188 research outputs found

    On Colorings of Graph Powers

    Get PDF
    In this paper, some results concerning the colorings of graph powers are presented. The notion of helical graphs is introduced. We show that such graphs are hom-universal with respect to high odd-girth graphs whose (2t+1)(2t+1)st power is bounded by a Kneser graph. Also, we consider the problem of existence of homomorphism to odd cycles. We prove that such homomorphism to a (2k+1)(2k+1)-cycle exists if and only if the chromatic number of the (2k+1)(2k+1)st power of S2(G)S_2(G) is less than or equal to 3, where S2(G)S_2(G) is the 2-subdivision of GG. We also consider Ne\v{s}et\v{r}il's Pentagon problem. This problem is about the existence of high girth cubic graphs which are not homomorphic to the cycle of size five. Several problems which are closely related to Ne\v{s}et\v{r}il's problem are introduced and their relations are presented

    Uniquely D-colourable digraphs with large girth

    Full text link
    Let C and D be digraphs. A mapping f:V(D)→V(C)f:V(D)\to V(C) is a C-colouring if for every arc uvuv of D, either f(u)f(v)f(u)f(v) is an arc of C or f(u)=f(v)f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is uniquely C-colourable if it is surjectively C-colourable and any two C-colourings of D differ by an automorphism of C. We prove that if a digraph D is not C-colourable, then there exist digraphs of arbitrarily large girth that are D-colourable but not C-colourable. Moreover, for every digraph D that is uniquely D-colourable, there exists a uniquely D-colourable digraph of arbitrarily large girth. In particular, this implies that for every rational number r≥1r\geq 1, there are uniquely circularly r-colourable digraphs with arbitrarily large girth.Comment: 21 pages, 0 figures To be published in Canadian Journal of Mathematic

    Between 2- and 3-colorability

    Full text link
    We consider the question of the existence of homomorphisms between Gn,pG_{n,p} and odd cycles when p=c/n, 1<c≤4p=c/n,\,1<c\leq 4. We show that for any positive integer ℓ\ell, there exists ϵ=ϵ(ℓ)\epsilon=\epsilon(\ell) such that if c=1+ϵc=1+\epsilon then w.h.p. Gn,pG_{n,p} has a homomorphism from Gn,pG_{n,p} to C2ℓ+1C_{2\ell+1} so long as its odd-girth is at least 2ℓ+12\ell+1. On the other hand, we show that if c=4c=4 then w.h.p. there is no homomorphism from Gn,pG_{n,p} to C5C_5. Note that in our range of interest, χ(Gn,p)=3\chi(G_{n,p})=3 w.h.p., implying that there is a homomorphism from Gn,pG_{n,p} to C3C_3

    Circular edge-colorings of cubic graphs with girth six

    Get PDF
    We show that the circular chromatic index of a (sub)cubic graph with girth at least six is at most 7/2.Comment: 13 pages, 6 figure

    Graphs with bounded tree-width and large odd-girth are almost bipartite

    Get PDF
    We prove that for every kk and every ε>0\varepsilon>0, there exists gg such that every graph with tree-width at most kk and odd-girth at least gg has circular chromatic number at most 2+ε2+\varepsilon

    D-colorable digraphs with large girth

    Get PDF
    In 1959 Paul Erdos (Graph theory and probability, Canad. J. Math. 11 (1959), 34-38) famously proved, nonconstructively, that there exist graphs that have both arbitrarily large girth and arbitrarily large chromatic number. This result, along with its proof, has had a number of descendants (D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004), 227-240; B. Bollobas and N. Sauer, Uniquely colourable graphs with large girth, Canad. J. Math. 28 (1976), 1340-1344; J. Nesetril and X. Zhu, On sparse graphs with given colorings and homomorphisms, J. Combin. Theory Ser. B 90 (2004), 161-172; X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory 23 (1996), 33-41) that have extended and generalized the result while strengthening the techniques used to achieve it. We follow the lead of Xuding Zhu (op. cit.) who proved that, for a suitable graph H, there exist graphs of arbitrarily large girth that are uniquely H-colorable. We establish an analogue of Zhu\u27s results in a digraph setting. Let C and D be digraphs. A mapping f:V(D)&rarr V(C) is a C-coloring if for every arc uv of D, either f(u)f(v) is an arc of C or f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colorable if it admits a C-coloring and that D is uniquely C-colorable if it is surjectively C-colorable and any two C-colorings of D differ by an automorphism of C. We prove that if D is a digraph that is not C-colorable, then there exist graphs of arbitrarily large girth that are D-colorable but not C-colorable. Moreover, for every digraph D that is uniquely D-colorable, there exists a uniquely D-colorable digraph of arbitrarily large girth

    Circular choosability

    Get PDF
    International audienceWe study circular choosability, a notion recently introduced by Mohar and by Zhu. First, we provide a negative answer to a question of Zhu about circular cliques. We next prove that cch(G) = O(ch(G) + ln |V(G)|) for every graph G. We investigate a generalisation of circular choosability, the circular f-choosability, where f is a function of the degrees. We also consider the circular choice number of planar graphs. Mohar asked for the value of Ď„ := sup {cch(G) : G is planar}, and we prove that 68, thereby providing a negative answer to another question of Mohar. We also study the circular choice number of planar and outerplanar graphs with prescribed girth, and graphs with bounded density
    • …
    corecore