163 research outputs found

    On Affine Logic and {\L}ukasiewicz Logic

    Full text link
    The multi-valued logic of {\L}ukasiewicz is a substructural logic that has been widely studied and has many interesting properties. It is classical, in the sense that it admits the axiom schema of double negation, [DNE]. However, our understanding of {\L}ukasiewicz logic can be improved by separating its classical and intuitionistic aspects. The intuitionistic aspect of {\L}ukasiewicz logic is captured in an axiom schema, [CWC], which asserts the commutativity of a weak form of conjunction. This is equivalent to a very restricted form of contraction. We show how {\L}ukasiewicz Logic can be viewed both as an extension of classical affine logic with [CWC], or as an extension of what we call \emph{intuitionistic} {\L}ukasiewicz logic with [DNE], intuitionistic {\L}ukasiewicz logic being the extension of intuitionistic affine logic by the schema [CWC]. At first glance, intuitionistic affine logic seems very weak, but, in fact, [CWC] is surprisingly powerful, implying results such as intuitionistic analogues of De Morgan's laws. However the proofs can be very intricate. We present these results using derived connectives to clarify and motivate the proofs and give several applications. We give an analysis of the applicability to these logics of the well-known methods that use negation to translate classical logic into intuitionistic logic. The usual proofs of correctness for these translations make much use of contraction. Nonetheless, we show that all the usual negative translations are already correct for intuitionistic {\L}ukasiewicz logic, where only the limited amount of contraction given by [CWC] is allowed. This is in contrast with affine logic for which we show, by appeal to results on semantics proved in a companion paper, that both the Gentzen and the Glivenko translations fail.Comment: 28 page

    G\"odel-Dummett linear temporal logic

    Full text link
    We investigate a version of linear temporal logic whose propositional fragment is G\"odel-Dummett logic (which is well known both as a superintuitionistic logic and a t-norm fuzzy logic). We define the logic using two natural semantics: first a real-valued semantics, where statements have a degree of truth in the real unit interval and second a `bi-relational' semantics. We then show that these two semantics indeed define one and the same logic: the statements that are valid for the real-valued semantics are the same as those that are valid for the bi-relational semantics. This G\"odel temporal logic does not have any form of the finite model property for these two semantics: there are non-valid statements that can only be falsified on an infinite model. However, by using the technical notion of a quasimodel, we show that every falsifiable statement is falsifiable on a finite quasimodel, yielding an algorithm for deciding if a statement is valid or not. Later, we strengthen this decidability result by giving an algorithm that uses only a polynomial amount of memory, proving that G\"odel temporal logic is PSPACE-complete. We also provide a deductive calculus for G\"odel temporal logic, and show this calculus to be sound and complete for the above-mentioned semantics, so that all (and only) the valid statements can be proved with this calculus.Comment: arXiv admin note: substantial text overlap with arXiv:2205.00574, arXiv:2205.0518

    Ruitenburg's Theorem mechanized and contextualized

    Full text link
    In 1984, Wim Ruitenburg published a surprising result about periodic sequences in intuitionistic propositional calculus (IPC). The property established by Ruitenburg naturally generalizes local finiteness (intuitionistic logic is not locally finite, even in a single variable). However, one of the two main goals of this note is to illustrate that most "natural" non-classical logics failing local finiteness also do not enjoy the periodic sequence property; IPC is quite unique in separating these properties. The other goal of this note is to present a Coq formalization of Ruitenburg's heavily syntactic proof. Apart from ensuring its correctness, the formalization allows extraction of a program providing a certified implementation of Ruitenburg's algorithm.Comment: This note has been prepared for the informal (pre-)proceedings of FICS 2024. The version to be submitted to the post-proceedings volume is going to be significantly different, focusing on the Coq formalization, as requested by referees and the P

    Paraconsistency properties in degree-preserving fuzzy logics

    Get PDF
    Paraconsistent logics are specially tailored to deal with inconsistency, while fuzzy logics primarily deal with graded truth and vagueness. Aiming to find logics that can handle inconsistency and graded truth at once, in this paper we explore the notion of paraconsistent fuzzy logic. We show that degree-preserving fuzzy logics have paraconsistency features and study them as logics of formal inconsistency. We also consider their expansions with additional negation connectives and first-order formalisms and study their paraconsistency properties. Finally, we compare our approach to other paraconsistent logics in the literature. © 2014, Springer-Verlag Berlin Heidelberg.All the authors have been partially supported by the FP7 PIRSES-GA-2009-247584 project MaToMUVI. Besides, Ertola was supported by FAPESP LOGCONS Project, Esteva and Godo were supported by the Spanish project TIN2012-39348-C02-01, Flaminio was supported by the Italian project FIRB 2010 (RBFR10DGUA_02) and Noguera was suported by the grant P202/10/1826 of the Czech Science Foundation.Peer reviewe

    Decidability of Order-Based Modal Logics

    Get PDF

    A Dempster-Shafer theory inspired logic.

    Get PDF
    Issues of formalising and interpreting epistemic uncertainty have always played a prominent role in Artificial Intelligence. The Dempster-Shafer (DS) theory of partial beliefs is one of the most-well known formalisms to address the partial knowledge. Similarly to the DS theory, which is a generalisation of the classical probability theory, fuzzy logic provides an alternative reasoning apparatus as compared to Boolean logic. Both theories are featured prominently within the Artificial Intelligence domain, but the unified framework accounting for all the aspects of imprecise knowledge is yet to be developed. Fuzzy logic apparatus is often used for reasoning based on vague information, and the beliefs are often processed with the aid of Boolean logic. The situation clearly calls for the development of a logic formalism targeted specifically for the needs of the theory of beliefs. Several frameworks exist based on interpreting epistemic uncertainty through an appropriately defined modal operator. There is an epistemic problem with this kind of frameworks: while addressing uncertain information, they also allow for non-constructive proofs, and in this sense the number of true statements within these frameworks is too large. In this work, it is argued that an inferential apparatus for the theory of beliefs should follow premises of Brouwer's intuitionism. A logic refuting tertium non daturìs constructed by defining a correspondence between the support functions representing beliefs in the DS theory and semantic models based on intuitionistic Kripke models with weighted nodes. Without addional constraints on the semantic models and without modal operators, the constructed logic is equivalent to the minimal intuitionistic logic. A number of possible constraints is considered resulting in additional axioms and making the proposed logic intermediate. Further analysis of the properties of the created framework shows that the approach preserves the Dempster-Shafer belief assignments and thus expresses modality through the belief assignments of the formulae within the developed logic

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras
    • …
    corecore