15,455 research outputs found

    The Communication Complexity of the Hamming Distance Problem

    Full text link
    We investigate the randomized and quantum communication complexity of the Hamming Distance problem, which is to determine if the Hamming distance between two n-bit strings is no less than a threshold d. We prove a quantum lower bound of \Omega(d) qubits in the general interactive model with shared prior entanglement. We also construct a classical protocol of O(d \log d) bits in the restricted Simultaneous Message Passing model, improving previous protocols of O(d^2) bits (A. C.-C. Yao, Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 77-81, 2003), and O(d\log n) bits (D. Gavinsky, J. Kempe, and R. de Wolf, quant-ph/0411051, 2004).Comment: 8 pages, v3, updated reference. to appear in Information Processing Letters, 200

    Approximate Hamming distance in a stream

    Get PDF
    We consider the problem of computing a (1+ϵ)(1+\epsilon)-approximation of the Hamming distance between a pattern of length nn and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem, giving Alice the first half of the stream and Bob the second half. We show the following: (1) If Alice and Bob both share the pattern then there is an O(ϵ4log2n)O(\epsilon^{-4} \log^2 n) bit randomised one-way communication protocol. (2) If only Alice has the pattern then there is an O(ϵ2nlogn)O(\epsilon^{-2}\sqrt{n}\log n) bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for (1+ϵ)(1+\epsilon)-approximate Hamming distance which give worst case running time guarantees per arriving symbol. (1) For binary input alphabets there is an O(ϵ3nlog2n)O(\epsilon^{-3} \sqrt{n} \log^{2} n) space and O(ϵ2logn)O(\epsilon^{-2} \log{n}) time streaming (1+ϵ)(1+\epsilon)-approximate Hamming distance algorithm. (2) For general input alphabets there is an O(ϵ5nlog4n)O(\epsilon^{-5} \sqrt{n} \log^{4} n) space and O(ϵ4log3n)O(\epsilon^{-4} \log^3 {n}) time streaming (1+ϵ)(1+\epsilon)-approximate Hamming distance algorithm.Comment: Submitted to ICALP' 201

    An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

    Get PDF
    We prove an optimal Ω(n)\Omega(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive nn-bit strings xx and yy, respectively. They are promised that the Hamming distance between xx and yy is either at least n/2+nn/2+\sqrt{n} or at most n/2nn/2-\sqrt{n}, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses nn bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables

    One-Sided Error Communication Complexity of Gap Hamming Distance

    Get PDF
    Assume that Alice has a binary string x and Bob a binary string y, both strings are of length n. Their goal is to output 0, if x and y are at least L-close in Hamming distance, and output 1, if x and y are at least U-far in Hamming distance, where L < U are some integer parameters known to both parties. If the Hamming distance between x and y lies in the interval (L, U), they are allowed to output anything. This problem is called the Gap Hamming Distance. In this paper we study public-coin one-sided error communication complexity of this problem. The error with probability at most 1/2 is allowed only for pairs at Hamming distance at least U. In this paper we determine this complexity up to factors logarithmic in L. The protocol we construct for the upper bound is simultaneous

    The streaming kk-mismatch problem

    Get PDF
    We consider the streaming complexity of a fundamental task in approximate pattern matching: the kk-mismatch problem. It asks to compute Hamming distances between a pattern of length nn and all length-nn substrings of a text for which the Hamming distance does not exceed a given threshold kk. In our problem formulation, we report not only the Hamming distance but also, on demand, the full \emph{mismatch information}, that is the list of mismatched pairs of symbols and their indices. The twin challenges of streaming pattern matching derive from the need both to achieve small working space and also to guarantee that every arriving input symbol is processed quickly. We present a streaming algorithm for the kk-mismatch problem which uses O(klognlognk)O(k\log{n}\log\frac{n}{k}) bits of space and spends \ourcomplexity time on each symbol of the input stream, which consists of the pattern followed by the text. The running time almost matches the classic offline solution and the space usage is within a logarithmic factor of optimal. Our new algorithm therefore effectively resolves and also extends an open problem first posed in FOCS'09. En route to this solution, we also give a deterministic O(k(lognk+logΣ))O( k (\log \frac{n}{k} + \log |\Sigma|) )-bit encoding of all the alignments with Hamming distance at most kk of a length-nn pattern within a text of length O(n)O(n). This secondary result provides an optimal solution to a natural communication complexity problem which may be of independent interest.Comment: 27 page

    Approximate Hamming Distance in a Stream

    Get PDF
    We consider the problem of computing a (1+epsilon)-approximation of the Hamming distance between a pattern of length n and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem. We show the following: - If Alice and Bob both share the pattern and Alice has the first half of the stream and Bob the second half, then there is an O(epsilon^{-4}*log^2(n)) bit randomised one-way communication protocol. - If Alice has the pattern, Bob the first half of the stream and Charlie the second half, then there is an O(epsilon^{-2}*sqrt(n)*log(n)) bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for (1 + epsilon)-approximate Hamming distance which give worst case running time guarantees per arriving symbol. - For binary input alphabets there is an O(epsilon^{-3}*sqrt(n)*log^2(n)) space and O(epsilon^{-2}*log(n)) time streaming (1 + epsilon)-approximate Hamming distance algorithm. - For general input alphabets there is an O(epsilon^{-5}*sqrt(n)*log^4(n)) space and O(epsilon^{-4}*log^3(n)) time streaming (1 + epsilon)-approximate Hamming distance algorithm

    Generalizations of the distributed Deutsch-Jozsa promise problem

    Full text link
    In the {\em distributed Deutsch-Jozsa promise problem}, two parties are to determine whether their respective strings x,y{0,1}nx,y\in\{0,1\}^n are at the {\em Hamming distance} H(x,y)=0H(x,y)=0 or H(x,y)=n2H(x,y)=\frac{n}{2}. Buhrman et al. (STOC' 98) proved that the exact {\em quantum communication complexity} of this problem is O(logn){\bf O}(\log {n}) while the {\em deterministic communication complexity} is Ω(n){\bf \Omega}(n). This was the first impressive (exponential) gap between quantum and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa promise problem to determine, for any fixed n2kn\frac{n}{2}\leq k\leq n, whether H(x,y)=0H(x,y)=0 or H(x,y)=kH(x,y)= k, and show that an exponential gap between exact quantum and deterministic communication complexity still holds if kk is an even such that 12nk<(1λ)n\frac{1}{2}n\leq k<(1-\lambda) n, where 0<λ<120< \lambda<\frac{1}{2} is given. We also deal with a promise version of the well-known {\em disjointness} problem and show also that for this promise problem there exists an exponential gap between quantum (and also probabilistic) communication complexity and deterministic communication complexity of the promise version of such a disjointness problem. Finally, some applications to quantum, probabilistic and deterministic finite automata of the results obtained are demonstrated.Comment: we correct some errors of and improve the presentation the previous version. arXiv admin note: substantial text overlap with arXiv:1309.773

    Quantum Communication Cannot Simulate a Public Coin

    Full text link
    We study the simultaneous message passing model of communication complexity. Building on the quantum fingerprinting protocol of Buhrman et al., Yao recently showed that a large class of efficient classical public-coin protocols can be turned into efficient quantum protocols without public coin. This raises the question whether this can be done always, i.e. whether quantum communication can always replace a public coin in the SMP model. We answer this question in the negative, exhibiting a communication problem where classical communication with public coin is exponentially more efficient than quantum communication. Together with a separation in the other direction due to Bar-Yossef et al., this shows that the quantum SMP model is incomparable with the classical public-coin SMP model. In addition we give a characterization of the power of quantum fingerprinting by means of a connection to geometrical tools from machine learning, a quadratic improvement of Yao's simulation, and a nearly tight analysis of the Hamming distance problem from Yao's paper.Comment: 12 pages LaTe
    corecore