221,561 research outputs found

    Visual analysis to support exploration of recorded UAV data

    Get PDF
    International audienceDevelopments and improvements of UAV features are an awkward and difficult challenge. This activity requires precise tools and evaluation methods to analyze the UAV parameters. Therefore large quantity of data must be monitored and analyzed. In this paper, we present results of the produced visualizations with FromDaDy when exploring the recorded data of an UAV. FromDaDy is a visualization tool that tackles the challenge of representing, and interacting with numerous data. Together with a finely tuned mix between design customization and simple interactions, users can filter, remove and add data in an iterative manner until they extract a set of relevant information, thus formulating complex queries. The produced visualizations give a good insight of available information and then assess the performance of the recorded flight

    Visualizing mutations of a virus sequence

    Get PDF
    This thesis addresses a synthetic health-dataset, introduced at the IEEE VAST Challenge 2010. My research team participated in this contest to evaluate the pre-designed tool, ”IMAS” using a benchmark dataset.Learning from this contest, I designed an Information Visualization InfoVis prototype, ”FilooT” to gain a better understanding of that dataset. Following the Nested Model for Visualization Design, my thesis’ qualitative methodology consists of a design study and evaluation. To make an effective design, I followed well-cited InfoVis principles of perception and cognition. I also utilized prior knowledge produced by the proposed solutions that had been tackled the contest’s dataset. To understand the tool’s design capabilities for target domain analysts, I observed domain-users’ reactions to FilooT in a User-Experience scenario. The findings of the study indicated how analysts employ each of the visualization and interaction designs in their Bioinformatics’ task-analysis process. The critical analysis of the results inspired design informing suggestions

    The Elicitation Interview technique : capturing people’s experiences of data representations

    Get PDF
    Information visualization has become a popular tool to facilitate sense-making, discovery and communication in a large range of professional and casual contexts. However, evaluating visualizations is still a challenge. In particular, we lack techniques to help understand how visualizations are experienced by people. In this paper we discuss the potential of the Elicitation Interview technique to be applied in the context of visualization. The Elicitation Interview is a method for gathering detailed and precise accounts of human experience. We argue that it can be applied to help understand how people experience and interpret visualizations as part of exploration and data analysis processes. We describe the key characteristics of this interview technique and present a study we conducted to exemplify how it can be applied to evaluate data representations. Our study illustrates the types of insights this technique can bring to the fore, for example, evidence for deep interpretation of visual representations and the formation of interpretations and stories beyond the represented data. We discuss general visualization evaluation scenarios where the Elicitation Interview technique may be beneficial and specify what needs to be considered when applying this technique in a visualization context specifically.PostprintPeer reviewe

    Giovanni - The Bridge Between Data and Science

    Get PDF
    This article describes new features in the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni), a user-friendly online tool that enables visualization, analysis, and assessment of NASA Earth science data sets without downloading data and software. Since the satellite era began, data collected from Earth-observing satellites have been widely used in research and applications; however, using satellite-based data sets can still be a challenge to many. To facilitate data access and evaluation, as well as scientific exploration and discovery, the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) has developed Giovanni for a wide range of users around the world. This article describes the latest capabilities of Giovanni with examples, and discusses future plans for this innovative system

    Parallel Hierarchies: Interactive Visualization of Multidimensional Hierarchical Aggregates

    Get PDF
    Exploring multi-dimensional hierarchical data is a long-standing problem present in a wide range of fields such as bioinformatics, software systems, social sciences and business intelligence. While each hierarchical dimension within these data structures can be explored in isolation, critical information lies in the relationships between dimensions. Existing approaches can either simultaneously visualize multiple non-hierarchical dimensions, or only one or two hierarchical dimensions. Yet, the challenge of visualizing multi-dimensional hierarchical data remains open. To address this problem, we developed a novel data visualization approach -- Parallel Hierarchies -- that we demonstrate on a real-life SAP SE product called SAP Product Lifecycle Costing. The starting point of the research is a thorough customer-driven requirement engineering phase including an iterative design process. To avoid restricting ourselves to a domain-specific solution, we abstract the data and tasks gathered from users, and demonstrate the approach generality by applying Parallel Hierarchies to datasets from bioinformatics and social sciences. Moreover, we report on a qualitative user study conducted in an industrial scenario with 15 experts from 9 different companies. As a result of this co-innovation experience, several SAP customers requested a product feature out of our solution. Moreover, Parallel Hierarchies integration as a standard diagram type into SAP Analytics Cloud platform is in progress. This thesis further introduces different uncertainty representation methods applicable to Parallel Hierarchies and in general to flow diagrams. We also present a visual comparison taxonomy for time-series of hierarchically structured data with one or multiple dimensions. Moreover, we propose several visual solutions for comparing hierarchies employing flow diagrams. Finally, after presenting two application examples of Parallel Hierarchies on industrial datasets, we detail two validation methods to examine the effectiveness of the visualization solution. Particularly, we introduce a novel design validation table to assess the perceptual aspects of eight different visualization solutions including Parallel Hierarchies.:1 Introduction 1.1 Motivation and Problem Statement 1.2 Research Goals 1.3 Outline and Contributions 2 Foundations of Visualization 2.1 Information Visualization 2.1.1 Terms and Definition 2.1.2 What: Data Structures 2.1.3 Why: Visualization Tasks 2.1.4 How: Visualization Techniques 2.1.5 How: Interaction Techniques 2.2 Visual Perception 2.2.1 Visual Variables 2.2.2 Attributes of Preattentive and Attentive Processing 2.2.3 Gestalt Principles 2.3 Flow Diagrams 2.3.1 Classifications of Flow Diagrams 2.3.2 Main Visual Features 2.4 Summary 3 Related Work 3.1 Cross-tabulating Hierarchical Categories 3.1.1 Visualizing Categorical Aggregates of Item Sets 3.1.2 Hierarchical Visualization of Categorical Aggregates 3.1.3 Visualizing Item Sets and Their Hierarchical Properties 3.1.4 Hierarchical Visualization of Categorical Set Aggregates 3.2 Uncertainty Visualization 3.2.1 Uncertainty Taxonomies 3.2.2 Uncertainty in Flow Diagrams 3.3 Time-Series Data Visualization 3.3.1 Time & Data 3.3.2 User Tasks 3.3.3 Visual Representation 3.4 Summary ii Contents 4 Requirement Engineering Phase 4.1 Introduction 4.2 Environment 4.2.1 The Product 4.2.2 The Customers and Development Methodology 4.2.3 Lessons Learned 4.3 Visualization Requirements for Product Costing 4.3.1 Current Visualization Practice 4.3.2 Visualization Tasks 4.3.3 Data Structure and Size 4.3.4 Early Visualization Prototypes 4.3.5 Challenges and Lessons Learned 4.4 Data and Task Abstraction 4.4.1 Data Abstraction 4.4.2 Task Abstraction 4.5 Summary and Outlook 5 Parallel Hierarchies 5.1 Introduction 5.2 The Parallel Hierarchies Technique 5.2.1 The Individual Axis: Showing Hierarchical Categories 5.2.2 Two Interlinked Axes: Showing Pairwise Frequencies 5.2.3 Multiple Linked Axes: Propagating Frequencies 5.2.4 Fine-tuning Parallel Hierarchies through Reordering 5.3 Design Choices 5.4 Applying Parallel Hierarchies 5.4.1 US Census Data 5.4.2 Yeast Gene Ontology Annotations 5.5 Evaluation 5.5.1 Setup of the Evaluation 5.5.2 Procedure of the Evaluation 5.5.3 Results from the Evaluation 5.5.4 Validity of the Evaluation 5.6 Summary and Outlook 6 Visualizing Uncertainty in Flow Diagrams 6.1 Introduction 6.2 Uncertainty in Product Costing 6.2.1 Background 6.2.2 Main Causes of Bad Quality in Costing Data 6.3 Visualization Concepts 6.4 Uncertainty Visualization using Ribbons 6.4.1 Selected Visualization Techniques 6.4.2 Study Design and Procedure 6.4.3 Results 6.4.4 Discussion 6.5 Revised Visualization Approach using Ribbons 6.5.1 Application to Sankey Diagram 6.5.2 Application to Parallel Sets 6.5.3 Application to Parallel Hierarchies 6.6 Uncertainty Visualization using Nodes 6.6.1 Visual Design of Nodes 6.6.2 Expert Evaluation 6.7 Summary and Outlook 7 Visual Comparison Task 7.1 Introduction 7.2 Comparing Two One-dimensional Time Steps 7.2.1 Problem Statement 7.2.2 Visualization Design 7.3 Comparing Two N-dimensional Time Steps 7.4 Comparing Several One-dimensional Time Steps 7.5 Summary and Outlook 8 Parallel Hierarchies in Practice 8.1 Application to Plausibility Check Task 8.1.1 Plausibility Check Process 8.1.2 Visual Exploration of Machine Learning Results 8.2 Integration into SAP Analytics Cloud 8.2.1 SAP Analytics Cloud 8.2.2 Ocean to Table Project 8.3 Summary and Outlook 9 Validation 9.1 Introduction 9.2 Nested Model Validation Approach 9.3 Perceptual Validation of Visualization Techniques 9.3.1 Design Validation Table 9.3.2 Discussion 9.4 Summary and Outlook 10 Conclusion and Outlook 10.1 Summary of Findings 10.2 Discussion 10.3 Outlook A Questionnaires of the Evaluation B Survey of the Quality of Product Costing Data C Questionnaire of Current Practice Bibliograph

    Chunk Reduction for Multi-Parameter Persistent Homology

    Get PDF
    The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since most computation tasks scale badly with the size of the input complex, an important pre-processing step consists of simplifying the input while maintaining the homological information. We present an algorithm that drastically reduces the size of an input. Our approach is an extension of the chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of previous work in the context of discrete Morse theory. Our algorithm also offers an immediate parallelization scheme in shared memory. Already its sequential version compares favorably with existing simplification schemes, as we show by experimental evaluation
    • …
    corecore