This study focuses on the Rijke tube problem, which includes features
relevant to the modeling of thermoacoustic coupling in reactive flows: a
compact acoustic source, an empirical model for the heat source, and
nonlinearities. This thermo-acoustic system features a complex dynamical
behavior. In order to synthesize accurate time-series, we tackle this problem
from a numerical point-of-view, and start by proposing a dedicated solver
designed for dealing with the underlying stiffness, in particular, the retarded
time and the discontinuity at the location of the heat source. Stability
analysis is performed on the limit of low-amplitude disturbances by means of
the projection method proposed by Jarlebring (2008), which alleviates the
linearization with respect to the retarded time. The results are then compared
to the analytical solution of the undamped system, and to Galerkin projection
methods commonly used in this setting. This analysis provides insight into the
consequences of the various assumptions and simplifications that justify the
use of Galerkin expansions based on the eigenmodes of the unheated resonator.
We illustrate that due to the presence of a discontinuity in the spatial
domain, the eigenmodes in the heated case, predicted by using Galerkin
expansion, show spurious oscillations resulting from the Gibbs phenomenon. By
comparing the modes of the linear to that of the nonlinear regime, we are able
to illustrate the mean-flow modulation and frequency switching. Finally,
time-series in the fully nonlinear regime, where a limit cycle is established,
are analyzed and dominant modes are extracted. The analysis of the saturated
limit cycles shows the presence of higher frequency modes, which are linearly
stable but become significant through nonlinear growth of the signal. This
bimodal effect is not captured when the coupling between different frequencies
is not accounted for.Comment: Submitted to Journal of Fluid Mechanic