1,157 research outputs found

    Thermoacoustic instability - a dynamical system and time domain analysis

    Full text link
    This study focuses on the Rijke tube problem, which includes features relevant to the modeling of thermoacoustic coupling in reactive flows: a compact acoustic source, an empirical model for the heat source, and nonlinearities. This thermo-acoustic system features a complex dynamical behavior. In order to synthesize accurate time-series, we tackle this problem from a numerical point-of-view, and start by proposing a dedicated solver designed for dealing with the underlying stiffness, in particular, the retarded time and the discontinuity at the location of the heat source. Stability analysis is performed on the limit of low-amplitude disturbances by means of the projection method proposed by Jarlebring (2008), which alleviates the linearization with respect to the retarded time. The results are then compared to the analytical solution of the undamped system, and to Galerkin projection methods commonly used in this setting. This analysis provides insight into the consequences of the various assumptions and simplifications that justify the use of Galerkin expansions based on the eigenmodes of the unheated resonator. We illustrate that due to the presence of a discontinuity in the spatial domain, the eigenmodes in the heated case, predicted by using Galerkin expansion, show spurious oscillations resulting from the Gibbs phenomenon. By comparing the modes of the linear to that of the nonlinear regime, we are able to illustrate the mean-flow modulation and frequency switching. Finally, time-series in the fully nonlinear regime, where a limit cycle is established, are analyzed and dominant modes are extracted. The analysis of the saturated limit cycles shows the presence of higher frequency modes, which are linearly stable but become significant through nonlinear growth of the signal. This bimodal effect is not captured when the coupling between different frequencies is not accounted for.Comment: Submitted to Journal of Fluid Mechanic

    Fast generation of stability charts for time-delay systems using continuation of characteristic roots

    Full text link
    Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose a new approach to quickly generate stability charts for DDEs using continuation of characteristic roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written as implicit functions of the parameters of interest, and the continuation equations are derived in the form of ordinary differential equations (ODEs). Numerical continuation is then employed to determine the characteristic roots at all points in a parametric space; the stability of the original DDE can then be easily determined. A key advantage of the proposed method is that a system of linearly independent ODEs is solved rather than the typical strategy of solving a large eigenvalue problem at each grid point in the domain. Thus, the CCR method significantly reduces the computational effort required to determine the stability of DDEs. As we demonstrate with several examples, the CCR method generates highly accurate stability charts, and does so up to 10 times faster than the Galerkin approximation method.Comment: 12 pages, 6 figure

    Operator splittings and spatial approximations for evolution equations

    Get PDF
    The convergence of various operator splitting procedures, such as the sequential, the Strang and the weighted splitting, is investigated in the presence of a spatial approximation. To this end a variant of Chernoff's product formula is proved. The methods are applied to abstract partial delay differential equations.Comment: to appear in J. Evol. Equations. Reviewers comments are incorporate

    Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Full text link
    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space XX which is acted on by any continuous semigroup {S(t)}t0\{S(t)\}_{t \geq 0}. Suppose that §(t)}t0\S(t)\}_{t \geq 0} possesses a global attractor A\mathcal{A}. We show that, for any generalized Banach limit LIMT\underset{T \rightarrow \infty}{\rm{LIM}} and any distribution of initial conditions m0\mathfrak{m}_0, that there exists an invariant probability measure m\mathfrak{m}, whose support is contained in A\mathcal{A}, such that Xϕ(x)dm(x)=LIMT1T0TXϕ(S(t)x)dm0(x)dt, \int_{X} \phi(x) d\mathfrak{m} (x) = \underset{T\to \infty}{\rm{LIM}} \frac{1}{T}\int_0^T \int_X \phi(S(t) x) d \mathfrak{m}_0(x) d t, for all observables ϕ\phi living in a suitable function space of continuous mappings on XX. This work is based on a functional analytic framework simplifying and generalizing previous works in this direction. In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when {S(t)}t0\{S(t)\}_{t \geq 0} does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and limits the phase space XX to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail.Comment: To appear in Communications in Mathematical Physic

    List of papers presented at the conference

    Get PDF

    Reduction Methods in Climate Dynamics -- A Brief Review

    Get PDF
    We review a range of reduction methods that have been, or may be useful for connecting models of the Earth's climate system of differing complexity. We particularly focus on methods where rigorous reduction is possible. We aim to highlight the main mathematical ideas of each reduction method and also provide several benchmark examples from climate modelling

    Approximated Methods for Linear Delay Differential Equations Using Weighted Residual Methods

    Get PDF
    The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method)
    corecore