important

for architects and researchers to analyze the effect of

workload behavior drift on microprocessor performance.

However, developing new benchmark suites and upgrading

existing benchmark suites is extremely time-consuming

and by consequence very costly. Therefore, it is not

possible for the benchmark development process to keep

pace with the rate at which new applications emerge.

� Benchmarks that are standardized are open-source where

as applications of interest are typically proprietary –

Being able to run benchmarks on a variety of platforms

requires that these benchmarks can be compiled to each of

these platforms. As a result, industry-standard benchmarks

such as SPEC CPU are typically open-source benchmarks

that are easily portable across platforms. However, they

may not be representative for the applications of interest.

One solution to this problem would be to use the

applications of interest as benchmarks. Unfortunately, in

many cases, applications of interest cannot be distributed

to third parties because of their proprietary nature.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55825913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 One of the approaches for addressing these

challenges is to complement application benchmark suites

with synthetic benchmarks. An approach to automatically

generate synthetic benchmarks can help in: (1) constructing

synthetic benchmarks to represent application characteristics

for which benchmarks do not (yet) exist, (2) isolating

individual program characteristics into microbenchmarks, (3)

altering hard-to-vary benchmark characteristics, and (4)

serving as proxies for proprietary applications of interest.

The aim of this paper is to propose a framework, called

BenchMaker, for constructing such synthetic benchmarks

whose code properties can be easily altered.

 Recently, the computer architecture research

community has recognized the need for rigorous benchmark

generation techniques [SKAD03] and expended some effort

in developing synthetic benchmarks that can mimic the

behavior of real world applications. The primary motivation

of recent research work in developing synthetic benchmarks

has been to reduce simulation time of longer-running

benchmarks and to enable sharing of proprietary applications

as benchmarks. The central idea of these proposed

techniques is to replicate detailed workload characteristics of

a real world application into a synthetic trace [OSKI00]

[NUSS01] [EECK04], or a synthetic benchmark program

[BELL05] [JOSH06].

 However, each of these approaches has at least one

shortcoming that limits its ability to study the application

behavior space by varying program characteristics. Firstly,

in most of these approaches [NUSS01] [EECK04] [BELL05]

[JOSH06], an application is characterized using detailed

workload characteristics – a statistical flow graph captures the

control flow behavior of a program and characteristics such

as instruction mix, register dependency distribution, control

flow predictability, and memory access pattern – that are

measured at the granularity of a basic block. This involves

specifying a large number of probabilities to describe a

workload, which is highly impractical when using these

frameworks for exploring workload behavior spaces by

varying workload characteristics. Secondly, although some

of the approaches for generating synthetic workloads

[OSKI00] [EECK01] show that applications can be modeled

using a limited of number of program characteristics, they use

a combination of microarchitecture-dependent and

microarchitecture-independent program characteristics.

Microarchitecture-dependent characteristics, such as branch

misprediction rate and cache miss rate, do not capture the

inherent program characteristics and make it difficult to

explore the entire application behavior space independently

from the underlying hardware. Finally, a shortcoming of

some of these techniques [OSKI00] [NUSS01] [EECK00] is

that they generate synthetic workload traces, precluding their

use on real hardware, execution-driven simulators, and RTL

models.

 The approach proposed in this paper overcomes

these shortcomings. Unlike prevailing approaches to

generating synthetic benchmarks, the BenchMaker framework

that we propose makes it possible to alter inherent workload

characteristics of a program by varying a limited number of

key microarchitecture-independent program characteristics in

a synthetic benchmark – changing the workload behavior is

done by simply ‘turning knobs’. This ability to vary program

characteristics makes it possible to efficiently explore the

application behavior space. Specifically, we make the

following contributions in this paper:

1) We show that it is possible to fully characterize a

workload with just a few microarchitecture-independent

workload characteristics. This is much more efficient

than the collection of distributions that need to be

specified in prevailing workload synthesis techniques. In

addition, unlike previous approaches, the use of

microarchitecture-independent characteristics makes it

possible to explore the entire application behavior space.

2) We implement this approach into a framework, called

BenchMaker, which is parameterized to generate synthetic

benchmarks. The generation of synthetic benchmarks

instead of traces makes it possible to use these

parameterized synthetic workloads on real hardware,

execution-driven architectural simulators and low-level

cycle-accurate RTL simulators.

3) We evaluate the usefulness of the BenchMaker framework

by demonstrating its applicability to three different areas:

(a) Studying the effect of inherent workload

characteristics on performance, (b) Studying the

interaction of microarchitecture-independent workload

characteristics with the microarchitecture features of a

processor, and (c) Accounting for workload drift during

microprocessor design.

 The remainder of this paper is structured as follows.

In Section 2, we provide an overview of the proposed

technique for constructing synthetic benchmarks from

program characteristics and describe features of the

BenchMaker framework that we propose in this paper. In

Section 3, we describe our simulation environment, machine

configuration, and the benchmarks used to evaluate the

BenchMaker framework. In Section 4, we evaluate the

BenchMaker framework by demonstrating how it can be used

to generate synthetic benchmarks that exhibit similar behavior

to SPEC CPU2000 Integer benchmarks. In Section 5, we

demonstrate the application of the BenchMaker framework to

three challenging problems. In Section 6, we summarize

related research work and prior art. Finally, in Section 7, we

conclude with the key results from this paper.

2. BenchMaker Framework
 Figure 1 illustrates the approach used by the

BenchMaker framework that we propose in this paper for

generating synthetic benchmarks from a set of

microarchitecture-independent program characteristics. The

program characteristics measure the inherent properties of the

program that are independent from the underlying hardware.

Collectively, these characteristics form an abstract workload

model. This abstract workload model serves as input to the

synthetic benchmark generator. Our intention is to develop a

workload model that is simple yet accurate enough for

predicting performance trends across the workload space.

Keeping the workload model simple makes it possible to not

only accurately model the characteristics of an existing

workload into a synthetic benchmark, but also provides the

ability to conduct ‘what-if’ studies by varying program

characteristics. In the following sections we describe the

workload characteristics that serve as input to the synthetic

workload generator and we also describe the algorithm used

for modeling these characteristics into a synthetic workload.

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R6

STORE R3, R10, R20

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R1

BEQ R3, R6, LOOP

SUB R3, R5, R6

STORE R3, R10, R20

DIV R10, R2, R1

………….

Figure 1. The BenchMaker framework for constructing
synthetic benchmarks.

2.1 Workload Characteristics
 The characteristics that we propose to drive the

benchmark synthesis process are a subset of all the

microarchitecture-independent characteristics that can be

modeled. However, we believe that our abstract workload

model captures (most of) the important program

characteristics that potentially impact a program’s

performance; the results from the evaluation of the synthetic

benchmarks in this paper in fact show that this is the case, at

least for the benchmarks that we used.

Recall that the key goal of this paper is to show that

it is possible to maintain good representativeness and good

accuracy with a limited number of key workload

characteristics. For limiting the number of program

characteristics, we capture them at a coarse granularity using

average statistics over the entire program. This is in contrast

to prior work on synthetic benchmark generation [BELL05]

[JOSH06] which models program characteristics at a fine

granularity by capturing program characteristics at the basic

block level. Although measuring program characteristics at a

coarse granularity likely reduces the representativeness of the

synthetic benchmarks compared to fine grained

characteristics, this is key to enable the flexibility in

BenchMaker for generating benchmarks with characteristics

of interest. This will enable one to easily vary workload

characteristics by ‘turning knobs’ and make it possible to

answer ‘what-if’ questions. We propose to measure the

following workload characteristics at the program level.

Instruction Mix. The instruction mix of a program

measures the relative frequency of various operations

performed in the program; namely the percentage of integer

small latency, integer long latency, floating-point small

latency, floating-point long latency, integer load, integer

store, floating-point load, floating-point store, and branches

in the dynamic instruction stream of a program.

Basic Block Size. A basic block is a section of code with

one entry and one exit point. We measure the basic block size

as the average number of instructions between two

consecutive branches in the dynamic instruction stream of a

program. We assume that the basic block sizes in the

program have a normal distribution, and characterize them in

terms of the average and standard deviation in the basic block

size distribution of a program.

Instruction Level Parallelism. The dependency distance

is defined as the number of instructions in the dynamic

instruction stream between the production (write) and

consumption (read) of a register and/or memory location.

The goal of characterizing the data dependency distances is to

capture a program’s inherent ILP. We measure the data

dependency distance information on a per instruction basis

and summarize it as a cumulative distribution organized in

eight buckets: percentages of dependencies that have a

dependency distance of 1 instruction, and the percentage of

dependency dependencies that have a distance of up to 2, 4,

6, 8, 16, 32, and greater than 32 instructions. Longer

dependency distances permit more overlap of instructions in a

superscalar out-of-order processor.

Data Footprint. We measure the data footprint of a

program in terms of the total number of unique data addresses

referenced by the program. The data footprint of a program

gives an idea of whether the data set fits into the level-1 or

level-2 caches.

Data Stream Strides. The principle of data locality is well

known and recognized for its importance in determining an

application’s performance. Instead of quantifying temporal

and spatial locality by a single number or a simple

distribution, our approach for measuring the data locality of a

program is to identify the streams (regular sequences of

arithmetic progressions) in a program, their length, and how

they intermingle with each other. Once these stream

attributes have been correctly identified and instantiated into

the synthetic benchmark clone, the resulting program should

show similar inherent temporal and spatial locality

characteristics [SORE02].

 One may not be able to easily identify such stride

sequences when observing the global data access stream of

the program. This is because several streams co-exist in the

program and are generally interleaved with each other. In

order to identify the streams and their related attributes, we

profile every static load and store instruction to identify the

stride with which it accesses data. This is based on the

observation [JOSH06] that the memory access pattern

appears more regularly when viewed at a finer granularity of

static load/store instructions than at a coarser granularity of

the global access stream.

In order to capture the data access pattern of a

program we measure a distribution of local strides in the

program. The local stride value is the difference between two

consecutive effective addresses generated by the same static

load or store instruction. We measure the local strides in

terms of 32-byte block sizes (analogous to a cache line size),

i.e., if a local stride is between 0 or 31 bytes, it is classified as

stride 0 (consecutive addresses are within one cache line

distance), between 32 and 63 bytes as stride 1, etc. We

summarize the local stride distance for the entire program as a

histogram showing the percentage of memory access

instructions with stride value of 0, 1, 2, etc. Figure 2 shows

the distribution of the data stride values for the SPEC

CPU2000 integer programs. From this figure we observe that

for the bzip2, crafty, gzip, and perlbmk benchmarks,

more than 80% of the local stride references are within a 32-

byte block size, indicating very good spatial data locality.

The gcc, twolf, and vortex benchmarks only have 60%

of local stride values that are within a 32-byte block size, and

exhibit moderate spatial data locality. The vpr benchmark

shows two extremes, with approximately 50% of local strides

accessing the same 32-byte block, and the other 50% with

extremely large local stride values, indicating a mix of

references with extremely poor and extremely high spatial

locality. The mcf benchmark is an outlier and has very poor

data locality, with most of the local stride values being

extremely large.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
z

ip
2

c
r

a
ft

y

g
c

c

g
z

ip

m
c

f

p
e

r
lb

m
k

tw
o

lf

v
o

r
te

x

v
p

r

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l

M
e

m
o

ry
 R

e
fe

re
n

c
e

s

0 1 2 3 4 5 6 7 8 9

Figure 2.Percentage breakdown of local stride values.

 The combination of data footprint and the stride

value distribution captures the inherent data locality in the

program. These two characteristics are typically very

difficult to modify in standard benchmarks. In synthetic

benchmarks it is easy to fix one of these parameters and study

the effect of the other. For example, using BenchMaker, we

can easily study the impact of changing stride values while

keeping the data footprint the same. Or, if of interest, one can

explore the combined effect of varying footprint and access

patterns.

Instruction Footprint. We characterize the instruction

footprint as the total number of unique instructions referenced

by the program. The instruction footprint of a program gives

an idea of whether the data set fits into the level-1 or level-2

caches. The instruction footprints of all the programs that we

studied are very small (gcc has the largest instruction

footprint) and do not stress the instruction cache.

Branch Transition Rate. In order to capture the inherent

branch behavior in a program, the most popular

microarchitecture-independent metric is to measure the

percentage of taken branches in the program or the taken rate

for a static branch, i.e., fraction of the times that a static

branch was taken during the complete run of the program.

Branches that have a very high or low taken rate are biased

towards one direction and are considered to be highly

predictable. However, merely using the taken rate of

branches is insufficient to actually capture the inherent branch

behavior. The predictability of the branch depends more on

the sequence of taken and not-taken directions than just the

taken rate.
 Therefore, in our control flow predictability model

we also measure an attribute called transition rate, due to

[HAUN00], for capturing the branch behavior in programs.

Transition rate of a static branch is defined as the number of

times it switches between taken and not-taken directions as it

is executed, divided by the total number of times that it is

executed. By definition, the branches with low transition

rates are always biased towards either taken or not-taken. It

has been well observed that such branches are easy to predict.

Also, the branches with a very high transition rate always

toggle between taken and not-taken directions and are also

highly predictable. However, branches that transition

between taken and not-taken sequences at a moderate rate are

relatively more difficult to predict. In order to incorporate

synthetic branch predictability we measure a distribution of

the transition rate of all static branches in the program. When

generating the synthetic benchmark clone we ensure that the

distribution of the transition rates for static branches in the

synthetic stream of instructions is similar to that of the

original program. We achieve this by configuring each basic

block in the synthetic stream of instructions to alternate

between taken and not-taken directions, such that the branch

exhibits the desired transition rate.

Summary. To summarize the above discussion, the abstract

model characterizing a workload consists of 40 numbers in

total, as shown in Table 1. Collecting only 40 workload

statistics results in a much more compact representation of a

workload; compared to the previous benchmark synthesis

approaches [BELL05][JOSH06], where most of these

statistics are separately measured for every basic block

resulting in typically several thousands of numbers to

characterize a workload. Consequently, the BenchMaker

framework has 40 ‘knobs’ that can be controlled to efficiently

explore the application behavior space.

Table 1. Microarchitecture-independent characteristics that
form an abstract workload model.

Category Num. Characteristic

instruction

mix

8 percentage of integer short latency

percentage of integer long latency

percentage of floating-point short latency

percentage of floating-point long latency

percentage of integer load

percentage of integer store

percentage of floating-point load

percentage of floating-point store

instruction

level

parallelism

8

register-dependency-distance – 8 distributions

for register dependencies. Register dependency

distance equal to 1 instruction, and the

percentage of dependency dependencies that

have a distance of up to 2, 4, 6, 8, 16, 32, and

greater than 32 instructions.

data locality 1

10

data footprint

distribution of local stride values

instruction

locality

1 instruction footprint

branch

predictability

10

2

distribution of branch transition rate

average and std. dev in basic block size

2.2 Synthetic Benchmark Construction
We now describe the algorithm that is used to generate a

synthetic benchmark from the abstract workload model. The

synthetic benchmark generator constructs a synthetic

benchmark by modeling all the microarchitecture-

independent workload characteristics described in the

previous section into a synthetic clone. The basic structure of

the algorithm used to generate the synthetic benchmark

program is similar to the one proposed by [Bell05].

However, the memory and branching model is replaced with a

microarchitecture-independent model, as described later in

this section. The clone generation process comprises of five

sub steps – generating the synthetic program spine using

instruction mix and basic block analysis, incorporating

memory accessing pattern modeling, modeling branch

predictability, register assignment, and code generation.

2.2.1 Generating Program Spine
 A normal distribution function based on the average

basic block size and its standard deviation is used to generate

a linear chain of basic blocks. This linear chain of basic

blocks forms the spine of the synthetic benchmark program.

We use the maximum instruction footprint of the program as

a guideline to decide the length of the spine for each program.

The chain of basic blocks can be made arbitrarily long in

order to generate a large footprint that will stress the

instruction cache. After the spine has been instantiated, each

basic block is populated using the instruction mix

characteristics. Also, each operand in each instruction is

assigned a value based on the dependency distance

distribution. This is used in a later stage when register

assignment is being performed.

2.2.2 Modeling Memory Access Pattern
For each memory access instruction in the synthetic

benchmark we assign a stride value from the stride

distribution function. The load or store instruction is

modeled as a bounded stream of circular references, i.e., each

memory access walks through an entire array using the stride

value assigned to it and then restarts from the first element of

the array. The length of each array is simply the ratio of the

data footprint of the program and the total number of static

load or store instructions in the program. This makes it

possible to easily alter the data footprint of the program while

maintaining the same stride distribution. Since the maximum

number of unique stride values in the program is restricted to

10, we do not need a large number of registers to store the

stride values.

2.2.3 Modeling Branch Predictability
For each static branch in the spine of the program we

assign a transition rate based on the specified transition rate

distribution. We achieve this by configuring each basic block

in the synthetic stream of instructions to alternate between

taken and not-taken directions, such that the branch exhibits

the desired transition rate. A counter is incremented on each

iteration count and a modular operation is used to decide

whether the branch is taken or not-taken.

2.2.4 Register Assignment
In this step we use the dependency distances that

were assigned to each instruction to assign registers. The

number of registers that are used to satisfy the dependency

distances is typically kept to a small value (typically around

10) to prevent the compiler from generating stack operations

that store and restore the values.

2.2.5 Code Generation
During the code generation phase the instructions

are emitted out with a header and footer. The header contains

initialization code that allocates memory using the malloc

library call (for modeling the memory access patterns) and

assigns memory stride values to variables. Each instruction is

then emitted out with assembly code using asm statements

embedded in C code. The instructions are targeted towards a

specific ISA, Alpha in our case. However, the code generator

can be modified to emit instructions for an ISA of interest.

The volatile directive is used to prevent the compiler from

reordering the sequence of instructions and changing the

dependency distances between instructions in the program.

The entire program is executed in a loop whose value can be

controlled to control the dynamic instruction count of the

program. This value is tuned to ensure that the synthetic

clone’s performance, cycles per instruction (CPI), converges

to a stable value.

3. Experiment Setup
 In all of our experiments we use the sim-alpha

simulator [DESI01] from the SimpleScalar Tool Set

[BURG97]. The sim-alpha simulator is an execution

driven performance model that has been validated against the

superscalar out-of-order Alpha 21264 processor. In order to

measure the abstract workload characteristics of a program

we used a modified version of the sim-safe simulator.

Table 2. SPEC CPU programs, input sets, and simulation
points used in study.

Benchmark Input SimPoint(s)

SPEC CPU2000 Integer
bzip2 graphic 553
crafty ref 774
Eon rushmeier 403
Gcc 166.i 389
gzip graphic 389
Mcf ref 553
perlbmk perfect-ref 5
twolf ref 1066
vortex lendian1 271
vpr route 476
gcc expr 8, 24, 47, 51, 56, 73, 87, 99

SPEC CPU95 Integer

gcc expr 0, 3,5,6,7,8,9,10,12

In our experiments we use the integer benchmarks

from the SPEC CPU2000 benchmark suite. In most of our

experiments we use one 100M-instruction simulation point

selected using SimPoint [SHER02]. However, when

comparing programs from two generations of SPEC CPU

benchmark suites we use multiple simulation points. All the

SPEC CPU2000 Integer benchmark programs were compiled

on an Alpha machine using the native Compaq cc v6.3-025

compiler with –O3 compiler optimization. The SPEC CPU95

benchmark program, gcc, was compiled using a native circa

1995 compiler, gcc 2.6.3. Table 2 summarizes the

benchmarks and the simulation points that were used in this

study.

4. Evaluation of BenchMaker Framework
 In this section we evaluate the accuracy of the

BenchMaker framework by using it to generate synthetic

benchmark programs that show similar characteristics as the

SPEC CPU2000 benchmark programs. We measure the

workload characteristics of the SPEC CPU2000 benchmarks

and feed this abstract workload model to the BenchMaker

framework.

Figure 3 evaluates the accuracy of BenchMaker for

estimating the pipeline instruction throughput measured in

instructions-per-cycle (IPC): this is done by comparing the

IPC for the actual benchmark compared to the IPC for the

synthetic benchmark. We observe that the synthetic

benchmark performance numbers tracks the real benchmark

performance numbers very well. The average IPC prediction

error is 14% and the maximum error is observed for mcf

(19.9%).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

b
z

ip
2

c
ra

ft
y

g
c

c

g
z

ip

m
c

f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

In
s

tr
u

c
ti

o
n

s
-P

e
r-

C
y

c
le

Original Benchmark Synthetic Benchmark

Figure 3. Comparison of Instructions-Per-Cycle (IPC) of the
actual benchmark and its synthetic version.

Figure 4 shows similar results for the L1 D-cache

performance: the number of L1 D-cache misses per one

thousand instructions is shown on the vertical axis for the

various benchmarks. Again, the synthetic benchmark numbers

track the real benchmark numbers very well. The maximum

error in predicting the number of L1 cache misses-per-1K

instructions is observed for mcf for which the difference

between the real and the synthetic benchmark is 9 misses-per-

1K-instructions (or less than 4% in relative terms). We

obtain similar results for the L2 cache performance. All of the

benchmarks except for mcf and vpr have a negligibly

small miss rate at the L2 cache level; mcf shows 120 L2

misses-per-1K-instructions, and vpr shows 8 L2 misses-per-

1K instructions. The synthetic benchmark accurately tracks

this trend, and shows 114 and 5 L2 misses-per-1K

instructions respectively for mcf and vpr benchmarks.

Also, the L1 instruction cache miss rate is negligible for all

programs, with gcc having the highest miss rate of 1.3%.

Figure 5 evaluates the accuracy of BenchMaker for

replicating the branch behavior of a real benchmark into a

synthetic benchmark. Here again, we observe that the

synthetic versions of the benchmark track the real benchmark

numbers very well. One particularity to note here is that the

branch prediction rates are always higher for the synthetic

benchmarks than for the real benchmarks. This suggests that

some of the difficult-to-predict branch sequences in the

program are not captured in the synthetic benchmark. The

branches in the synthetic benchmark tend to be relatively

easier to predict than is the case for the original benchmark.

0

50

100

150

200

250

300

b
z
ip

2

c
ra

ft
y

g
c
c

g
z
ip

m
c
f

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

L
1
 D

a
ta

 C
a
c
h

e
 M

is
s
e
s
-P

e
r-

1
K

 I
n

s
tr

u
c
ti

o
n Actual Benchmark Synthetic Benchmark

Figure 4. Comparison of the number of L1 D-cache misses-
per-1K-instructions for the actual benchmark and its synthetic
version.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

b
zi

p
2

cr
af

ty g
cc

g
zi

p

m
cf

p
er

lb
m

k

tw
o

lf

v
o

rt
ex

v
p

r

B
ra

n
c

h
 P

re
d

ic
ti

o
n

 R
a

te

Actual Benchmark Synthetic Benchmark

Figure 5. Comparison of the branch prediction rate for the
actual benchmark and its synthetic version.

5. Applications of BenchMaker Framework

5.1 Program Behavior Studies
 In order to demonstrate the usefulness of the

BenchMaker framework we show how it can be applied for

studying workload behavior and its interaction with the

microarchitecture. It is extremely difficult to conduct

comparable ‘what-if’ studies using a set of standardized

benchmarks because their characteristics form an essential

part of the benchmark application and cannot be easily

altered. On the contrary, using BenchMaker, it is possible to

easily generate a benchmark program from a limited list of

characteristics.

 We generate a synthetic benchmark using the

average of all the characteristics across the SPEC CPU

Integer benchmark programs. The synthetic benchmark,

AvgSynBench, modeling the average characteristics shows a

pipeline throughput of 1.1 IPC on the Alpha 21264 processor.

In our study we use the characteristics of this benchmark as

our baseline characteristics and alter them to study the effect

of each program characteristic on performance, their

interaction with each other, and their interaction with the

microarchitecture.

5.1.1 Impact of Individual Program

Characteristics on Performance
 In this section we use BenchMaker to study the

impact of data locality and control flow predictability by

varying memory access patterns and branch transition rates,

respectively.

 Figure 6 shows how the change in percentage of

references with zero strides (subsequent executions of the

same static memory operations access memory within a 32-

byte block size) affects IPC and L1 D-cache miss rate. We

observe that as the percentage of references with zero stride

varies from 0 (no accesses to the same cache line) to 100 (all

executions of the same static memory operation access the

same cache line), the IPC of the program linearly increases.

Interestingly, the drop in L1 data cache miss rate is also linear

with the increase in percentage of references with stride value

0. This suggests that if all other characteristics remain

constant, the L1 data cache miss rate and IPC have an almost

perfect negative linear correlation (-0.99).

 Next we study how the branch transition rate affects

performance. Recall, that the branch transition rate of a

program is measured as a distribution. We experimented with

a number of random combinations of distribution of transition

rates. We observed that with these random combinations, the

branch prediction rate varies between 0.99 and 0.82, and

correspondingly the variation in IPC was a factor of 1.61

(61% dip in performance if branch prediction rate falls to

0.82).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 66 70 80 90 100

Percentage of References with Stride Value 0

In
s
tr

u
c
ti

o
n

s
-P

e
r-

C
y
c
le

(a) Impact on IPC of the percentage of references with

zero stride value

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 66 70 80 90 100

Percentage of References with Stride Value 0

L
1
 D

-c
a
c
h

e
 m

is
s
-r

a
te

(b) Impact on L1 D-cache miss rate of the percentage of

references with zero stride value
Figure 6. Studying the impact of data spatial locality by
varying the local stride pattern.

 Based on these studies we can conclude that the

BenchMaker framework is a useful tool for isolating and

studying the behavior of individual program characteristics

and their impact on performance.

5.1.2 Interaction of Program Characteristics
 In our abstract workload model we characterize the

data locality of a program by measuring its data footprint

(which is an indicator for temporal locality) and the

distribution of local stride pattern (which is an indicator for

spatial locality).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 66 70 80 90 100
Percentage of references with Stride Value 0

L
1

 D
-c

a
c

h
e

 M
is

s
-R

a
te

Data Footprint - 600K Data Footprint - 300K
Data Footprint - 900K

Figure 7. Interaction of local stride distribution and data
footprint program characteristics.

 In this section we analyze how the local stride

distribution pattern and the data footprint of a program

interact with each other. Figure 7 shows the effect of changes

in percentage of references with zero strides for three

different data footprints. From this graph we observe that for

larger footprints, we see a steeper fall in L1 D-cache miss rate

as the percentage of references with stride value 0 increases.

For the case where 100% of the references access the same

cache line, the footprint does not seem to have an impact on

the L1 D-cache miss rate.

5.1.3 Interaction of Program Characteristics

with Microarchitecture
 A benchmark synthesis framework is not only useful

for isolating and studying the impact of program

characteristics on performance, but is also an invaluable tool

to understand how program characteristics interact with

microarchitectural structures. For example, BenchMaker can

be used to find a combination of program characteristics that

interact poorly with a given microarchitecture. More in

particular, automatically generating benchmarks that ‘stress’

the microarchitecture can give insight into critical program-

microarchitecture interactions. The ‘stress’ benchmarks can

help in exposing performance anomalies and understanding

the limitations of a given microarchitecture.

 As an example, in order to find a benchmark that

stresses the branch predictor, we generated a number of

synthetic benchmarks that contain randomly generated

distributions of transition rates. Interestingly, the transition

rate distribution that resulted in the lowest prediction rate was

the case where 100% of the branches have a transition rate

between 90% and 100%. In this configuration, every branch

in the synthetic benchmark continuously toggles between

taken and not-taken directions. This sequence of branches

heavily stresses the Alpha 21264 branch predictor (which is a

tournament branch predictor that chooses between local and

global history to predict the direction of a given branch): it

achieves a branch prediction rate of only 0.82. Similarly, this

approach can be extended to stress-test different

microarchitectural structures for performance, power, energy

and temperature studies, see [JOSH08].

5.2. Workload Drift Studies
 Research work [YI06] has shown that it is important

to account for the potential impact of workload drift when

designing a microprocessor. This section demonstrates how

BenchMaker can be used to study workload drift.

5.2.1 Analyzing the impact of benchmark drift
 As a first case study, we use the gcc benchmark

with the expr input set from the SPEC CPU95 and SPEC

CPU00 benchmark suites. The gcc-expr95 benchmark

shows an IPC throughput of 1.54 on the Alpha 21264; gcc-

expr00 shows an IPC throughput of 1.11. This clearly

shows that a new release of the same application program

(with the same input) can result in significant performance

degradation (36% degradation in the case of gcc). To

understand this behavior, we now compare the abstract

workload model for gcc-expr95 and gcc-expr00. Most

of the program characteristics are more or less the same

across the two gcc versions. Even the local stride values

(indicative of spatial locality) exhibit a similar distribution.

However, the data footprint (indicative of temporal locality)

appears to have increased by a factor of 3. Based on this

observation, we constructed a synthetic benchmark with the

same characteristics as gcc-expr95 but with three times

its data footprint. This benchmark shows an IPC throughput

of 1.19 (an error of only 7.2% compared to IPC of gcc-
expr00).

 This result demonstrates that BenchMaker can be a

useful tool to generate futuristic workloads in the anticipation

of changes in program characteristics, and can help in

projecting the impact of workload drift on performance.

5.2.2 Analyzing the impact of code size increase
 Previous characterization studies [PHAN05] have

pointed out that although the dynamic instruction count has

increased by a factor 100 over the four generations of SPEC

CPU benchmark suites, the static instruction count of the

programs has not significantly grown. However, in general,

the static instruction count of any commercial software

application tends to increase with every generation as the

application evolves with the advent of new features and

functionality. The absence of any benchmarks that stress the

instruction cache makes it difficult to analyze the

performance impact of an application that could result from

code footprints that are substantially larger than available

benchmarks. To illustrate the application of BenchMaker

to study the impact of potential increase in code size on

program performance, we use the AvgSynBench benchmark

and vary its code footprint. Figure 8 shows different flavors

of the AvgSynBench benchmark with varying instruction

footprints to stress the instruction cache. The graph shows

that increases in code size can have a significant impact on

performance and must be taken into account if application

code size is expected to increase.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Factor by which code size is increased

In
s
tr

u
c
ti

o
n

s
-P

e
r-

C
y
c
le

Figure 8. Effect of increasing instruction footprint on

program performance.

 As such, we can conclude that in the absence of any

SPEC CPU benchmarks that stress the instruction cache, this

is a plausible approach to project the impact of I-cache misses

on the performance of an application.

6. Related Work
 [OSKI00] [EECK00] [NUSSB00] introduced the

idea of statistical simulation. The approach used in statistical

simulation is to generate a short synthetic trace from a

statistical profile of workload attributes such as basic block

size distribution, branch misprediction rate, data/instruction

cache miss rate, instruction mix, dependency distances, etc.,

and then simulate the synthetic trace using a statistical

simulator. [EECK04] improved statistical simulation by

profiling the workload attributes at a basic block granularity

using statistical flow graphs. Recent improvements include

more accurate and detailed memory data flow modeling for

statistical simulation [GENB06]. In comparison, the

objective of this paper is to keep the workload model simple

and yet accurate enough to explore the application behavior

space.

 [BELL05] extended the concept of statistical

simulation for the automatic synthesis of miniature

benchmarks from actual application executables. The key

idea of this technique is to capture the essential structure of a

program using statistical simulation theory, and generate C-

code with assembly instructions that accurately model the

workload attributes, similar to the framework proposed in this

paper. [JOSH06] improved the usefulness of this workload

synthesis technique by developing microarchitecture-

independent models to capture locality and control flow

predictability of a program into synthetic workloads.

However, similar to statistical simulation, these techniques

characterize a program at a fine granularity and make it

impractical to easily change program characteristics.

 [EECK01][OSKI00] showed that using a

combination of analytical and statistical modeling, it is

possible to efficiently explore the workload and

microprocessor design space. However, this technique uses a

combination of microarchitecture-independent and

microarchitecture-dependent workload characteristics –

limiting the application behavior space that can be explored.

The approach proposed in this paper overcomes this

shortcoming that it is possible to characterize a workload

using only a few microarchitecture-independent workload

characteristics – enabling exploration of a wider application

behavior space. Also, the construction of synthetic

benchmarks instead of synthetic traces makes it possible to

run the synthetic benchmark on real hardware and execution-

driven simulators.

 Several approaches [FERR84] [CURN76]

[SREE74] have been proposed to construct a synthetic drive

workload that is representative of a real workload under a

multiprogramming system. In these techniques, the

characteristics of the real workload are obtained from the

system accounting data, and a synthetic set of jobs are

constructed that places similar demands on the system

resources. There has been a lot of research on developing

microarchitecture-independent locality and ILP metrics. For

example, locality models researched in the past include

working set models, least recently used stack models,

independent reference models, temporal density functions,

spatial density functions, memory reuse distance, locality

space, etc., see for example [CONT90] [DENN68] [SEZN00]

[SPIR72][CHAN2005]. Generic measures of parallelism

based on the dependency distance in a program have been

used by [NOON94] and [DUBE94].

7. Conclusions
 The objective of this paper was to develop a

framework that can be used to construct parameterized

synthetic benchmarks. One of the key results from this paper

is that it is possible to fully characterize a workload by only

using a limited number of microarchitecture-independent

program characteristics, and still maintain good accuracy.

Moreover, since these program characteristics are measured

at a program level they can be measured more efficiently and

are amenable to parameterization. We implement this

approach in a framework called BenchMaker and

demonstrate various applications that help in studying

program characteristics that are typically difficult to vary in

standardized benchmarks. The need for a scientific approach

to construct parameterized synthetic benchmarks, to

complement standardized benchmarks, has long been

recognized by the computer architecture research community,

and this work is a significant step towards achieving that goal.

Acknowledgements
 Ajay Joshi was supported by an IBM Fellowship.

Lieven Eeckhout is supported by a Postdoctoral Fellowship

with the Fund for Scientific Research in Flanders (Belgium)

(FWO Vlaanderen). This work is also supported in part

through the NSF award numbers 0429806 and 0702694, an

IBM Faculty Partnership Award, the UGent-BOF project

01J14407, the FWO project G.0255.08, and HiPEAC.

References
[BELL05] R. Bell Jr. and L. John. “Improved Automatic Test

Case Synthesis for Performance Model

Validation”, in Proceedings of International

Conference on Supercomputing, 2005, pp. 111-

120.

[BURG97] D. Burger and T. Austin. The SimpleScalar

Toolset, version 2.0. University of Wisconsin-

Madison Computer Sciences Department

Technical Report #1342, 1997.

[CURN76] H. Curnow and B.Wichman. A Synthetic

Benchmark. Computer Journal, vol. 19(1), pp. 43-

49, 1976.

[CONT90] T. Conte and W. Hwu, “Benchmark

Characterization for Experimental System

Evaluation”, Proceedings of the Hawaii

International Conference on Systems Sciences, vol

I, Architecture Track, 1990.

[DESI01] R. Desikan et al., “Measuring Experimental Error

in Microprocessor Simulation”, Proceedings of

International Symposium on Computer

Architecture, 2001.

[EECK00] L. Eeckhout, K. De Bosschere, and H. Neefs,

“Performance Analysis through Synthetic Trace

Generation,” in Proceedings of the International

Symposium on Performance Analysis of Systems

and Software, pp. 1-6, April 2000.

[EECK04] L. Eeckhout, R. Bell Jr., B. Stougie, K. De

Bosschere, and L. John, “Control Flow Modeling

in Statistical Simulation for Accurate and Efficient

Processor Design Studies,” in Proceedings of

International Symposium on Computer

Architecture, pp. 350-361, June 2004.

[EECK01] L. Eeckhout and K. De Bosschere, “Hybrid

Analytical-Statistical Modeling for Efficiently

Exploring Architecture and Workload Design

Spaces”, Parallel Architectures and Compilation

Techniques, pp. 25-34, Sept 2001.

[FERR84] D. Ferrari, “On the foundations of artificial

workload design,” in Proceedings of AMC

SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, pp. 8-14, 1984.

[HAUN00] M. Haungs et al. “Branch Transition Rate: A New

Metric for Improved Branch Classification

Analysis,” in Proceedings of International

Symposium on High Performance Computer

Architecture, pp. 241-250, Feb 2000.

[HSIE98] C. Hsieh and M. Pedram, "Microprocessor power

estimation using profile-driven program synthesis,"

IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, vol. 17(11), pp.

1080-1089, November 1998.

[IYEN96] V. Iyengar, L. Trevillyan, and P. Bose,

“Representative traces for processor models with

infinite cache”, in Proceedings of International

Symposium on High Performance Computer

Architecture, pp. 62-73, Feb 1996.

[JOSH06] A. Joshi, L. Eeckhout, R. H. Bell Jr., L. K. John,

“Performance Cloning: A Technique for

Disseminating Proprietary Applications as

Benchmarks,” IEEE International Symposium on

Workload Characterization, pp. 105-115, Oct

2006.

[JOSH08] A. Josh, L. Eeckhout, L. John, and C. Isen.

Automated Microprocessor Stressmark

Generation, in Proceedings of International

Symposium on High Performance Computer

Architecture, Feb 2008.

[KEAT99] K. Keaton and D. Patterson, “Towards a

Simplified Database Workload for Computer

Architecture Evaluations,” in Proceedings of IEEE

Workshop on Workload Characterization, pp.115-

124, 1999.

[KURM03] Z. Kurmas et al., “Synthesizing Representative

I/O Workloads Using Iterative Distillation,” in

Proceedings of International Symposium on

Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, pp. 6-15, 2003.

 [NUSS01] Nussbaum and J.E. Smith, “Modeling Superscalar

Processors via Statistical Simulation,” in

Proceedings of International Conference on

Parallel Architectures and Compilation

Techniques, pp 15-24, Sept 2001.

[NOON97] D. Noonburg and J. Shen, “A Framework for

Statistical Modeling of Superscalar Processor

Performance”, Proc. of International Symposium

on High Performance Computer Architecture,

1997, pp. 298-309.

[OSKI00] M. Oskin, F. Chong, and M. Farrens, “HLS:

Combining Statistical and Symbolic Simulation to

Guide Microprocessor Design”, in Proceedings of

International Symposium on Computer

Architecture, pp. 71-82, June 2000.

[PHAN05] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K.

John. “Measuring Program Similarity: Experiments

with SPEC CPU Benchmark Suites”, Proceedings

of the International Symposium on Performance

Analysis of Systems and Software, 2005.

[SAAV96] R. Saveedra and A. Smith, “Analysis of

benchmark characteristics and benchmark

performance prediction”, Proc. of ACM

Transactions on Computer Systems, vol. 14, no.4,

pp. 344-384, 1996.

[SHER02] T. Sherwood, E. Perelman, G. Hamerly, and B.

Calder, “Automatically characterizing large scale

program behavior”, in Proceedings of ASPLOS,

pp. 45-57, Oct 2002.

[SKAD03] K. Skadron, M. Martonosi, D. August, M. Hill, D.

Lilja, and V. Pai, “Challenges in Computer

Architecture Evaluation”, IEEE Computer, vol.

36(8), pp. 30-36, August 2003.

[SORE02]E. S. Sorenson and J. K. Flanagan, “Evaluating

Synthetic Trace Models Using Locality Surfaces,”

in Proceedings of the IEEE International

Workshop on Workload Characterization, pp. 23-

33, Nov. 2002.

[SPIR72] J. Spirn and P. Denning, “Experiments with

Program Locality”, The Fall Joint Conference, pp.

611-621, 1972

[SREE74] K. Sreenivasan and A. Kleinman, “On the

Construction of a Representative Synthetic

Workload,” Communications of the ACM, March

1974, pp. 127-133.

[WEIC84] R. Weicker, “Dhrystone: A Synthetic Systems

Programming Benchmark,” Communications of the

ACM, pp. 1013-1030, Oct 1984.

[WEIC97] R. Weicker, “One the use of SPEC benchmarks in

computer architecture research”, Computer

Architecture News, Mar 1997.

[YI06] J. Yi, H. Vandierendonck, L. Eeckhout, and D. J.

Lilja, “The Exigency of Benchmark and Compiler

Drift: Designing Tomorrow’s Processors with

Yesterdays Tools”, International Conference on

Supercomputing, pp. 75-86, June 2006.

