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Abstract
Perfect matchings in planar graphs have been extensively studied and understood in the context
of parallel complexity [21, 36, 25, 6, 2]. However, corresponding results for maximum matchings
have been elusive. We partly bridge this gap by proving:
1. An SPL upper bound for planar bipartite maximum matching search.
2. Planar maximum matching search reduces to planar maximum matching decision.
3. Planar maximum matching count reduces to planar bipartite maximum matching count and

planar maximum matching decision.
The first bound improves on the known [18] bound of LC=L and is adaptable to any special
bipartite graph class with non-zero circulation such as bounded genus graphs, K3,3-free graphs
and K5-free graphs. Our bounds and reductions non-trivially combine techniques like the Gallai-
Edmonds decomposition [23], deterministic isolation [6, 7, 3], and the recent breakthroughs in
the parallel search for planar perfect matchings [2, 32].
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1 Introduction

Matchings are one of the most fundamental and well-studied objects in graph theory and in
theoretical computer science (see e.g. [23, 20]) and have played a central role in Algorithms
and Complexity Theory. Edmond’s blossom algorithm [8] for Maximum-Matching is one
of the first examples of a non-trivial polynomial time algorithm. It has had a considerable
share in initiating the study of efficient computation, including the class P itself; Valiant’s
#P-hardness [35] for counting perfect matchings in bipartite graphs provides surprising
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21:2 Planar Maximum Matching

insights into counting complexity classes. The rich combinatorial structure of matching
problems combined with their potential to serve as central problems in the field invites their
study from several perspectives.

We consider the following variants of the Maximum-Matching problem. Given w, the
Decision (or Cardinality) version asks to decide if there is a maximum matching of cardinality
at least w. The Search and the Counting versions ask respectively for a (witness to a)
maximum matching and the number of maximum matchings.

1.1 Parallel Complexity of Matching
The study of whether matching is parallelizable has yielded powerful tools, such as the
isolating lemma [29], that have found numerous other applications. The RNC bound remains
the best known parallel complexity for Maximum-Matching till date. One of the biggest open
problems in this area is to derandomize such construction. Recently, a partial derandomization
has put the Perfect-Matching problem in quasi-NC, first for bipartite graphs [10], followed
by [34] for general graphs. The best known (non-uniform) upper bound for Perfect-Matching
is non-uniform SPL [1].

Matching in Planar and Other Sparse Graphs

A well known example where planarity is a boon is that of counting perfect matchings. The
problem in planar graphs is in P [21] and can in fact be placed in NC[36]; thus Perfect-
Matching (Decision) in planar graphs is in NC.

In the case of parallel algorithms for planar graphs, the search version seemed harder than
the problem of counting. Though the bipartite planar case is known to be in NC[28, 25, 22, 6],
the construction version of Perfect-Matching in planar graphs in NC was an outstanding open
question and has been solved very recently by Anari and Vazirani [2] and Sankowski [32].

The space complexity of matching problems in planar graphs was first studied in [6]
where it is shown that min-weight Perfect-Matching in bipartite planar graphs is in SPL via
non-zero circulations. The isolation lemma has also been derandomized for K3,3-free and
K5-free bipartite graphs, giving the SPL upperbound [3].

However, known results on Maximum-Matching are limited. The only relevant result
known to us is computing a maximum matching for bipartite planar graphs in LC=L ⊆ NC
by Hoang [18]. A different NC algorithm is given for the same problem in [32]. The related
approximation problem has been investigated more. An NC approximation scheme [19] and a
Logspace approximation scheme [5] for Maximum-Matching are known for general graphs and
classes of sparse graphs (including bounded degree graphs and planar graphs) respectively.

1.2 Maximum Matching and Our Contribution
Since Perfect-Matching is a specialisation of Maximum-Matching, upper bounds applicable
for the latter directly translate to the former. Edmond’s blossom-shrinking algorithm and
the Micali-Vazirani [27] algorithm fall in this category. Occasionally, it is possible to lift the
bounds in the other direction also such as the following:

I Observation 1. Perfect-Matching and Maximum-Matching are equivalent in general graphs
under logspace Turing reduction.

Though if we start with a planar graph such reductions does not necessarily keep the graph
planar and the goal of this paper is to explore such possibilities for special graph classes.
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Recent years have seen considerable progress in upper bounds for Perfect-Matching in
planar and other restricted graph classes culminating in [2, 32] which yield efficient parallel
algorithms for planar Perfect-Matching Search. In this paper we try to close the gap between
perfect and maximum matchings for planar and related graph classes in the context of parallel
complexity. Unless otherwise stated, our results hold in planar, bounded genus, K3,3-free
and K5-free graphs. Our main result is the following.

I Theorem 2. Maximum-Matching Search in graphs with non-zero circulation is in SPL.

The class SPL, prominently studied in [1], consists of languages whose characteristic function
is computed by a determinant. The bound improves on the best known upper bound of LC=L

by Hoang [18] and matches the known upper bound for bipartite Perfect-Matching for the
same classes of graphs [6, 3]. Hoang uses a rank argument whose complexity doesn’t seem to
be in SPL - the seemingly best bound being LC=L. Instead, we use the standard isolation
technique but in a multi-graph (i.e. with self-loops) but make sure that the loop-paths
are never optimal and we can focus on the min-weight cycle covers which deterministic
isolation helps us find. Since, a deterministic construction of non-zero circulation is known
for K3,3-free and K5-free bipartite graphs [3] and bounded genus bipartite graphs [7], the
result holds for these classes also.

Next, we reduce the problem of finding a maximum matching to determining the size of
a maximum matching in the presence of algorithms to (a) find a perfect matching and to (b)
solve the bipartite version of the maximum matching, all in the same class of graphs. We use
the classic Gallai-Edmonds decomposition theorem for this reduction. Since NC algorithms
are now known for Perfect-Matching in bounded genus [2], K3,3-free and K5-free graphs [9]
then in these classes of graphs using Theorem 2 we get the following:

I Theorem 3. Maximum-Matching Search NC-reduces to Maximum-Matching Decision in
planar graphs, in bounded genus graphs, in K3,3-free graphs and in K5-free graphs.

This shows that, unlike for perfect matching where decision was known to be in NC and
the main bottleneck was the search version, for maximum matching the decision problem
is the hard cornerstone. Though we are not able to get an NC upper bound for Maximum-
Matching, we show that Maximum-Matching Search for the above mentioned classes of
graphs is in Pseudo-deterministic NC. Pseudo-deterministic algorithms are probabilistic
algorithms for search problems that produce a unique output for each given input except
with small probability. That is, they return the same output for all but few of the possible
random choices. We call an algorithm pseudo-deterministic NC if it is in RNC, and is
pseudo-deterministic. Bipartite Perfect-Matching is known to be in this class [14].

The class of search problems that can be solved in pseudo-deterministic polynomial time
was first studied by Goldwasser and Gat [12]. Since then the field of pseudo-determinism
has received significant interest, see e.g. [12, 13, 16] with some very recent progress e.g.
[31, 14, 17, 15]. As the size of the maximum matching can be found in RNC [29], from
Theorem 3 we get that,

I Theorem 4. Maximum-Matching Search is in pseudo-deterministic NC for planar graphs,
bounded genus graphs, K3,3-free graphs and K5-free graphs.

We also consider the counting version of the Maximum-Matching problem. Though we don’t
have an NC algorithm even in planar graphs (in fact, to the best of our knowledge it is
not even known to be in P), we show that counting maximum matchings in planar graphs
NC-reduces to the question in bipartite planar graphs.

ISAAC 2018



21:4 Planar Maximum Matching

I Theorem 5. Maximum-Matching Count NC-reduces to Bipartite-Maximum-Matching
Count and Maximum-Matching Decision in planar, bounded genus, K3,3-free and K5-free
graphs.

The main questions left unanswered in this study are:

I Open Question 1. Is Maximum-Matching Decision in planar graphs in NC?

I Open Question 2. Is Maximum-Matching Count in bipartite planar graphs in NC?

Organization. After some preliminaries in Section 2, we describe in Section 3 the SPL
algorithm for finding maximum matchings in graphs that have non-zero circulations. For
bounded genus, K3,3-free and K5-free graphs, we the give an NC-reduction from the problem
of finding a maximum matching to determining the size of a maximum matching, in Section 4.
In Section 5, for the same graph classes we show that counting maximum matching NC-
reduces to counting maximum matchings in bipartite graphs and determining the size of a
maximum matching. We conclude in Section 6 with some open ends.

2 Preliminaries

Let G = (V,E) be an undirected embedded planar graph with |V | = n. We sometime think
of the edges as bi-directed i.e. they are directed in both the directions. For e ∈ E, let w(e)
denote the weight of the edge e. A planar graph is a graph that can be embedded in the
plane so that no edges cross each other. A graph G is said to have genus g if G has a minimal
embedding (an embedding where every face of G is homeomorphic to a disc) on a genus g
surface. An H-minor free graph G does not contain the graph H as a minor. See standard
texts on Graph theory (e.g. [37]) for further information. Consult [30] for definitions and
properties of various other sparse graph classes.

A matching in G is a set M ⊆ E, such that no two edges in M have a vertex in common.
A matching M is called perfect if M covers all vertices of G, M of maximum size is called
maximum matching. An alternating path is one whose edges alternate between M and E \M .
We denote the size (the number of edges in the matching) of M by |M | and the weight (sum
of the weight of the edges in the matching) by w(M). Size of the maximum matching in G
is denoted by ν(G). We call two edges (also self-loops and multiple edges) of G′ disjoint, if
the set of vertices which are incident on the edges are disjoint. A matching M of G is said
to be near-perfect if exactly one vertex of G is not matched in M . For a complete treatment
on matching see [23].

Complexity Classes. The complexity classes L and NL are the classes of languages accepted
by deterministic and non-deterministic logspace Turing machines, respectively. For a non-
deterministic Turing machine M , let accM (x) and rejM (x) denote the number of accepting
and rejecting computations respectively, on an input x. Denote gapM (x) = accM (x)−rejM (x).
GapL is the class of functions f(x) such that for some NL machine M , f(x) = gapM (x). A
language L is in SPL if so that for all inputs x, gapM (x) ∈ {0, 1} and x ∈ L if and only if
gapM (x) = 1. For a complexity class C, we say that a language L C-reduces to a language
L′ if there is a many-one reduction from L to L′ computable in the class C. NC (RNC) is
the class of problems which can be solved using deterministic (randomized) polynomial size
circuits of polylogarithmic depth. Define pseudo-deterministic algorithms as follows:
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v tv

Figure 1 Gadget added at each vertex v ∈ G to construct G′.

I Definition 6 ([14]). An algorithm A for a relation R is pseudo-deterministic if there exists
some function s such that A, when executed on input x, outputs s(x) with high probability,
and s satisfies (x, s(x)) ∈ R.

A pseudo-deterministic NC algorithm is an RNC algorithm which is also pseudo-deterministic.

Non-zero Circulation Weights. For any simple cycle C of G, we define the circulation of C,
denoted by circ(C), as the alternating sum of the weights of the edges of the cycle. Formally,
if the cycle is given by (e0, e1, . . . e`) then, circ(C) =

∑`
i=0(−1)iw(ei). In this paper the

classes of graphs, where deterministic weighting schemes are known such that each cycle
in the given graph gets non-zero circulation weight, are together referred to as graphs with
non-zero circulation.

It is shown in [6] that non-zero circulation weights imply isolating weights for matchings.
Also, a simple L-computable weighting function is constructed for grid graphs such that the
circulation of every simple cycle is non-zero. In [7] it is shown that using [4] this weighting
function can be extended to all bipartite graphs embeddable on a fixed surface. This was
further extended to K3,3-free and K5-free bipartite graphs in [3].

3 Maximum-Matching Search in graphs with non-zero circulations

In this section we show that given an undirected unweighted graph G = (V,E) admitting
non-zero circulations, finding a maximum matching is in SPL. The basic idea is to construct
an auxiliary graph G′ having the property that finding a maximum matching in G reduces
to finding a min-weight generalized perfect matching (defined later) in G′. Assign non-zero
circulation weights to the edges in G′ which are also isolating weights for matchings. Then
we extract a min-weight generalized perfect matching from G′ which in turn extracts a
maximum matching from G.

A deterministic construction of non-zero circulation is known in planar bipartite graphs [6],
bounded genus bipartite graphs [7] and also in K3,3-free and K5-free bipartite graphs [3].
We construct a graph G′ = (V ′, E′) from G by adding vertex tv with a self loop for each
vertex v ∈ V and join v and tv using an undirected edge, as shown in Figure 1. Thus,
|V ′| = 2n ≡ 0(mod 2). Notice that the genus and the H-minor freeness property of G′
remains the same as G. Define a weight function w′ : E′ 7→ {0, 1} for G′ as follows. The
original edges of G have weight 1, the self-loops are of weight zero and rest of the new edges
have weight 1 (suffices to pick any weight > 1/2). We define a generalized matching as a set
of disjoint edges (possibly) inclusive of self-loops. Various notions for matching naturally
extends to generalized matchings. Call a generalized matching as perfect wherein every
vertex is matched and as min-weight perfect if it is perfect and of minimum weight.

I Proposition 7. Any matching M in G can be extended to a generalized perfect matching
P in G′. Moreover, w′(P ) = n− ν(G′).

Proof. For each v ∈ V unmatched in G use the (v, tv) edge of G′ in P , thereby matching tv
also. This contributes (n− 2|M |) to w′(P ). For the rest of the 2|M | vertices v ∈ V matched

ISAAC 2018



21:6 Planar Maximum Matching

in G, match the corresponding new vertices using the self loop at tv. Since the self loops are
of weight zero, the matched edges contribute |M | to w′(P ). These form a generalized perfect
matching P in G′ with w′(P ) = (n− 2|M |) + |M | = n− ν(G′) . J

I Observation 8. An extension of a maximum matching in G to G′ corresponds to a min-
weight generalized perfect matching in G′ and a restriction of a min-weight generalized perfect
matching of G′ to G corresponds to a maximum matching in G.

Thus the problem of finding a maximum matching in G is equivalent to that of finding
a min-weight generalized perfect matching in G′. Now we address the problem of finding
isolating weights for extracting a min-weight generalized perfect matching. We define a
weight function w (by combining several other weight functions) for which we show the
following:

I Lemma 9. With respect to the weight function w : E′ 7→ [N], the min-weight generalized
perfect matching in G′ is unique.

To prove this we need some definitions first. Define a loop-path as a closed trail (e0, e1, e2, . . . ,

ek) (for k odd, k > 1) where e0 is a self loop, the subtrail (e1, e2, . . . ek−1) is a path of
non-zero length and ek is also a self loop. Define a 2-cycle as a length 2 directed cycle
corresponding to an undirected edge as the underlying graph. Define a 2-self loop as a
closed walk (e, e) where e is a self loop. Define the alternating weight of a loop-path
P ′ = (e0, e1, e2, . . . , ek) (for k ≥ 2) to be the alternating sum of the weight of the edges in
P ′ i.e. AW (P ′) =

∑k
i=0(−1)iw(ei) = (w(e0)− w(ek)) + (−w(e1) + w(e2)− . . .+ w(ek−1)).

Let the graph G′ has at most c′n many edges for some constant c′. Define a weight
function w′′ on the edges of G′ which assigns non-zero weights to the self-loops as follows,

w′′(e) =
{
ic′, if e = (ti, ti) 1 ≤ i ≤ |V |
0 otherwise

}
The non-zero circulation weights of [3], which works for planar, K3,3-free and K5-free bipartite
graphs, compute the weights for the graph directly. For bounded genus graphs the weighting
scheme of [7] work on a grid embedding where they use the weighting scheme of [6] to assign
the weights. Following [7], given a graph H whose genus is bounded by some constant, the
idea is to create a new graph H ′ with maximum degree 3 by expanding large degree vertices
of H into binary trees preserving the bipartition. Now embed H ′ onto a constant genus grid
H ′′ such that each edge of H ′ gets expanded into an odd length path in the grid. These are
L-reductions preserving the bipartiteness and perfect matchings between H and H ′′ but not
maximum matchings. Hence we need to finally pull back the weights assigned in H ′′ to the
original graph H ensuring that the non-zero circulation property is preserved.

I Lemma 10. The pull-back weights from H ′′ give non-zero circulation to the cycles in H
and are polynomially bounded.

Denote this non-zero circulation weight for an edge e by w′′′(e) which are bounded by, say nc

for some constant c. We combine the weights w′′ and w′′′ into a single weight w∗. Using bit
shift, we define the new weight w∗(e) on the edges of G′ by w∗(e) = w′′(e) · 2d(c+1)log2(n)e +
w′′′(e) for e ∈ E(G). The weights w∗(e) are bounded by w′′(e) · nc+1 ≤ c′n · nc+1 ≤ c′nc+2.
Notice that for the non self-loop edges w∗(e) is bounded by w′′′(e) ≤ nc.

I Lemma 11. With respect to the weighing scheme w∗, the alternating sum of each simple
alternating cycle of G′ and each loop-path is non-zero.
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Proof. Using the weights w′′′(e) from Lemma 10, each simple alternating cycle of G has
non-zero circulation, and since each simple cycle of G′ is necessarily a simple cycle in G,
thus every simple alternating cycle of G′ has non-zero circulation. Now consider the loop-
path given by P = (e0, e1, e2, . . . ek) (for k ≥ 2). Then, |AW (P)| = |

∑k
i=0(−1)iw∗(ek)| ≥

|w∗(e0)− w∗(ek)| − |(w∗(e1)− w∗(e2) + . . .+ (−1)kw∗(ek−1))|. And,

|(w∗(e1)− w∗(e2) + . . .+ (−1)kw∗(ek−1))| < |w∗(e1)|+ |w∗(e2)|+ . . .+ |w∗(ek−1)|
< (k − 1) · nc (as w∗(ei) ≤ nc here)
< (c′n− 1) · nc (k < |E(G′)| ≤ c′n)
≤ c′nc+1

Then |AW (P)| > |w∗(e0)−w∗(ek)| − c′nc+1 ≥ 0 and thus every loop-path also has non-zero
alternating weight. J

Now we combine the weights w′ and w∗ into a single weight w. Using bit shift again, we
define the new weight w(e) on the edges of G′ as w(e) = w′(e) · 2d(c+2)log2(c′n)e + w∗(e) for
e ∈ E(G). The weights w(e) are bounded by w′(e) · c′nc+2 ≤ c′nc+2 as w′(e) ∈ {0, 1}.

I Lemma 12. A min-weight generalized perfect matching of G′ corresponding to the weight
function w′ is also a min-weight generalized perfect matching corresponding to the weight
function w. Moreover, the alternating sum of the weights with respect to w of simple
alternating cycles and loop-paths are non-zero.

We are now ready to prove Lemma 9.

Proof of Lemma 9. The components of the superposition of any two generalized perfect
matchings are either simple alternating cycles, loop-paths, 2-cycles or 2-self-loops. Suppose
that there is more than one min-weight generalized perfect matching of G′, call them P1
and P2, such that P1 6= P2. Since P1 6= P2, there exists atleast one component of P1 ∪ P2
which is a simple alternating cycle or an loop-path. And since w′′(e) assigns a non-zero
alternating sum weight on all simple alternating cycle and loop-paths, this implies that the
sum of weights of edges from one of P1 and P2 is lesser than the other. Swapping the edges
between P1 and P2 in this component will give rise to a new generalized perfect matching
having weight lower than both of P1 and P2, which is a contradiction. J

We use the determinant polynomial to compute the size of the maximum matching.

I Lemma 13. The union of two generalized perfect matchings of G′, whose corresponding
maximum matchings on G match a distinct set of vertices, do not appear in the determinant
polynomial.

Proof. Since the union of two generalized perfect matchings of G′, whose corresponding
maximum matchings on G match a distinct set of vertices of G will have an loop-path. Such
terms are not represented by any permutation σ, and do not appear in the summation. J

Notice that since the generalized perfect matchings containing a loop-path are of larger
weight (from the weights w′′) than the minimum, we can safely ignore such matchings.

I Observation 14. Let P be the unique min-weight generalized perfect matching in G′ of
weight W . Then the least degree term in the determinant polynomial is x2W corresponding
to the unique min-weight cycle cover in G′ which is a superposition of P with itself.

ISAAC 2018



21:8 Planar Maximum Matching

Now we compute the the least degree term in the determiant polynomial using the layered
graph method as used in [6]. Start querying from i = −c′nc+2 to +c′nc+2 to find the first
term with non-zero coefficient. Once the weight is known, we can extract P by deleting
each edge e in parallel from G′ and computing the weight of the min-weight generalized
perfect matching in G′ \ {e}. If the weight is unchanged, it implies the edge is not in P ,
and otherwise it is. Once we have P in G′, we can find a maximum matching M in G using
M = P ∩ E. Now if w(P ) = W , then |M | = n − y, where y = b W

2d(c+2)log2(c′n)e c. Thus we
arrive at the main result of this section:

I Theorem 15. Maximum-Matching Search in graphs with non-zero circulation is in SPL.

Proof. Since the edge weights are polynomially bounded, they can be computed in logspace.
Moreover computing the coefficient of a term in the determinant polynomial is in GapL [26].
However since we have used isolating weights, the coefficient of the terms starting from
−c′nc+2 to the least degree term is either 0 or 1, and hence this computation is in SPL [1].
As a result, we are able to extract a min-weight generalized perfect matching in the graph
G′ in LSPL = SPL. Hence, from the Observation 8 and the previous discussion, we can find
a maximum matching of the given graph G in SPL. J

4 Reduction from Search to Decision

We reduce the problem of finding a maximum matching to oracle calls for determining the
size of a maximum matching in the presence of a parallel algorithm to find a perfect matching
and a parallel algorithm to solve the bipartite version of maximum matching.

The reduction uses the classic Gallai-Edmonds theorem (see Theorem 3.2.1 [23]). The
crucial observation is based on partition of the vertices given as follows. A vertex v ∈ V (G)
belongs to the set of “deficient” vertices D(G) if there exists some maximum matching of G
that leaves v unmatched. A vertex v ∈ V (G) belongs to A(G), the set of vertices “adjacent”
to D(G) if v is a neighbour of some vertex u ∈ D(G) and v /∈ D(G). Rest of the vertices in
V (G) \ (D(G) ∪A(G)) are in the “critical” set C(G). A graph G is said to be factor-critical
if for every v ∈ V (G), ν(G) = ν(G− v).

I Theorem 16 (Gallai-Edmonds). Let G be a graph and D(G), A(G), C(G) are defined as
above then the components of D(G) are factor-critical and every maximum matching in G

is a perfect matching on C(G),
is near-perfect matching on each component of D(G), and
matches each vertex in A(G) to a distinct component in D(G).

I Observation 17. For a vertex v ∈ V (G), v ∈ D(G) if and only if ν(G) = ν(G− v).
Next we can find if v ∈ A(G) if and only if v /∈ D(G) and there is a vertex u ∈ D(G)
such that v ∈ N(u). Finally, C(G) = V (G) \ (D(G) ∪ A(G)). From the statement of the
Gallai-Edmonds theorem it suffices to find:
1. A perfect matching in each connected component of C(G).
2. A maximum matching in the bipartite graph formed by contracting each component of

D(G) into a single vertex d and adding an edge to each vertex a ∈ A(G) such that the
corresponding component had an edge to a.

3. A perfect matching in each component of D(G) minus an arbitrary vertex.

I Lemma 18. For any class of graphs closed under vertex deletions and edge contractions,
there is an NC algorithm for Maximum Matching Search in the class, with oracle queries to
Maximum-Matching Size, Maximum-Bipartite-Matching Search and Perfect-Matching Search
all for the same class of graphs.
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Then from the recent breakthrough works for NC algorithms for perfect matching respect-
ively in bounded genus [2] and in K3,3-free and K5-free graphs [9] along with our maximum
matching algorithm for bipartite graphs from Section 3, we obtain the following,

I Corollary 19. Maximum-Matching Search NC-reduces to Maximum-Matching Decision in
planar graphs, in bounded genus graphs, in K3,3-free graphs and in K5-free graphs.

From the above result we also get a pseudo-deterministic NC algorithm for Maximum-
Matching Search in the same class of graphs. Recall that pseudo-deterministic algorithms
are probabilistic algorithms for search problems that produce a unique output for each given
input except with small probability. Since size of the maximum matching can be found in
RNC [29] from the above result we get that,

I Theorem 4 (Restated). Maximum-Matching Search is in pseudo-deterministic NC for
planar graphs, bounded genus graphs, K3,3-free graphs and K5-free graphs.

5 Reducing Count to Bipartite Count

We reduce the problem of counting the number of maximum matchings in a (possibly non-
bipartite) graph to oracle calls for counting maximum matchings in bipartite graphs in the
presence of a parallel algorithm to count the number of perfect matchings. We do this via a
two step process: first reduce the problem of counting maximum matchings in the given graph
to counting maximum weight matchings in a bipartite graph and then subsequently reducing
the problem of counting of maximum weight matching to counting maximum cardinality
matchings while the graph remains bipartite.

This reduction again uses the Gallai-Edmonds decomposition theorem. Recall that, in the
decomposition, the vertices in C(G) have a perfect matching and each of the component of
D(G) is factor-critical. So we have that the count of maximum matchings in G is the product
of the count of the perfect matchings in C(G) and the count of the maximum matchings in
G \ C(G) = A(G) ∪D(G).

I Lemma 20. Maximum-Matching Count L-reduces to weighted Bipartite-Maximum-Matching
Count and Maximum-Matching Decision in the presence of Perfect-Matching Count.

Proof. Let D1, D2, . . . Dk be the components of D(G). Replace each edge (a, d) between a
vertex a ∈ A(G) and a vertex d ∈ Di, by adding a weight equal to the number of perfect
matchings in the component Di \ d. Next we contract each component of D(G) into a single
vertex d. Replace all the parallel edges between a and d (created due to the contraction) with
a single edge (a, d) of weight equal to the sum of weights on the corresponding parallel edges.
Since from the Gallai-Edmonds theorem we know that no maximum matching contains an
edge between any two vertices of A(G), we have ourselves the weighted bipartite graph
instance G′. It is easy to see that the number of maximum matchings in A(G)∪D(G) equals
to the sum

∑
M∈MMG′ wt(M) whereMMG′ is the set of maximum weighted matchings in

G′. This completes the first part of the reduction. In the presence of an oracle access to
Perfect-Matching Count the construction is easily seen to be in L. J

Gadget Construction. We now replace the weighted bipartite graph G′ by an unweighted
instance G′′ while keeping the counts same. Notice that the the count of the perfect
matchings and hence the edge weights takes polynomial (in n) bits, say ` bits, to store. For
a ∈ A(G′) and d ∈ D(G′), let the weight of the edge (a, d) be w(a, d) and let b1b2b3 . . . b`
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Figure 2 Replacement Gadget Ga,d for each weighted edge (a, d) in G′. The circled and non-circled
vertices belong to different bipartitions A(G′′) and D(G′′) respectively.

be the binary expansion of w(a, d) i.e. w(a, d) = b12`−1 + b22`−2 + . . .+ b`20. Equivalently,
w(a, d) =

∑
i∈S 2`−i where the set S is the set of indices corresponding to the non-zero bits

in the binary expansion of w(a, d). We replace the edge (a, d) by the gadget Ga,d where a and
d are connected by |S| many disjoint paths where the i-th path, which corresponds to the bit
bi and is present iff bi = 1 (i.e. these paths are indexed by 1 to `), is of length 2(`− i) + 2.
Consider the i-th path. Call the vertices adjacent to a and d as ai0 and di0, respectively.
Call the rest of the 2(` − i) vertices on the path as xij , yij alternately for 1 ≤ j ≤ ` − i
where xi1 is attached to ai0 and yi(`−i) is attached to di0. For the i-th path, add 2(` − i)
new vertices and call them as x′ij , y′ij alternately for 1 ≤ j ≤ ` − i. Add the undirected
edges (xij , x

′
ij), (x′ij , y′ij), (yij , y

′
ij) for all i ∈ S and 1 ≤ j ≤ `− i. Each such modified path is

informally called as box-path. Connect xi1 and yi(`−i) with a separate path xi1, ai1, di1, yi(`−i)
of length 3 where each consecutive vertex has an edge between them. See Figure 2 where we
assume b1 = 1. Notice that the graph remains bipartite after attaching the gadgets.

I Lemma 21. The gadget Ga,d has the following properties:
1. There is a unique perfect matchings in Ga,d \ {a, d}.
2. If a is matched inside Ga,d then Ga,d has a perfect matching. If a is matched with a vertex

outside Ga,d, then Ga,d \ {a} has a near-perfect matching.
3. The vertices a and d remain in different bipartitions. A vertex v ∈ Ga,d is in A(G′′) if

only if it is in the same bipartition as a. Rest of the vertices are in D(G′′).
4. There are 3w(a, d) many maximum (either perfect or near-perfect) matchings in Ga,d.
Recall that, in a maximum matching in the weighted graph G′ all the A(G′) edges are
matched. Since for each edge (a, d) in the matching we get a factor 3 extra in the count
than the desired w(a, d) (notice that these weights are multiplicative), we finally divide the
count of the maximum matchings in the bipartite unweighted graph G′′ by 3(|A(G′)|) to get
the correct count. For any w ∈ N we can construct such a gadget and replace every non-unit
weight edge of G′ by the gadget of the corresponding weight. This completes the second part
of the reduction. Since other than counting perfect matchings all the steps of the reduction
can be done in L, we have that:

I Theorem 22. Maximum-Matching Count L-reduces to Bipartite-Maximum-Matching Count
and Maximum-Matching Decision in the presence of Perfect-Matching Count.

A modification of the result of [11] combined with the techniques from [24] gives an NC
algorithm for counting perfect matchings in logarithmic genus graphs [25]. Vazirani [36] and
Straub et al. [33] show that counting perfect matchings is in NC in K3,3-free graphs and
K5-free graphs respectively. And hence, along with Theorem 22 we have the following result,
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I Corollary 23. Maximum-Matching Count NC-reduces to Bipartite-Maximum-Matching
Count and Maximum-Matching Decision in planar, bounded genus, K3,3-free and K5-free
graphs.

6 Conclusion and Open Ends

The main contribution of this investigation is a better complexity bound on bipartite planar
maximum matching which matches the upper bound for bipartite planar perfect matching.
We also show an NC reduction from planar maximum matching search to planar maximum
matching decision along with an NC reduction from counting planar maximum matchings
to counting bipartite planar maximum matchings and planar maximum matching decision
(where the NC-bounds hide the complexity of finding and counting planar perfect matching,
respectively). To reiterate, the main open questions are to find NC algorithms to determine
the size of planar maximum matching and for counting bipartite planar maximum matchings.
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