46 research outputs found

    Determinants and Perfect Matchings

    Get PDF
    We give a combinatorial interpretation of the determinant of a matrix as a generating function over Brauer diagrams in two different but related ways. The sign of a permutation associated to its number of inversions in the Leibniz formula for the determinant is replaced by the number of crossings in the Brauer diagram. This interpretation naturally explains why the determinant of an even antisymmetric matrix is the square of a Pfaffian.Comment: 15 pages, terminology improved, exposition tightened, "deranged matchings" example remove

    On the expressive power of planar perfect matching and permanents of bounded treewidth matrices

    Get PDF
    Valiant introduced some 25 years ago an algebraic model of computation along with the complexity classes VP and VNP, which can be viewed as analogues of the classical classes P and NP. They are defined using non-uniform sequences of arithmetic circuits and provides a framework to study the complexity for sequences of polynomials. Prominent examples of difficult (that is, VNP-complete) problems in this model includes the permanent and hamiltonian polynomials. While the permanent and hamiltonian polynomials in general are difficult to evaluate, there have been research on which special cases of these polynomials admits efficient evaluation. For instance, Barvinok has shown that if the underlying matrix has bounded rank, both the permanent and the hamiltonian polynomials can be evaluated in polynomial time, and thus are in VP. Courcelle, Makowsky and Rotics have shown that for matrices of bounded treewidth several difficult problems (including evaluating the permanent and hamiltonian polynomials) can be solved efficiently. An earlier result of this flavour is Kasteleyn's theorem which states that the sum of weights of perfect matchings of a planar graph can be computed in polynomial time, and thus is in VP also. For general graphs this problem is VNP-complete. In this paper we investigate the expressive power of the above results. We show that the permanent and hamiltonian polynomials for matrices of bounded treewidth both are equivalent to arithmetic formulas. Also, arithmetic weakly skew circuits are shown to be equivalent to the sum of weights of perfect matchings of planar graphs.Comment: 14 page

    A new approach to solving three combinatorial enumeration problems on planar graphs

    Get PDF
    The purpose of this paper is to show how the technique of delta-wye graph reduction provides an alternative method for solving three enumerative function evaluation problems on planar graphs. In particular, it is shown how to compute the number of spanning trees and perfect matchings, and how to evaluate energy in the Ising spin glass model of statistical mechanics. These alternative algorithms require O(n2) arithmetic operations on an n-vertex planar graph, and are relatively easy to implement

    Compact smallest eigenvalue expressions in Wishart-Laguerre ensembles with or without fixed-trace

    Full text link
    The degree of entanglement of random pure states in bipartite quantum systems can be estimated from the distribution of the extreme Schmidt eigenvalues. For a bipartition of size M\geq N, these are distributed according to a Wishart-Laguerre ensemble (WL) of random matrices of size N x M, with a fixed-trace constraint. We first compute the distribution and moments of the smallest eigenvalue in the fixed trace orthogonal WL ensemble for arbitrary M\geq N. Our method is based on a Laplace inversion of the recursive results for the corresponding orthogonal WL ensemble by Edelman. Explicit examples are given for fixed N and M, generalizing and simplifying earlier results. In the microscopic large-N limit with M-N fixed, the orthogonal and unitary WL distributions exhibit universality after a suitable rescaling and are therefore independent of the constraint. We prove that very recent results given in terms of hypergeometric functions of matrix argument are equivalent to more explicit expressions in terms of a Pfaffian or determinant of Bessel functions. While the latter were mostly known from the random matrix literature on the QCD Dirac operator spectrum, we also derive some new results in the orthogonal symmetry class.Comment: 25 pag., 4 fig - minor changes, typos fixed. To appear in JSTA

    Parallel Polynomial Permanent Mod Powers of 2 and Shortest Disjoint Cycles

    Get PDF
    We present a parallel algorithm for permanent mod 2^k of a matrix of univariate integer polynomials. It places the problem in ParityL subset of NC^2. This extends the techniques of [Valiant], [Braverman, Kulkarni, Roy] and [Bj\"orklund, Husfeldt], and yields a (randomized) parallel algorithm for shortest 2-disjoint paths improving upon the recent result from (randomized) polynomial time. We also recognize the disjoint paths problem as a special case of finding disjoint cycles, and present (randomized) parallel algorithms for finding a shortest cycle and shortest 2-disjoint cycles passing through any given fixed number of vertices or edges

    Planar Maximum Matching: Towards a Parallel Algorithm

    Get PDF

    Constrained Codes as Networks of Relations

    Full text link
    corecore