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Abstract

Issues of formalising and interprei-:ing epistemic uncertainty have always played a
prominent role in Artificial Intelligence. The Dempster-Shafer (DS) theory of partial
_ beliefs is one of the most-well known formalisms to address the partial knowledge.
Similarly to the DS theory, which is a generalisation of the classical probability theory,
fuzzy logic provides an alternative reasoning apparatus as compared to Boolean logic.

Both theories are featured promi.nent.ly within the Artificial Intelligence domain,
but the unified framework accounting for all the aspects of imprecise knowledge is yet
to be developed. Fuzzy logic apparatus is often used for reasoning based on vague
information, and the beliefs are often processed with the aid of Boolean logic. The
sitnation clearly calls for the development of a logic formalism targeted specifically
for the needs of the theory of beliefs. Several frameworks exist based on interpreting
epistemic uncertainty through an appropriately defined modal operator. There is an
epistemic problem with this kind of frameworks: while addressing uncertain informa-
tion, they also allow for non-constructive proofs, and in this sense the number of true
statements within- thcse frameworks is too large.

In this work, it is argued that an inferential apparatus for the theory of beliefs
shonld follow premises of Brouwer’s intnitionism. A logic refuting tertium non daturis
constructed by defining a correspondence between the support functions representing
beliefs in the DS theory and semantic models based on intuitionistic Kripke models
with weighted nodes. Without addional constraints on the semantic models and with-
out modal operators, the constructed logic is equivallent to the minimal intuitionistic
logic. A number of possible constraints is consideréd resulting in additional axioms
and making the proposed logic intermediate. Further analysis of the properties of
the created framework shows that the approach preserves the Dempster-Shafer be-
lief assignments and thus expresses modality through the belief assignments of the

formulae within the developed logic.
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Chapter 1
Introduction

This work presents an interpretation of the Dempster-Shafer theory [1] throngh a non-
Boolcan logic. From a pure mathematician’s point of view it is an applied problem.
From a eomputer scientist’s viewpoint it is a theoretical work that draws new links
between several related fields. In order to better appreciate the results achieved and
the decisions taken along the way it is important to view this work in the wider context

“of the respective fields which inspired it. Even though the focus is on developing a
logic formalism, the most important part of the work analyses the relationship and
parallels between the proposed formalism and the evidential theory. In this sense the
work is different from a dissertation in pure logic, such as [2] or {3]. The reasons for
the choice of a logic are different from the ones of a pure mathematician. The anthor
did not choose the logic that was the most interesting from the mathematical point
of view. Inst.ead, the logic that is the most meaningful from the Dempster-Shafer
theory point of view was selected.

Semantic models or Kripke models are extensively used in this work for both
representing and studying the evidential setups. From a computer scientist’s point
of view a Kripke model is first of all a directed graph. Within the domain, graphs

_ are very attractive objects: they are easy to represent as a data structure, there are
many efficient algorithms to manipulate them, the amount of formal knowledge about
graphs is vast. Moreover, the earlier graphicd representations of the Dempster-Shafer
frames of discernment lacked generality and semantic analysis. Taking the above in
consideration, makes .providing a procedure that allows one to get-both the graphical
representation and the semantic interpretation of the Dempster-Shafer theory rather
attractive. .
The idea behind the whole undertaking is very simple. Boolean logic adequately
represents the world described by classical probability theory, whereas the Dempster-



Shafer theory universe is different and merits its own inferential apparatus. There
is no consensus about what this apparatus should be, but a large part of the pro-
posed ones use modal logics (see the review below). Use of a modal operator for
inference witbin a Dempster-Shafer universe contradicts the author’s understanding
of the nature of the beliefs, so a modality-free logic is proposed. Philosophical and
mathematical factors influenced the decision. Both choices are justified in due course.

1.1 The uncertainty representation

The discussion about the nature of uncertain information is centred on two types of
. uncertainty: aleatory and epistemic. Aleatory uncertainty is the lack of knowledge
about the systemn due to the system’s random behaviour.- Epistemic uncertainty stems .
from the lack of khowledge about the system that may well be operating according to
some unknown non-random rules [4]. Aleatory uncertaiuty is traditionally addressed .
by probability theory, and there is little donbt about the theory’s ability to do so
[5]. The attention to epistemic uncertainty is more recent, and there is no consensus
on the best approach. The review of the interpretations prOpoéed so far is found in
4, 6, 7). '

The Dempster-Shafer theory falls into a broader category of non-Bayesian statis-
tics developed for solving different problems associated with the formalisation and
interpretation of epistemic uncertainty. The decision making paradoxes are among
the best known problems of this type [8]. The common feature of such approaches
is their readiness to give up the additive probability measure on the universal set.
What is used instead of the additive probability measure differs from one approach
to ancther. The Dempster-Shafer theory abandons both the additivity of probability
measure and the certainty of either event or its complement [9]. Schmeidler and later
Wakker gave up the additivity and used fuzzy integrals for alternative ranking in
decision under uncertainty [10, 11, 12]. .

Unlike many other theories, the Dempster-Shafer theory’s beginnings arc not dif-
ficult to trace. Dempster’s article about upper and lower probabilities first appeared
in 1967 [13], and the generalisation of the Bayesian rule in the new setup appeared
in [14]. A few years later, Shafer developed Dempster’s ideas into a full formalism in
his doctoral dissertation [1}. It is interesting that the thesis presented a more gen-
eral version of the theory than the monograph [9] that appeared later. The thesis
addressed all possible setups, but the monograph limited its attention to the finite

case only.



The Dempster-Shafer theory illustrates the modular nature of the formalisms for
uncertain information. While the heliefs that replace the probabilities of the Bayesian
setup are not necessarily additive, the sets which they represent are crisp. The
Dempster-Shafer theory evidence combination rule relies heavily on Mébius trans-
form (15|, which is a combinatorial result only applicable to countable crisp sets. The
original development used non-additive measures to describe crisp events. A fuzzy
analogue of Mobius transform cxists, but it was proposcd later [16]. The evidence
combination rule may be defined differently depending on the relationship among the

sources of information [17].

1.2 Fuzzy formalisms

For the problem at hand it is convenient to think about fuzzy theory as a field
that encompasses two distinct components. These fields are fuzzy measure theory:
and fuzzy logic. The two are clearly connected and one can, to a large extent, be
developed from the other. In the setting of this work it is more convenient to look at
them independently. .

The anthor distinguisbes between fuzzy logic in a narrow and a broad sense; the
distinction is due to Hdjek [18]. Fuzzy logic in a narrow sense is the logic that is con-
structed to formalise imprecise statements and thus facilitate formal reasoning. Fuzzy
logic in a broad sense includes everything that deals with classes whose boundaries
are not sharp. Building a non-Boolean inferential apparatus for the Dempster-Shafer

theory is within the boundaries of the fuzzy logic in a narrow sense.

1.2.1 Fuzzy sets

The traces of questioning the bivalent logical statements are already present in Aris-
totle's works [19]. Computer scicntists tend to relate the beginning of an alternative
logic’s development to the publication of Zadeh’s article ‘Fuzzy Sets’ [20] in 1965.
The article is a convenient reference point that served as a catalyst for the scientific
community’s interest in new -ways to represent and utilise uncertainty. On the other
hand, one of the most nused fuzzy concepts, the Choquet integral, was introduced in .
the fifties without any reference to fuzzy sets. Choquet nsed the term ‘capacities’
instead, so the reference point is more or less arbitrary and reflects the birth of a
term rather tban of a theory.

The core idea of a continuous set membership function is quite intuitive and



fruitful: fuzzy set theory is a large field in itself that serves as a foundation for the
development of new directions in the fields as divergent as set theery and topology
[21, 22]. A good review of the fuzzy set theory and the corresponding issues can
be found in [23]. Fuzzy sets as tools for epistemic uncertainty representation and
interpretation are discussed in [24; 25]. Fuzzy sets are possibly the most popular
fuzzy concept for applications. There are numerous applicatious in virtually any
branch of computer science. A few, works mentioned in the end of the paragraph-
can serve as a taster of how fuzzy sets are used in the field of pattern recoguition:
" [26, 27, 28, 29, 30]. ‘

Given the new nature of the objects in question, one might expect that the classical
measure theory would fail to address the needs of the fuzzy sets. However, the solution
to the problem is more interesting than it looks at the first glance. A non-additive
analogue of the Lebesgue’s measure was first presented by Choquet in ‘Theory of
Capacities’[31]. Choquet also proposed a functional that could be used for calculating
expected values of variables over sets characterised by capacities rather than measures.
Zadeh later offered a more general version of Choquet’s capacities which he called
fuzzy measures [32], thus making Choquet’s functional a fuzzy integral. Fuzzy measure
is often interpreted as a géneralisation of a familiar Lebesgue measure [33] and thus

rany kind of aggregation operator on it should reduce to the Lebesgue integral. This

requirement is satisfied by Choquet’s integral [34, 35] making it possible to develop
a full fledged fuzzy integration theory. The fuzzy integration theory was developed
by Sugeno (36|, who also proposed his own aggregation min-max operator suitable
for non-additive measures. This functional is called ‘Sugeno integral’, even though it
is not an integral in the same sense as Choquet’s integral: it does not reduce to the
Lebesgue integral in the additive case. |

The Choquet and Sugeno integrals are not the only possible aggregation func-
tionals available for non-additive set functions. A number of alteruatives were pre-
sented over the course of time, for example [37]. None of them, however, became as
-widespread as the two discussed above. The later advances in fuzzy integration the-
ory include a unified framework called a t-conorm integral, which has both Choquet
and Sugeno integrals as particular cases [38]. A structured review of the state of the

art in the fuzzy integration theory in the mid-nineties is in [39)].



1.2.2 t-norms

The inferential apparatus for dealing with imprecise information -is based on two
carnerstones — the t-norm and the modal operator. The idea of a multivalued logic
" is older than the idea of a fuzzy set. Multivalued logic and fuzzy logic are not
synonymous. The ageuda of the latter is wider: it is the theory that is meant to deal
with all kinds of imprecise or vague information, while the multivalued logic deals with -
the partial truth of statements [40]. On the other hand, most of the theory available
for multivalued logics is utilised to a different extent by the fuzzy community.

Some of the earliest formal developments in the field are due to Eukasiewicz,
whose works first appeared in 1920-s [41, 42]. Lukasiewicz first introduced a three-
valned logic that was later generalised to n-valued finite case. The logics with real-
valued truth operators owe their existence to {-norms, a continuous or semi-continuous
generalisation of the conjunction operator in classical logic. The definition of the t-

narm is not very restrictive.

Definition 1.2.1 ({—norm) A t-norm is a function * : [0,1]* — [0,1] such that
Vz,y,z € [0,1] it is

1. Commutative: £xy = y*xx;
2. Associative: (zxy)*z2=1Tx* (y* 2);
3. Monotone: z, < 1 implies Ty xy <mpxy, and y; < yo implies Txyy S Ty,
4. Satisfies boundary conditions: 1x x = T and 0xz = 0.
The dual concept, a t-conorm is produced. by calculating 1 - (1- :1:).* (1-19).

The definition is not véry restrictive and it makes many different t-norms pos-
sible which lead to various multivalued logics. The link between t-norms and mul-
tivalued logics is through a f-norm’s residuum. It is known that the implication
can be expressed as Vz,y € [0,1], 2 — y = max(z|z x z < y) [18]. Research in t-
norms is an active field, and many results, both theoretical and applied, are presented
[43, 44, 45, 46]. Another important property of a -norm is its algebraic connection:
[0,1] equipped with a t-norm and its residuum forms a residuated lattice [47]‘, thus
allowing one ta loak for algebraic parallels wheu a logic is analysed. The algebraic
parallels between logics and residuated lattices will be discussed in due course.

The second logic-building cornerstone is the modal operator. In some sense, in-

troducing a new operator results in more dramatic changes to the system than a



different definition of the connectives. The effects of introducing the modal operator
are discussed in more detail in Chapter 2. At the moment, it is enough to remember
that the minimal effects of adding a modal operator to the Boolean propasitional
language include at least one new axiom (in addition to the axioms of Boolean logic)
and a new inference rule [48]. This is not the case with a residuum of a {-norm: most
multivaiued logics use only modus ponens as the inference rule and operate within
essentially the same propositional language as the Boolean logic.

The modal operator is not necessarily unique, as different modal logics may have
different modal operators. The definition of modal operators and the set of axioms
that they must satisfy depends on the area that a particular logic describes. There
is no consensus among the researchers on what a modal operator is [49]. Among the
well-known modal logics are the temporal logic [50]; the deontic logic that operates
with conceptis like obligation; the epistemic logic that formalises different types of
knowledge with the modal operator ‘is known that’, and many others [51]. A global
picture of the general modal logic and its various specific strands may be found in
[48, 52, 53]. ' .

Even though introducing a modal operator is an effective logic bnilding step that
enables the construction of a bespoke inferential apparatus for different situations,
the author argues against it. The details of the argument are presented in the next
chapter. At the moment, it is enough to observe, that the modal operator in an
inferential apparatus for the system of beliefs is ‘excessive’, because the modality is
already expressed through the fuzzy measure of the subsets in the universal set. The
purpose of the work is thus to construct an interpretation that allows a t-norm based
logic construction, but not an introduction of new operators (lfnew’ with respect to the
propositional language of the Booleanlagic). This approach can be called ‘semantic-
centred”: instead of defining new operators or inferential rules, the author thinks of
a logic as a set of true formulae and tries to understand which set gives an adequate
description of the theory in question.

Another possible approach to creating the logics that are neither Boolean nor
modal is through amending some already existing logic. The Boolean logic is the
most established one, and its set of axioms is often used as yardstick when a new
logic is analysed. Amending means either adding or removing some of the axioms
from the set of the Boolean axioms. One of the earlier developments of this kind is
due to Brouwer, whose counstructive mathematics is based on rejecting the tertium
non datur axiom: pV (p — L) [54, 55]. The resulting logic was called an intuttionist

logic. Depending on the need, some extra axioms that are not tertium non datur



can be added, thus forming a superintnitionistic or, as the modern usage goeé, an
intermediate logic. The interest in these logics was first spurred by the attempts to
create a new kind of mathematics, which does not allow a non-constructive proof and
~ is generally stricter than the classical theory. Brouwer went further in his attempts to
redevelop the mathematical notions. For example, he replaced a function with mare
general notions of a sequence and a fan [56, 57]. Not all of Brouwer’s heritage is used
in the present times. Moreover, the form in which Brouwer’s ideas are known to the
majority is due to his student Heyting, who published intuitionist works using the
‘conventional notation [58]. Brouwer’s intuitionism falls into a wider trend in mathe-
matics called constructive mathematics [59]. The monograph [60] gives an account of
Soviet ’constructive mathematics. | _

The new axioms can be presented based on two different premises. A choice of
a t-norm puts certain restrictions on the set of true formulae. Several well-known
logics such as Lukasiewics logic and product logic were created this way. Another
approach is based on the requirement to meet certain semantic properties without
any reference to a particular t-norm. Such an approach leads to the development of
both two-valued and multivalued logics: the Medvedev logic of finite problems and.
many others were created this way. The intermediate logics are not necessarily finitely
axiomatizable. Moreover, the logic proposed in this work is not finitely axiomatiz- -
able, but has a simple definition based on a first-order condition on the underlying
semantical structures. The field is just too large to give a detailed overview. A good
overview of important intermediate logics is in [48, 61, 62], the rest of references is
given as the need arises.

This work explores the properties of the intermediate ldgics using the well-known
correspondence between logics and lattices. The primary tool for semantics explo-
ration is a Kripke model. Viewing logic as algebra is not unique for modal or multi-
valued logic. Many completeness results within Boolean logic owe their existence to
the algebraic répresentation and parallels. An ‘algebraic’ view of the familiar Boolean
logic can be found in [63]. A good summary of the relevant results is in already cited
[48, 61, 64] as well as [65, 66]. The algebraic view of logic falls within metamath-
ematical view of the subject. The classical expaosition to metamathematics is in
(67, 68].

While the algebraic approach is applicable to a very wide spectrum of logic prob- ‘
lems, the semantic models proposed by Kripke are not equally universal. Although
the classical Boolean logic may be represented using a Kripke model, the maodel is

degenerate and thus not interesting. The situation changes dramatically when in-



termediate or modal logics are involved. Using Kripke models allows for an easier
translation to the language of lattices, and it helps to use combinatorial results for
the semantic analysis among other uses. The construction presented in this work also
relies on Kripke models, so the discussion of the particular merits of the approach is
postponed until the relevant notation is introduced and the results are proved. It is
also worth mentioning that originally the Kripke models were introduced as a tool
for the philosophers. A detailed analysis of Kripke’s philosophy can be found cither
in his own works, [69] or in monograph [70].

1.3 The Dempster-Shafer theory interpretations

This work is synthetic in its nature: it contributes to the decision making theory by
constructing a procedure that maps the Dempster-Shafer belief theory to the semantic
models and then usecs algebraic methods to analyse the semantics of the result. The
idea is quite natural: while the Boolean logic provides a perfectly adequate inferential
apparatus for the Bayesian statistics, it is not the case with the belief theory. There '
are several challenges to be addressed. A ‘useful’ interpretation should be general
enough to translate any possible Dempster-Shafer universe to a semantic model, yet
flexible enongh to allow for later evidence updates throngh both the Dempster-Shafer
evidence combination rule and frame transformations. Not all multivalued logics
can do both things. For example, the logic in [71] cannot represent the Dempster-
Shafer evidence combination rule. Aside from the formal considerations, different
interpretations of the meaning of beliefs are possible. The discussion on the topic is
quite fruitful, as in [40, 72}, which offer a more general discussion on the requirements
to such interpretation. The discussion about dilfferent interpretations of the Dempster-
Shafer theory inevitably addresses the question of processing uncertainty and the
place of logics in it.

According to Klir [7] the uncertainty is processed on three levels: Formalisation,
Measurement and Utilisation. The Dempster-Shafer theory is a formalisation tech-
nique, logic is used for the utilisation of uncertain information. Logic interpretations
of the Dempster-Shafer theory always make decisions about the relationship between
different levels of processing uncertainty. Often these decision are based on under-
standing uncertainty as modality.

Even though the rigorous discussion about choosing the appropriate set of tools
is postponed until the next chapter, the overview of the existing interpretations is
not quite possible without reference to a few technical concepts. The modal logic is

8



commonly defined as an extension of the Boolean logic, which among other things
includes modal connectives: O (nccessity) and ¢ (possibility). The formal propertics
of these operators may differ depending on the logic and will be intraduced as the
need arises. Another concept used by most non-classical logics, is a possible world.
While the Boolean logic operates with a static world, non-standard logics often allow
for different states of affairs (worlds) in which different variables are instantiated. The
collection of possible worlds, along with accessibility relation and function that links
the worlds and formulae are referred to as semantic or Kripke models.

One of the earlier developments in the field was the possibilistic logic proposed by
Dubois and Prade [73]. It is a logic of weighted formulae that is in agreement with
Zadeh’s understanding of necessity and possibility measures. Tbe possibilistic log;ic.
was not developed specifically for the needs of the Dempster-Shafer theory. Dubais
et al. presented a framework that departs from the truth functionality of the fuzzy
logic thL;S providing a general approach for the researchers who do not view uncertain
propositions as trnth-functional. Following the same philosophy Farinas and Herzig
[74] proposed a qualitative possibility logic, in which they axiomatize the notion of
qualitative possibility based on ordering possibilities and necessities of propositions.

- Another logic in this family is due to Bontilier [75] who developed two possibilistic
logics for reasoning under uncertainty. Boutilier’s results include two logics CO and
CO*. Both constructions are extensions of Boolean logic. Even thongh the resulting
constructions are modal logics, the approach is different from the majority of modal
logics that appear in the literature. There are two modal operators. The first modal
operator is familiar [J (modal necessity) that stands for truth in accessible worlds. The
ather operator is unusual ] describing the truth in inaccessible worlds. The semantics
is based on Kripke models for two valued logics. The uncertainty of propositions is
described through the possibility and necessity measures. ‘The meaning of a possibility
measure is interpreted in terms of the amount of surprise associated with a statement.
The higher the possibility measure of a statement the lower is the observer’s surprise
‘when the statement is true. "

Ultimately, Boutilier aims to develop a qualitative reasoning apparatus and a
large part of work is devoted to going from quantitative notions to the qualitative
ones. Qualitative order-ing is possible and given. There is a distinction between
epistemic possibility and physically or logically possible worlds that an agent can
possibly consider adopting.

The possible world semantics is used, the accessibility relation R is understood as

ranking according to the degree of possibility, R is reflexive and transitive_preorder.



R is a total preorder: two states of affairs must be comparable accarding to their
degree of possibility. wRv means that v is at least as possible as w. In other worlds,
the accessibility ranking gives ordering from least possible to the most passible warld.
Language is a conntable set P of propositional variables along with connectives -, D,
0, . Semantic CO models in this case are M = (W, R, V), where R is transitive,
connected binary relation on set of possible worlds W and V is a multivalued map
between P and W. The semantic models also contain clusters of worlds (v Rw A w Rv)
that are always present. The clusters can be thonght of as the sets of worlds that are
equally possible. The truth of formulae is defined through the modelling relation

1. M [z, Oa iff for.each v such that wRv, M |=, a.
2. My Do iff for each v such that vRw, M |y a.

Tbe connective O is then the truth.in the worlds that are at. least as probable as w,
and connective J is the truth in all inaccessible worlds, i.e. the ones that are less
possible than w.

The logic CO* is the smallest extension that assigns positive degrces of pos-
sibilify to every logically possible world. CO* is closed under rules of CO and
has an extra axiom, a model in this logic is then any CO-model such that {f :
f maps P inta {0,1}} C {w*: w € W} -

In order to have qualitative reasoning but nat to lose in expressive power, Boutilier
introduces quite a few non-standard logical connectives and ultimately gives a set of
axioms. The final product is a logic that includes Boalean logic, several additional
" axioms and is closed under necessitation and modus ponens. Overall, the approach
produces an ordering of the formnlae but no truth values. The main idea is similar
to the approacb taken in this work except that there is a modality and things are not
quantified, but instead ordered using relation R. The drawback of the approach is
that it does not allow for an analogue of the Dempster-Shafer evidence combination
rule, as there are na numerical possibilities.

The logics reviewed above nsed two valned connectives. Using multivalued con-
nectives for the Dempster-Shafer theory interpretation was also done. One of the
better known attempts is due to Hajek et al. [76] who propased an extensian of the
Boolean logic by introducing the beliefs on Boolean formulae. The belief in this inter-
pretation is understood as a truth degree of a fuzzy propdsit-ion By which stands for
‘“p is believed’. The belief is defined as 'probability of modal necessity. A set of new
axioms is introduced. The result is a combinat-:ion of logic 85 with fuzzy approach
named LII3— a combination of product and Lukasiewicz logics.
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The notion of probability is generalised by taking into consideration expressions
like ,

‘‘belief degree of '’ = ‘‘truth degree of By’’,
where By is a fuzzy proposition “B is believed”.

The semantic of such logic is studied with aid of O-probabilistic Kripke models:
R = (M, u), where M is a [3-Kripke model (modal Kripke model). A modal Kripke
model is defined as M = (W, R, V') where R is an equivalence relation, and valuation
function V is extended to modalities. g in a O-probabilistic Kripke model is a finitely
additive probability measure over the algebra of subsets of W. Beliefs in this setting
become the probabilities of necessities. It is shown that beliefs can be represented by
some Kripke model. .
3
and © (Lukasiewicz and Goguen implications and product conjunction). There are

Logic Ll’[% is a logic built with constants 0,2 and 1 using connectives -1, —n

many other connectives defined through the three already mentioned operations. The -
evaluations are given through values of function e: For(LI13) — {0, %, 1}. Finally,
LII} is used to define a logic that includes both Boolean and multivalned formulae
and has a probability operator. As a result, the notions of tautology and provability
are redefined. The final axiom set for the logic includes modal logic S5, provable
formulae in S5, axioms for fuzzy notion of being probable and LH% axioms.

‘Overall the construction is powerful and displays good completeness properties.
Unlike the previous construction, there is some analogue of Dempster-Shafer evidence
combination rule. Given the richness of the construction, combining different models
in it becomes quite complicated. Obtaining new probability assignment now involves
combining three pairs of modalities.

The two logics above were built for the case bel(f}) = 0. Replacing S5 with a

- weaker KB4 logic makes it poss-ible to repeat similar construction for belief functions
allowing bel(9) > 0.

Boeva, Tsiropkova and De Baets [77, 78] take the approach that is the most close
to the approach taken in this work. The authors attempt to build the minimal modal
logic for the needs of the Dempster-Shafer theory. Boeva et al. depart from the model
in which value assignment function requires exactly one proposition to be irue at each
world. Instea;i, they allow for an arbitrary number of propositions to be true in each
possible world. The plausibility and belief measures are induced by the accessibility
relation which they view as a multivalued mapping from set of formulae to sets of
worlds.

The multivalued mapping is a map F : X — Y that assigns a subset F(z) C Y
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to every 2 € X. The domain of a multivalued mapping us given by dom(F') = {z €
X : F(z) # @}. Subsets of ¥ then may have differently defined inverse images,
among which the inverse, the superinverse and the pnre inverse are distinguished.
The multivalued mappings and prbbability measures can be related. Consider a
probability measure P on P(X). It is then possible to find a multivalned mapping
T, such that P(dom([')) > 0. Dempster’s upper and lower probabilities are then
interpreted as probability measures of inverse and superinverse images of different
subsets within domain I'. The basic probability assignments can also be expressed
through the inverse images of the sets within domain T'. '

The definition of the modal logic used by the anthors is standard: a set of atomic
propositions, logical connectives A, V, -, —, «, and modal operators of possibil-
itj ¢ and necessity (J. The modal logic is analyzed through the semantic models
M = (W, R, V). The modality is understood through the accessibility relation: ¢ is
equivalent to being in the truth set of a proposition, and O is equivalent to being able
to see elements from a truth set.

Viewing the accessibility relation R as a multivalned mapping allows one to find
the ﬁlausibility and belief measures of propositions. Such approach induces plau-
sibility and belief measnre and basic probability assignments on any model using
a probability measnre on set P(W) as a starting point. The resulting models are
reasonably well-behaved and satisfy Weak Singleton Valuation Assumption requiring
that at least one proposition is true in each world, thus giving some protection agaiust
vacuous reasoning. ' .

The weak singleton valuation assumption is important in the context of the current
work. The models that are build upon the same premise are used to generate the
intermediate logic.

In order to be a full-fledged representa.tioﬁ of the Dempster-Shafer theory, the
models should also be able to represent the Dempster-Shafer evidence combina-
tion rule. The proposed procedure is quite simple: two models (Wy, Ry, Vi, P) and
(W2, Ry, Vo, Pp) are combined by taking Cartesian products of corresponding sets and
the new probability measure is the produnct of corresponding measures. Regardless of
the simplicity of the procedure, it results in a new model which is equivalent to the

" orthogonal sum of its components.

The authors of the approach did not analyze the resulting class of semantic models
and did not analyze tbe corresponding modal logic as a set of true formulae. The
proposed approach is different from most other modal logic interpretations of the

Dempster-Shafer theory in a sense that it does not introduce any requirements on
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the modality, but iustead uses the most general definition of it and tben bnilds a
logic using only the most fundamental premises. In the next chapter this argument is
taken even further. By arguing in favor of developing an interpretation that bypasses
tbe modality altogetber and attempts to express the possibilistic reasoning through
the means of an intermediate logic.

The logics overview of which was just given share one fundamental thing in com-
mon: they start with some understanding of uncertainty as modality and bnild their
models from there. For the sake of brevity, this approach is called operator-centred.
The starting point is a specific definition of the modal operator. This definition is
based on an author’s intuition abont the nature of the beliefs. The resulting logic is
then to a certain degree determined by the choice of the operator in tHe propositional
language. The approach in this work is different, as it attempts to translate the
Dempster-Shafer theory beliefs to the Kripke models and then to analyse the seman-
tics of the resulting models. The operators are chosen from those that can express the
created semantics. Using a modal operator was ruled out from the very beginning.
The detailed justification of this choice and the discussion about its cousequences are
in Chapter 2. However, even if the modality were introduced, the choice of possible
logics would still be different from the ones discussed above.

The approach taken in this work is similar in spirit to one of the earliest graphical
interpretations of the Dempster-Shafer theory dne to Barnett [79] who first proposed
a linear time algorithm for calcnlating the beliefs. The proposed algorithm worked
with only one particular type of belief functions producing binary trees. Later im-
provements on the technique include [80] and a work by Shafer and Logan [81]. Guan
and Bell took the method to its logical conclusion giving both the formal description
and the corresponding algorithms [82]. The works mentioned above do not give a se-
mantic representation of tbe theory; their purpose is qnite different. All of the works
represent the Dempster-Shafer universe with the aid of trees, using them to calculate
the beliefs without venturing into semantics.

To this point, a very brief overview of the main relevant theories and approaches
was given. The main coalescence points that, to a certain extent, served as the guiding
markers in the development of the work’s approach have also been presented. Further
discussion on the background and available results is impossible without introducing
rigorous definitions and quoting actual results. Any further references to published
resnlts will be given ‘as need arises and only the notions needed for understanding '
new results will be given. The next chapter addresses the question of a formalism

choice for the interpretation.
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1.4 What folloﬁvs.

The next chapter is devoted to the discussion about the nature of mathematical
objects. The purpose of the chapter is to demonstrate how the philosophical consid-
erations may affect the formal choice when an interpretation is constructed. After
reviewing the relevant theories, the argument in favour of following the intuitionist
view of the world is given and the decision to create an intermediate logic is made.
The material of this chapter is due to appear in [83].

Chapter 3 gives the necessary background about the Dempster-Shafer theory and
semantic models and presents the procedure that links them. After analysing several
examples, it is then prm:ed that the procedure preserves the beliefs of the original

“frame of discernment. Similarly it is shown that the evidence combination rule is
translated to the language of the semantie models [84]. Once the approach is verified,
some attention is paid to the resulting superintuitionistic logic which is shown to be
sound and complete. The completeness results are produced By analysing semantically
equivalent algebraic dnals of Kripke frames generated by application of the procedure
proposed earlier in the chapter.

Chapter 4 explores the parallels between frame updates and semantic models.
While studying the effects of frame coarsening and refinement on a semantic model,
it demonstrates the representational limitations of the approach. The last chapter

gives a brief overview of open questions and possible directions of research.
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Chapter 2
Selecting the framework

In the previous chapter several different interpretations of the Dempster-Shafer theory
based on modal logics were mentioned. The major problem with these formalisms
is, in the author’s view, the possibility of a non-constructive proof. The current
work does not present yet another logic that works relatively well, but attempts to
understand how to construct a family of logics that do not allow non-constructive
proofs and can be used for inference within the realm of the Dempster-Shafer theory.

The author takes advantage of the ‘modular design’ of building a logic in a propo-
sitional language. As long as there is some definition of a propositional language,
one can explore the semantics of logics built upon it. The logical connectives can be -
defined later. For the problem at hand the choice of suitable logical connectives is
limited by the known semantic limitations. Most other publications on the matter
approach the problem from the other end — either the connectives are chosen first,
or the axioms are stated explicitly before the logic is being built.

While having many merits of its own, defining a logic explicitly through a set of
axioms rules out all of the logics that do not admit finite axiomatisations. On the
other hand, it is known that many otherwise well-behaved logics do not admit finite
axiomatisation. Specifying a Hilbert-style calculus is not the only way to represent
a logic, especially within the computing domain. The discussion below is not very
technical, as the formal considerations are postponed until the next chapter. It is,
. how;aver, impossible to choose a formalism without resorting to at least some formal

concepts, which are given below.
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2.1 The theories in question

The main topic of this work is the justification of the formalism choice for interpreting
the Dempster-Shafer theory. The approach taken by the authar is focused on under-
standing the semantic of the constructed formalism. The semantic tool of choice is
Kripke models. There is a vast amount of literature about both Kripke semantics and
the Dempster-Shafer theory. The Der;lpster-Shafer theory overview below is based
on Shafer’s original essay [1]. The semantic models are defined according to [48].
The definition of a Kripke model used in this work is.slightly different from the one ,.
used in important works like [18], but given the popularity of the concept it is quite
difficult to decide on a particular notational convention. An interesting review of
different definitions of Kripke model is given in [85]. A more detailed introduction to
both theorics is given when the formal aspects of representation are discussed. The

" definitions below are solely meant to make the epistemological discussion consistent.

2.1.1 The Dempster-Shafer theory

There is no complete specification of the propositional language used in the Dempster-
Shafer theory. Instcad, there are several conditions that the statements of this lan-
guage should meet. The propositions are related to subsets of a given set. Let @ be
a quantity of interest and © be the range of its values. The possible propositions are
of the form

“The true value of 8 is in T”

where T € ©. The universe formed this way is not as restrictive as it may seem,
and all the possible statements are in one-to-one correspondence with subsets of ©.
In the Dempster-Shafer theory range of values © and its known subsets are called a
frame of discernment. :

A frame of discernment does not include actual propositions. It describes the
domain of the values that quantities in the propositions can assume. Therefore the
propositions considered in the Dempster-Shafer theory form a propositional language
L, which is not yet defined. £ can be defined when the possible candidate logics are
considered. A good discussion about how to define a propositional language is found
in [63, 86]. ' '

That said, intuitive guesses can be made about the nature of the relation between
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L and B. Indeed, assume that p,q € £; A, B C © and that p and ¢ stand for:
p = “the true value of § is in A,”

g = “the troe value of 8 is in B."

It is not illogical then to assume that
p A g = “the true valne of fisin AN B.”

~ The correspondence between A in £ and N in © is not necessarily true for all the frames -
' of discernment and all the languages, but it is very intuitive. The correspondence
is true when L is the language of Boolean propositional calculus — the situation
considered in Shafer’s mdnbgraph.

A belief function is defined on the frame of discernment through the set of require-

ments.

Definition 2.1.1 (Belief function) Let © be a frame of discernment and Bel :
2° — [0,1] be a set function such that ' '

1. Bel(®) =0,
2. Bel(@) = 1;
3. For every positive integer n and every collection Ay, ..., A, of subsets of O, -

Bel(A{U...UAn) 2 e ayasa— DV Bel (Nier Ai).
Bel is then a belief function on 6.

The Dempster-Shafer theory also nses the concept of a basic probability assign-

ment.

Definition 2.1.2 (Basic probability assignment) Quantity m(A) is called a ba-
sic probability number (assignment in newer works) if it obeys the following restric-

tions:
1. m(@) = 0;

2.3 acom(A)=1.

m(A) measures the belief that is committed exactly to A. A belief function and a basic

probability assignment are related through:.
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Bel(A) = > m(B). L 21)

BcA

The equation above serves as an alternative definition of a belief function.

Natunrally, a logical interpretation of Dempster-Shafer theory must preserve the prop-
erties above. The definitions demonstrate the dual nature of the basic probability
assignments and the belief functions. The mathematical apparatus dealing with this
Iduality allows conversion in either direction.

~ Ewvidence is updated by introducing new propositions with their own mass assign-
ments. The new pieces of evidence transform already established beliefs. Two differ-
ent frames of discernment within the same universe may be combined too. Combining
new and existing information is done by taking the orthogonal sum of the respective
mass assignments. Formal definition of the orthogonal sum is not yet needed and at
the moment it is enough to know that there is a meaningful interpretation of it in the
proposcd formalism. The goal at the moment is to find a logic that can adequately
represent frames of discernment.

2.1.2 Kiripke models

Kripke models are a famous tool for exploring different modal logics. It is important.
to remember that. Kripke models are not exclusively applicable to the modal logics.
They provide a formalism for addressing a wider range of objects.

Definition 2.1.3 (Kripke Model) Given propositional language L, intuitionistic
Kripke model is a triple I = (W,R,V), where W is a set, R is a partial order on
W, and V : VarL — UpW C 2% is a valuation map, where UpW is the collection
of all upward closed subsets of poset (W, R): x € M C W and xRy implyy € M for
all M e UpW. Together R and V satisfy the property of persistence of propositional
variables: VoVwVp(vRw — (v € V(p) Swe V{p)).

The elements of W are sometimes called possible worlds or, less dramatically,
points. zRy, =,y € W is read either ‘z sees y’ or ‘y is reachable from z’. The
definition is not very restrictive and leaves a lot of space for the manoeuvre. A
usable interpretation of the Dempster-Shafer theory may be developed by an intuitive
understanding of the universe described throngh Kripke models. The elements of W
can be thought of as different states of information or knowledge. The valuation V'
provides the link between the actual knowledge {the propositions of £) and the states
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of knowledge (points of W). Different statements are true in different states. The
relation K shows what could be inferred from different states of knowledge. 1f point
T sees point ¥, it means that the information available at ¥ may be inferred from
information available at z. Point z occurs earlier than point y. If a proposition is
true at point x, it cannot become false at later points reachable from z. Conversely, a
proposition false at some point can become true at a later point reflecting the ability
to discover new facts. Graphically Kripke models are represented as directed graphs
with vertex set W and adjacency matrix given by relation R (see [87] for a definition
of the adjacency matrix). '

2.2 The nature of mathematical objects

The Kripke models can be used to analyse the semantics of any logic and they provide
alternative definitions of logics in certain cases. The idea of the proposed approach
is to develop a procedure that allows an adequate representation of the frames of
discernment by Kripke models using some propositional language and thus to induce
a family of logics whose formulae are valid in the corresponding Kripke frames. The
strategy does not necessarily lead to a unique solution: depending on the choice of the
propositional language the same models can -correspond to different logics. The search
domain can be narrowed by looking at the philosophical and consequent semantic
distinctions among the three main strands of logics: Boolean logic, modal logic and
intuitionistic logic. The exposition starts with some phenomenological remarks that
are later applied to the ‘candidate logics’. Even though there is no ‘single best’ logic
for inference within the Dempster-Shafer theory, the discussion outlines the main
arguments in favour of using intuitionistic logic or its non-classical extensions, as well

as author’s motivation for not intreducing modal operators.

2.2.1 Historical Remarks

This work is devoted to the development of a mathematical formalism suitable for rea-
soning within the Dempster-Shafer theory. Thus, the subject of enquiry is a collection
of mathematical objects. In the belief theory the ability to update the knowledge,
possibly as a result of the interaction with the ontside world, is important. The
canstructed collection of the mathematical objects should not be independent from
the notion of time. Disclussing the temporality of mathematical objects cannot be
done without a short foray into the philosophy of mathematics. The definitions. of a
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mathematical object and its basic properties are important for the decision made in
this chapter, so the exposition starts with quoting the relevant views. The outline of
the main philosophical issues is by no means comprehensive: only the issues -that the
author considers relevant for the problem at hand are mentioned.

While the discussion of the nature of mathematical objects is ages old, this work
confines itself to the formalisms that date back to the XIX and XX centuries. Boole
- was the first person to introduce an example of a non-numerical algebra and the first

example of a symbaolic logic [88] thus paving the way for symbolic mathematics as we
know it. The familiar Boolean logic in the modern notation is, however, due to Frege
{89].

The Russell-Whitehead ‘Principia Mathematica’ [90] was published in 1910-3. Tt
famously tried to develop all mathematical truths from a well-defined set of axioms
and inference rules in symbolic (Boolean) logic. As the authars of [91] put it, Boole
wanted ta study the mathematics of logic whereas Russellland Frege wanted to study.
the logic of mathematics.

The Lindenbaum-Tarski approach provides a way to constructla:n algebra out of
a classical propositional-calculus. The construncted algebra is a distributive lattice.
Moreover, the method works with both the classical propositional calenlus and with
any algebra formed by a closed (according to some definition) set of formulae in
auy propositional language [68]. As it will become clear later the latter fact is very
important for the procedure being developed.

Wittgenstein published his “Tractatus Logico-Philesophicus’ in 1921 [92]. While
agreeing with Russell at certain points Wittgenstein introduces a different nnder-
standing of what a mathematical object is and what is the purpose of mathematics
and philosophy. In 1918 Brouwer begins the systematic intuitionistic reconstruction
of mathematics with the paper ‘Begriindung der Mengenlehre unabhc‘ingig. vom lo-

" gischen Satz vom auégeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre.’
(‘Foundiug Set Theory Independently of the Principle of the Excluded Middle. Part
One, General Set Theory’) [93]. ,

~ Around the same time, Husserl developed his phenomenological approach to math-
ematics [94]. A detailed account of the similarities and differences of the philosophical
approaches can be found in [95]. This work only looks at a few basic distinctions be-

tween the approaches that are relevant to the development of the proposed formalism.
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2.2.2l Phenomenological remarks

In addressing the stated goal of the wark, the author follows several basic definitions.
First of all, Wittgenstein's definition of the world captures the basic idea of artificial
intelligence (qnoted from [92]).

" 1.13 The facts in logical space are the world.
2.034 The structure of a fact consists of the structures of states of affairs.

2.04 The totality of existing states of affairs is the world.

The next important distinction is about the nature of the states of affairs that in
our case are represented by the mathematical objects. One of the main distinctions
is in the relation between the mathematical objects and time. Several dichotomies

are passible [95]:

e Static/dynamic. an object is static exactly if at no moment are parts added to
it, or removed from it. It is dynamic if at some moment there are parts added

to it, or removed from it.

e Temporal/atemporal: an object is temporal exactly if it exists in time, and
atemporal exactly if it does not exist in time.

e Intratemporal/omnitemporal a temporal object is omnitemporal exactly if it is
static and exists at every moment. A temporal object is intratemporal exactly

if it is not omnitempaoral.

A decision making formalism representing some model of the real world is not
static, and thus the distinction between omnitemporal and intratemporal becomes

important. Van Atten presents three logical possibilities [95]:

1. All mathematical objects are omnitemporal. (Husserl)
2. No mathematical objects are omnitemporal. (Brouwer)

3. Some mathematical objects are omnitemporal, some are naot.

One of the filndamental premises of the theory of beliefs is the possibflity to learn
and incorporate new knowledge into the already known. The anthor also wants some
uniformity of the objects, so the first and the third views are ruled out. Brouwer's

view is the maost attractive for the stated purpose.
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Brouwer’s philosophical views led him to the development of his own system of
mathematical foundations that he called intuitionist mathematics. Brouwer further

elaborates on his view of mathematical objects:

In intuitionist matbematics a mathematical entity is not necessarily pre-
determinate, and may, in its state of free growth, at some time acquire a

property it did not possess before {95].

Intuitionism is often viewed within a broader constructivist approach to mathe-
matics. Constructivists, however, need not accept the idea of dynamic objects. The
objects of interest are dynamic, hence the outlook may be restricted to intuitionist
mathematics. |

The concern with the notion of time is not unique for the intuitionism. Temporal
logic is one of the most well-known and developed examples of the approaches that
explicitly incorporate the notion of time into mathematical objects. On a more gen-
eral level, temporal logics are a class of modal logics in which the modality expresses
temporal relations. These modal logics are the obvious candidates for the reason-
ing apparatus for the Dempster-Shafer theory and the selection process starts with |
looking at their behaviour.

Even though it is already established that the objects of interest are dynamic and
intratemporal there is more than one .choice to be made. In a nutshell, one has to
decide what is primary: the concept of the flow of time or the concept of change [50].

The author believes that the nature of the objects described by the Dempster-
Shafer theory is better described through the approach when the notion of change is
accepted as primary. Accepting primacy of the flow of time is the stand taken by the
temporal logic. If the flow of time is primary, then the propositions hold truth values
for some time and may cbange them as time passes. In intnitionistic Kripke semantic
models snch a sitnation is not quite possible: a variable can be instantiated at some
moment of time, but it cannot change its value at a later time. Instead, accepting the
primacy of the change transforms the moments of time into tbe equivalence classes,
the situation rendered through the concept of the state of the world.

Temporal logic is then not a suitable candidate under the given premises. It does
not mean that temporal logic cannot provide reasdning tools for the Dempster-Shafer
theory: the successful applications of a temporal logic were discussed in Section 1.3.

Brouwer separates mathematics into old formalism; pre—in‘tuitivism of Borel, Lebesgue

and Poincaré; and néw formalismm. The intuitionism has two acts.
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First act of intuitionism completely separates mathematics from the
phenomena of language described by theoretical logic, recognising that
intuitionist mathematics is an essentially language less activity of the mind

having its origin in the perception of a move of time.

Second act of intuitionism admits two ways of 'creating new math-
ematical entities: firstly in the shape of more or less freely proceeding
infinite sequences of mathematical entities previously acquired (e.g. infi-
nite decimal fractions); secondly in the shape of mathematical species, i.e.
properties supposable for the mathematical entities previously acquired,
satisfying the condition that if they hold for a certain mathematical cn-
tity, they also hold for all mathematical entities which have been defined
to he ‘equal’ to it, definitions of equality having'to satisfy the conditions
of symmetry, reflexivity and transitivity [56).

While commenting on the first act of intuitionism Brouwer introduces the notion

of a fleeing property f:

{1) for each natural number n it can be decided whether or not n possesses the

property f;
(ii) no way of calculating a natural number n posscssing f is known;

(iii) the assumption that at least one natural mumber possesses f is not known.to
be an absurdity.

The acceptance of the fleeing property leads to the rejection of the {ertium non
datur principle and raises the problem of interpreting and intuiting the continuum,
solved by the second act. At the same time, the second act weakens the restrictions
of the first act: while for any proposition p it is known that pV (p — 1) is true only
if p is decidable, it follows from the second act that —pV ——p is provable (absurdity
or absurdity of absurdity in Brouwer’s words).

In phenomenological terms, Brouwer’s approach is an example of a strong revi-
sionism that has the potential of both limiting and extending the actnal practice. In

the next section the phenomenological reasons are used to select a-suitable formalism.

2.3 Implications on the formalism pfeference

3

Let us see how Bronwer’s revisionist approach influenced the actual development of

intuitionist formalism, and whbat is rclevant for the current work. For the sake of
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easier readability Brouwer’s i;ieas are not presented in their original form. Instead,
the modern notation is used according to Heyting’s interpretation of intuitionism [58].

The familiar Boolean algebra serves as a starting point for different revisionist
approaches to mathematics. Often, the easiest way of defining a new logic is through
its relationship with the Boolean algebra, so the definition of Boolean logic is a natural
starting point. '

2.3.1 Boolean logic '

Boolean logic is a system of a set A supplied with binary operators V, A and —, one
unary operator - and a constant 1. Set A with the connectives and punctuation
marks forms language £. Set A is then a set of variables of £, Var,; variables and
constants are used to build inductively defined formulae in the set For(:

(i) Land a € Var£ are formulac;
(ii If a,b € ForL then a Vb, a A b, —a and a — b are formulae too.

In classical Boolean logic, for any elements py,p; € VarL there are ten true proposi-

tions called the axioms of Boolean logic.

(A1) po — (p1 — po);

(A2) (po— (p1 — p2)) = ((po — P1) = (Po — P2});
(A3) poAp1 — Po;

(Ad) poApL— pi;

(A5) po — (Pr — po Apr1);

-(AB) po— po V pu;

(AT) pr = po V py;

(A8) (po — p2) — ((pr — p2) = (po V1 = p2));
(A9) L —po;

(A].O) Po v (po — .L)
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The inference rules are:

Modus ponens: given formulae ¢ and ¢ — 3 obtain 2.

Substitution: given a formula ¢ obtain ¢s, where s, a substitution, is a map from
‘VarL to ForL defined inductively: ps = s(p) for every p € VarfL, Ls = L and
(¥ © ¢)s = s © s, for © € {V, A, —}.

Boolean logic as defined above is denoted Cl. It is immediately clear tbat Cl
cannot be used as a reasoning framework within the realn of intuitionist mathematics:
axiom (A10) is not necessarily true in intnitionist mathematics. Boolean logic is the

logic of atemporal objects, the set of true formulae in the world that never changes.

2.3.2 Modal logic’

A modal logic is often defined as an extension of Cl. However, there is a number of
modal logics that are extensions of intuitionistic logics. Because most applications of
modal logics to the Dempster-Shafer theory are based on the extension of classical
logic, below we do not discuss intuitionistic modal logic. :

A modal language ML is obtained by enriching language £ with the new unary

connective LJ and the corresponding formula formation rule.
o If ¢ is an ML formula then ([J¢) is also an ML formnla.

The formula formation Tules for £ also work in ML. The smallest modal logic K

is then:
(a) Axioms (A1)-(A10);
- (b) An additional modal axiom (A11) O(ps — p1) — (Cpo — Up);

(¢) The inference rules are modus ponens, substitution of modal formulae instead
of variables and the rule of '

Necessitation: given a formula ¢, we infer Og.

K is the logic of some abstract necessity that describes the common properties
" characteristic of all interpretations of the operator . Tt is a minimal modal logic,
in a sense that any propcrfy of this logic will also be a property of any other modal
logic built through defining [J in some meaningful way. The modal language with the
operator of abstract necessity is weaker than the language of a temporal logic that
requires two additional operators. '

There is a variety of different modal logics: temporal logic, deontic logic, epistemic

logic and so on, which owe their existence to different understandings of the meaning
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of the modality. Defining, interpreting and formalising modality is an amazing field
which is not discussed here. Instead; a look at the scmantic implications of baving a
modal operator is taken. :

The possibility of gaining new knowledge at dlfferent states of the world is the
basic accepted premise. In the logic universe gaining new knowledge equates to instan-
tiating new variables. This possibility.is best illustrated through the corresponding
Kripkec models. No notion of a Kripke model is introduced at the moment, so the
discussion on the matter is limited to the observation that C can be represented by
a single node and that intuitionistic and modal extensions of Cl reqnire more com-
plicated models Even thongh K1, is in some sense a minimal modal logic it is still
stronger than Cl: Clc K Mc [48]. :

A modal extension of Cl is therefore unsuitable for building an intuitionist frame-
work for the Dempster-Shafer theory, at least when non-constructive proofs-are not
allowed. It must be added that, if the authors do not reject the possibility of a
non-constructive proof, different flavors of modal logic are a popular choice as shown

earlier. A more detailed review of the publications on the matter is in [76].

2.3.3 Intuitionistic logic

The ‘minimal’ intuitionistic logic Int may be defined using the same propositional
language £ as Boolean logic Cl. Int also admits axioms (A1)-{A9), but not (A10)
of Cl and uses the same inference rules, modus ponens and substitution, as Cl. The
notions of derivation and derivations from assumptions are the ones of Cl . In a
superficial way, one can think of Int as of C] without (A10).

The differences between Cl and Int run deeper than a simple exclusion of an
axiom. On the formal level, excluding one axiom has a negative effect: fewer formulae
are true in a weakened logic. A smaller set of true formulae is balanced by a gain
in semantic. Boolean logic is a logic of atemporal objects. Intuitionist mathematics
takes the epistemic aspect of the truth into account: the truth of a proposition may
not be known a priori, but can be learnt later. Allowing the world to change due
to learning new things requires a richer semanti¢s than the one of Boolean logic.
Learning new things is reflected through the concept of a possible world or a state of
the world.

In terms of semantic models, Int can be defined as a set of formulae true in all pos-
sible Kripke frames with transitive nodes. Worlds may have different states at which

different things are known. Hence, the same variable can be instantiated at some

+
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worlds, but not at others. The worlds are linked through the accessibility relation
in that the knowledge in the related worlds is non-contradictory. Non-contradictory
knowledge means that if a variable was instantiated to some value, this value cannot
be.cha.nged at a later stage. The value must stay the same in all successor nodes.

The truth of propositions is established according to intuitionist understanding;:
(i) @ A is true at a state {world) z if both ¢ and ¥ are true at z.
(i1} ¢V 1 is true at a state (world) z if either ¢ or ¢ is trne at z.

(ili) ¢ — ¢ is true at a-state (world) z if for every subsequent possible state y, ¢ is ’
true at y if and only if % is true at y.

(iv) L is true nowhere [48].

Boolean logic Cl is an intnitionistic logic which consists of all [ormulae true at a
single state of the world z. Intuitionistic propositional logic Int in a language £ is
then a set of formulae that are true in all worlds and all possible configurations of
such worlds. It is a well-known fact that any connected model with more than one
reflexive node refutes (A10) in £, see [61] and Section 3.2.2 for details.

Int is a weaker logic than Cl: it is known that IntCC). The properties of Int
are quite well-known, and are not discnssed here. '

By now, a briel look was taken at three important logic formalisms: Boolean
Logic Cl, Intuitionistic logic Int and Modal Logic K. Among the three only the
intuitionistic one does not contradict the basic premises of intuitionist mathematics.
These three logics can be ordered as Int CCICK 44¢. The ordering reflects only the
first hall of the definition of a strong revisionist approach (see page 23). The second
halfl that mentions the potential of extension of the existing practice is realised through
the superintuitionistic logic. '

Logic Int serves as a basis for an infinite family of logics known as superintuitionis-
tic or intermediate logics. In this work ‘snperintuitionistic logic’ is used as a prelerred
term, partly because of the author’s personal preferences and partly to stress the [act
that the logics in question are extensions of Int.

A superintuitionistic logic, or an si-logic for short, in language £ is any set L of

L-lormulae satisfying the conditions:
(i) Int C L;

(ii) L is closed nnder Modus Ponens;
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(iii) L is closed under uniform substitution.

The largest si-logic is ForL, known as inconsistent si-logic. Every si-logic that
is not inconsistent is cousisteut. For everj cousistent si-logic L it is known that
Int C L C Cl.

Refercuce was made to all the configurations of possible worlds while defining both
K e and Int, a ‘configuration’ is represented by a Kripke model. Unlike K Me and
Int different si-logics are valid in different classes of models.

Up to uow the discussion used a. notion of some language £ defined in a fairly
general way. Now, when a logic as a set of formulae is explored to a certain extent,
the question of defining the connectives in £ can be faced.

Aside from the obvious choice of Boolean connectives, there is a whole universe of
t-norm based multivalued logics. However, among the ¢-norm based logics only the

Godel-Dummett logic belongs te si-logics!.

2.4 Modalities versus Beliefs

Having an additional modal operator in the propesitional languagé is seeu as an
advantage by many authors. This requires defining the axioms associated with this
operator that are not a part of the original Dempster-Shafer theory. Moreover, using
modal extension of Cl requires using both reflexive and irreflexive nodes in semautic
models which contradicts earlier observations about intuitionistic semantic models
as it is shown below. The discussion about logics representing the Dempster-Shafer
theory is mostly ceutred on choosing a suitable candidate from the impressive array
of known modal connectives. There is no requirement for the nodes to be reflexive
for modal logics. _

This work uses relational or possible world semantics. In this framework relation
R is the alternativeness relation and xRy means that y is an alternative (or possible)
world for x. Under this assumption the meaﬁing of O and ¢ = -0~ on Kripke models
becomes clear. (¢ is true at a node w if ¢ is true at all nodes reachable from w, o¢
is true if ¢ is true in at least oue node reachable from w. Given this, the attention to-
whether a node is reflexive or not should be paid.

Consider now the simplest single-node models in Figure 2.1. Tu the picture
reflexive uodes are empty circles and irreflexive ones are filled. The model iu both

cases consists of a single node w. The formulae true at the node are listed on the left

1The author is very grateful to C.Fermller for drawing his attention to this fact
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of it, and the ones that are false on tbe right.

D, op
Do Op—p Op—p p.0p
OCp —=plw Olp—p —Up
.(a) Irreflexive node {b) Reflexive node

Figure 2.1: A simple modal model

For both frames, § = (W, R) with W = {w} and V(p) = 0. Relations R are dif-
ferent for different models: for the model in Figure 2.1(a) R = @ and in Figure 2.1(b}
R = {(w,w)}. This ‘minor’ difference lcads to a significant semantic difference be-
tween the models. The necessity operator is validated on an irreflexive node, but is
refuted on a reflexive one. The sequence can be continued. A few formulae are listed
in both cases.

Consider now an irreflexive node in the Dempster-Shafer theory context. Even
if all the belief is attribnted to the node such that p is false, p still must be true

somewhere else.

2.5 The formalism choice

The gnestion of the best logical formalism for interpreting the Dempster-Shafer the-
ory is likely to stay open for a long time, mostly because several different viewpoints
have resulted in feasible results. The choice of a particular formalism is still largely
determined by the factors outside of the Dempster-Shafer theory proper. Often such
a choice is based on focusing attention on some particular aspect of the theory. The
choice is based on some attempt to interpret the beliefs with the aid of either modal-
ities or the truth values of propositions. This approach is ‘dangerous’ because of the
fundamental difference between the two concepts. As Hajék puts it [76]:

Truth degrees in fuzzy logic must be clearly distinguished from belief
degrees in the Dempster-Shafer theory.
Fuzzy logic is the logic of comparative truths that are understood as truth-

functional. Belief degrees are not truth-functional.

The statement above does not explicitly mean that there is no connection between
the degrees of truth and the degrees of belief. An si-logic can be used to find a degree of
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truth of a proposition with a belief attributed to it. However, to make the exposition
clearer, the notions of modality and belief are kept separate in this work.

The author argues in favour of taking a more general approach. The claim is
substantiated through an attempt to understand the nature of mathematical objects
‘that constitute the Dempster-Shafer theory universe from a phenomenological point of
view first. The presented argument is by no means exhaustive. It rather shows affairly
obvious distinction which, if noticed early enough, leads a researcher in a different
direction. The approach yields a practical result: the models indﬁced according to the
principles described above validate Int. The rest of the work presents the approach
in detail. ‘ '
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Chapter 3

Semantic models for the belief

theory

This chapter describes the semantic representation of Dempster-Shafer frames of dis-
cernment and demonstrate how to calculate the beliefs in different propositions from
these models. The given procedure also provides a meaningful interpretation of the
Dempster-Shafer evidence combination rule.

The chapter is organised’as follows. The first two sections provide the necessary'
background to the Dempster-Shafer theory and the semantic models. Several relevant
examples that illustrate the features of the theories in question are analysed. Once the
necessary background is introduced, the formal description of the propesed procedure
is developed and illustrated on a set of examples. After demonstrating that the beliefs
induced on the semantic models are the same as in the original setup the author

progresses to the formal verification of the approach.

3.1 Revisiting the theory of beliefs

Two theories have inspired this research: the Dempster-Shafer theory and the theory
of Semantic modcls also known as Kripke models. The review begins with introduc-
tion to the Dempster-Shafer theory. The author tried to avoid repeating the informa-
tion already presented in the earlier cbapters as much as possible, but some concepts
mentioned casually in the earlier chapters need the formal definitions provided in this

section.
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3.1.1 The formalism

The éxposition below is very basic, and the quoted results can be found in any book on
" the topic. To minimise the possible distortions of the original concept, the definitions
are quoted according to Shafer’s essay [9] unless stated otherwise.

-The Dempster-Shafer theory initially was built to deal with finite sets [9, 13, 14].
Later, the infinite universe was introduced by Shafer himself in his doctoral thesis
(1]. From the practical viewpoint there is still nothing wrong with starting with the
finite sets. ' ,

The Dempster-Shafer theory started as a generalisation of Bayesian theory and
was defined through amending certain parts. Both Bayesian and the Dempster-Shafer
theory describe their nniverse through set ©: a finite non-empty set thé.t along with
all of its subsets, in the Dempster-Shafer theory is called the frame of discernment.
Guan and Bell in [96] suggest to think about © as of ‘the set of all possible true values
that a quantity we are interested in can take.

Two fundamental concepts of Bayesian statistics are the Bayesian (probabilistic)
density and the Bayesian function. A function d: © — {0, 1] is a Bayesian density if
Ezee d(z) = 1.

A function bay : 22 — [0, 1] is a Bayesian function if the following three conditions

are met:
1. bay(0) = 0;
2. bay(O) = 1;

3. bay(A U B) = bay(A) + bay(B) whenever AN B = §.

Condition 3 can be easily generalised to finite unions of any subsets:
3a.

bay(A1U...UA) = > (=) bay(nies4:). (3.1)
. 1c{1,.,n}

In the case of two overlapping sets, formula (3.1) becomes a more familia:r bay(AU
B) = bay(A) + bay(B) — bay(A N B). The Bayesian functions are used to describe
probabilities of events in a probabilistic space. There are several equivalent alternative
ways to state the last condition. Bayesian density functions and Bayesian functions
are in a one-to-one correspondence. The Demspter-Shafer theory operates with the

belief functions defined on page 17. '
There is an obvious parallel between Bayesian functions and beliefs: in a two-
sct case condition 3 from Definition 2.1.1 becomes either Bel(AU B) > Bel(A) +
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Bel(B) — Bel(AN B) or Bel(AU B) > Bel(A) + Bel(B) in case AN B = 0. All the
Baycsian functions are belief functions but not vice-versa, as the Dempster-Shafer
theory generalises the Bayesian statistics. Belief functions are too general to be
immediately applicable, while basic probability assignments are more manageable and
allow one to calculate corresponding beliefs. Basic probability assignments defined
on page 17 are neither additive nor monotone.

Equation (2.1) is used as an alternative definition of a belief function. The defi-
nitions demonstrate the dual natnre of basic probability assignments and belief func-
tions. The mathematical apparatus dealing with this duality allows for conversion in
either direction. On the other hand, when an actual frame of discernment O is con-
sidered, the problem of either finding a belief function or assigning basic probabilities
to different elements of 2© is far from obvions. _

" Depending on the need, other ‘belief-like’ functions are used: commonality func-
tions, plausibility functioﬁs, doubt functions and ignorance, a detailed review of which
can be found in [96]. Given a mass assignment, the rest of the arsenal can be devel-
oped easily. Of those only the plausibility function is used in the current work:

pls(A) = 1 — bel(A), (3.2)

where A is a subset of ©, and A = 6\ Ais a set complement of A.
The Bayesian rule updates known probabilities of events that are not iﬁdepcndent.

Ly

"Definition 3.1.1 (Bayesian Rule) Given a Bayesian function bay and® # B C ©
one can calculate the conditional probability bay(X | B) of X € 22 under B is
bay(- | B) : 2° — [0,1] and for bay{B) > 0 the Bayesian rule applies:

bay(X N B)

bay(X | B) = bay(B)

Dempster-Shafer evidence combination rnle.combines known beliefs in a more

relaxed setting of the Dempster-Shafer theory:

Definition 3.1.2 (Dempstgr-Shafer evidence combination rule) Letm; and m,
be basic probability assignments on the same frame ©. Suppose

E= )" m(X)m(Y) <1 . (33)
Xny=0@
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Denote

N= 3 m(X)ma(Y). | (3.4)

X0OY£D

Then the function m : 2° — [0,1] defined by

m(0) = 0, (3.5)
and - )
'm(A)=N > mi(X)ma(Y) (3.6)
XnY=4 ,

for all subsets A # B of © is a basic probability assignment.

Assignment m is called thé orthogonal sum of m; and ms and is denoted m = m,®ms.
The theorem below gives a formal interpretation of the analogy between the
Bayesian and Dempster-Shafer rules [96].

Theorem 3.1.1 Let mp be a mass function such that
mg(B) =1, mglelsewhere) =0
Then

1. A mass function m and mp are combinable iff

bel(B) < 1.

2. If m and mp are combinable, denote
bel(X|B) = (bel @ belg)(X), pls(X|B) = (pls @ plsg)(X).

- Then _ _
bel(X U B) —bel(B) _ pls(X N B)

bel(X|B) = 1 — bel(B) pls(B)

" forall BCO.

3.1.2 Calculating the beliefs

The problem is addressed in several steps. In the beginning, the simplest situation

with the evidence in support of only one statement is taken, as the aﬁalysis evolved
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more complicated situations are introdnced. The belief function in the simplest case
nceds to reflect only liow much belief is attributed exactly to the only proposition and
make sure that the total belief over the whole of the frame of discernment is equal to
one. Belief functions of this type are called simple support functions. The functions
obtained by combining different simple support functions are called separable support
functions. Separable support function form a subset of a more general class of support
functions, which are a particnlar case of belief functions. The distinction between
different types of belief functions is not very important at the moment. The relation
between different types of belief functions is given in Figure 3.1. The simplest support

lSimpIe Support F‘uncti(ﬁ

Separable Support Functions

Support Functions

Belief Functions

Figure 3.1: Snpport functions

function that describhes the bcliefs attributed to a specific snbset A of © requires the
following basic probability assignments: .

m(A) = s;, m(8) =1-s;, m(B) =0, (3.7)

whenever B # A. It is important to note that m(—A) = 0, basic probability assign-
ments are not probabilities. The analog of probabilities in this case is tbe support
function. As a simple support function is a belief function, the probability assign-
ments give
0 if B#A B#6;
S(B)y=¢ s if B=A;
1 if B=6.

This simple support function is said to be centred on B.

As analysis shows, a large proportion of possible sitnations can be modelled vsing
simple and separable support functions. However, an interpretation that is only
capable of representing the frames of discernment with separable support functions
is too restrictive. This restriction should be avoided if possible. The representational
limits of the approach are discussed in some detail in Chapter 4.

The background introduced to the point allows one to see how the beliefs in
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different propositions can be calculated, and how they can be updated with the aid
of the Dempster-Shafer evidence combination rule. The apb]ication of the Dempster-
Shafer rule is demonstrated on the same humorous examples that Shafer used in his
book [9], and that later became quite popular among the wider research commnnity.
This work follows the tradition and employs the familiar stories to illustrate both -
known facts about the theory and to show that the proposed procedures are adegnate
to the setting,.

In his book Shafer used four short stories: the burglary of the sweetshop, the
cabbage seed, the alibi and the biased coin. As his analysis progressed, he showed
that the alibi and the biased coin were effectively the same setting, so only the first
three cases are used in this work. The stories and the calculations are according to
[96]. |

The burglary of the sweetshop

Sherlock Holmcs investigates the burglary of the swectshop. Initial evidence shows
that the burglar is left-handed. Sherlock Holmes attributes a degree of belief 5, to the
fact. Later, new evidqnce emerges: it was an insider job. The degree of confidence
about this new piece of evidence is so. There is a left-handed clerk in the shop who
comes under suspicion. What is the degree of belief in this clerk’s guilt?

The burglary of the sweetshop example involves two separate, but not contradic-
tory pieces of evidence. There are two separate frames of discernment to be combined.
The first frame is ©; = {L, =L} corresponding to the evidence about the burglar be-
ing left-handed or otherwise. Similarly, ©y = {I, ~I} reflects the evidence that the
burglar may or may not be an insider. To calculate the belief in the left-handed
clerk’s guilt, the basic probability assignments on each of the frames of discernment
are needed first. '

It is already known that m,({L}) = s, meaning that m,({6,}) = 1—s,. Similarly,
on the second frame my({/}) = s and ma({©2}) = 1 — s5. The frame of discernment
© that is produced after combining 8, and ©4is © = {LAI, LA-I,-~LAI,~LA-I},
while the probability assignments for the elements © are found according to the
procedure given in Definition 3.1.2. From now on this frame is referred to as © =
{LI, LO, Rl, RO} making use of the obvious: L A [ is left-handed insider, LI; LA—-T
is left-handed non-insider or left-handed ontsider, LO etc. To make things easier, the
orthogonal sum of probability assignments is calculated with help the of intersection
Table 3.1. The cells in the body of the table correspond to the intersectious of the
elements in the frame of discernment © produced by combining 8, and 0,. Following
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Table 3.1: Intersection table for burglary of sweetshop
mi@me | {LI,RI}s; 01 — s,

{L[, LO}SI {L[}S]SQ {LI, LO}SI(]. — 52)

©1-s | {LLRI}1-5))sz Ol =-s)(1— so)
the tradition, rows and columns are labelled with both sets and their probability mass
assignments. .

Reading the results from Table 3.1 gives
(m1 & mg)({LI}] = 5159, (ml (&) mg)({LI, LO}) = 31(1 - 32),

(mr@m3)({L1, RI}) = (1= s1)sz, (m1 @ my)(0) = 5)(1 - sp),

(m1 ® my)(elsewhere) = 0.

Knowing the probability mass assignments on the new frame allows ane to calculate
the belief, plausibility and any other function of interest.

In case of the left-handed clerk, the confidence in his guilt is estimated by looking
at the interval between the valne of the bhelief and the plausibility functions defined
in equations (2.1) and (3.2).

belmlﬂamz({LI}) = 532,

Plsmyom; ({L1}) = 1 —belm,@m, (B\{L1}) = 1 —belm,em, ({L1,LO, RO}) = 1-0 =1,

thus placing the confidence values into the interval

[belmi@my ({L1}), Plsmyem,({L1})] = [s152,1).

The cabbage seed

A mathematician of questionable gardening skills plants a seed in the paot. When first
shoots are sprouted, the gardener puts support of ¢, that it is a cabbage (statement
A). On a closer inspection the plant has two leaves, so it is a member of brassica genus
. with support of ¢z (this statemeni: is B). The frame of discernment © in this case is the
set of all plants. To simplify the notation put A = {cabbages} and B = {brassicas}.
Common sense also suggests that ¢; > ¢;, even though this condition is net formally

required.
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Table 3.2: Probability mass assignmenfs for the cabbage seed
m1€9m2|Bc:2 - O 1—cy .

A C A C1Co AC](] — Cz)
Ol-—c | B(l-a)e O(l—0q)(l-c)
This example is different from the burglary of the sweetshop. The two pieces of
evidence still do not contradict each other, but one piece includes another. If the
plant is a cabbage, then it must belong to brassica genus, but not vise-versa.

Combining the evidence is then finding the orthogonal sum of the following mass
assignments

m{A) = a, my(0) = 1 - c1, my(elsewhere) =0

and

ma(B) = cz; m2(0) =1 - ¢, ﬁz(elsewhere)_= 0.

The intersection table for m; and ms is given in Table 3.2and it follows that _

(m1 @ ma)(A) = crca + &1(1 — c2) = ¢1; (M1 @ Ma)(B) = (1 — &1)ea,
(m1 & ma)(0) = (1 —c1)(1 — ¢2), (my & ma)(elsewhere) = 0.

Calculating probability intervals for both A and B then gives
belm ema(A) = (M1 ®@ mg)(4) = ¢,

belim am, (B) = (m1 @ ma)(A) + (mi@ma)(B) =+ (1 —a)a=a+c—aea

and, similarly,
p£3m1@m2(44) =1 _plsmlﬂé‘rﬂz(e \ A) =1-0=1,
The confidence intervals are then

[belmxﬂémz(A)vplsml(Bmz(A)J = [CI: 1]:

[belmlﬂ?mz(B):plsmlﬂamz(B)] = [Cl +c2 — ';:102’ 1]'

The belief intervals above show that the new evidence did not change anything abont
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our beliefs in the fact that the plant could he a cabhage: they stayed the same. The
belief in hrassica was strengthened aftcr the evidence about the plant heing a cabbage
was incorparated. To sum up, the heliefs in the detailed propaosition did not change,
but the belief in the general statement increased.

Alibi

The last example demonstrates the third possihility: two contradictory pieces of
evidence. In terms of sets, such situation corresponds to two pieces of evidence
-represented by two non-overlapping sets.

One.person i3 arrested on a murder charge. A reliable witness provides an alibi
for the accused with a degree of support s; for the claim of innocence. On the other
hand, circumstantial evidence gives sq support for the accused’s guilt. This evidence
can he represented as two frames ©, = {I, ~T}, where [ is the set of all people who
have an alibi, and 8, = {G,—~G}, where G is the set of all people who are guilty
according to circumstantial evidence. The resulting frame © incorporates both ©,
and ©,. The new frame will have two different probahility mass assignments: m,; for
the first piece of evidence and ms for the second. Two pieces of evidence, however,
contradict each other. In terms of sets within ©, and ©, it means that there are sets
whose intersection is empty. Indeed, consider f N G. A person can either he guilty
or have an alibi, hut not hoth, so 7 NG = @. Both m,(I) and m2(G) are not zeros,
so some of the earlier beliefs are attributed to the empty set or just wasted. The

probahility assignments are given by
mi({I}) = s1, mi({61}) =1 — 51, m(elsewhere) =0,

ma({G)) = s2, ma({€2)}) = 1 — 82, mg(elsewhere) = 0.

Tahle 3.3 is the intersection table for this case. One of the cells contains the empty set,
but the belief attributed to this cell is not zero. This wasted belief must be balanced
by introducing the normalising coefficient N, which in the earlier examples was just
one. For alibi example, N is calculated accordingto N = 1-3 v mi(X)ma(Y) =
1 — my(I)mz(G) = 1 ~ s152. To get the actual beliefs in different statements in the
combined frame of discernment, the entries in the intersection table must be divided
hy N.
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Table 3.3: Intersection table for alibi
ml@m2|{G}52 01-—s

{1} s, B 51592 {1} s!(l — $2)

©1- 51 {G} (1 - 51)52 o (1 - 81)(1 — 52)
The normalised probability assignments then become

(1 ® ma)({1}) = 2L —52)

1 — 5182
= (.1 — 5))52
(m1 ®m2)({G}) = S
(m © ma)({0}) = L5 2E =2

and zero elsewhere.

The belief in the accused’s innocence .

belmom({1}) = (m; & mg)({1}) = H

bl

while the belief in his guilt is

belmsoma({G)) = (s @ m)((GY) = G212

1— 3559

The plausibility of either outcome

 lmoms (1) = 1~ el oms (0 (1)) = 1~ belmam (1) = 12
and
PlSmams({G}) = 1 = belmyemy (O \ {G}) = 1 — belmuom,({I}) = 11__;;'

The probability intervals for each possibility are

11 =52} 1-—s5, ]

S
[belmlemg({f}):p£5m1$'nu({f})] - 1 _ 5152 ? 1 — 5152
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and

. {beirm@mn({G}),plsmlemn({c})] — [52(1 - Sl) i—35 :I -

1' — 5152 1~ 5182
The ontcorme of evidence combination is quite predictable, beliefs in bath possibilities

are perturbed, and each side’s case is weaker than it was in the beginning:

1- 1-—-
5 > ———Sl( 52) and 59 > ——52( 5)

1 — 5159 1-— §1892 '

3.2 Semantic models

3.2.1 Models and validity of formulae

A basic definition of an intuitionistic Kripke model was first given in Chapter 2.
The present discussion demands more background knowledge, so some time will be
devoted to filling in the lacunae. The Kripke model is a convenient tool that is
used for different purposes and in different settings. Since their introduction, Kripke
models have earned a fully deserved popularity among the researchers in philosophy,
mathematics and computer science. Given the variety c;f applications, the definitions
of Kripke models differ slightly from researcher to researcher. An interesting overview
of various definitions of the Kripke model is given in {85]. A detailed analysis of
Kripke’s philosophy can be found either in his own works, say [69], or in monograph
[70].

Definition 2.1.3 is closest to the one in [48]. Kripke models provide understanding
of the relational semantics associated with the Dempstér-Sha.fer theory. Using Kripke
models as a starting point has been a popular approach since the 1970’s in many
different settings. A good rcview of possible dircctions of the enquiry and basic
results can be found in [97].

The background given in the two previous chapters meant to help the reader
to develop some kind of intuition about the building blocks of the Dempster-Shafer
theory. A few observations below are intended to help develop a similar feel for the
semantic models. Recall that a Kripke model is triple § = (W, R, V), where W is a
set, of possible worlds, R is a partial order {accessibility relation) on W, and V is a
valnation that ma;xps statements from £ into UpW.

To get a better intuition about the nature of relation R consider a local newsagent.
Let W be the set of all newspapers on sale, £ be the set of reported news. Valuation
V (p) shows which newspapers reported news p € L; relation R is quoting: z Ry means
that newspaper y, perhaps a small regional tabloid that cannot afford to hire many

41



reporters, can quote newspaper z, which can be a national broadsheet that has a lot
of correspondents and bureaus around the World.

- A Kripke frame is a Kripke model without a valuation function: a Kripke frame
& is a tuple § = (W, Rj, where W and R are as in Definition 2.1.3. Alternatively, one
can refer to a model as a pair {§, V).

The relationship between the propositions of £ and their semantic model coun-
terparts is straightforward. A proposition can be instantiated at a node, and then it
stays true in all of the node’s successors. The relationship between the truth of state-
ments in the real world is somehow more complicated. Modelling the reality using
- Kripke models as defined above leads to minor discrepancies of a particular type. The
statement ‘The solar system has eight planets’ was known to be false until recently,
" because Pluto was classified as a planct and the count was nine. An example of the
converse can be coustructed easily too: ‘Anatoli Karpov is the world chess champion.’
It is important though to remember that the model in question does not attempt to
describe the world we live in, so the latter is impossible. In other words, if one built a
Kripke model that describes the ranking of the chess players any time between 1975
and 1985 (the time when Karpov was the undisputed World champion.), be would not
be able to adjust it to the modern reality.

The limitation outlined in the previous paragraph is not too important for the
purposes of evidence combination, though. The author is more interested in combin-
ing old and newly learnt evidence rather than tracing the changing values of different

‘statements. The impossibility of changing the truth assignment of some variables
can be easily overcome by introducing an extra piece of evidericq that contradicts
the evidence introduced earlier. This situation was analysed when the evidence was
combined for the alibi on page 39. ‘

Kripke models are capable of representing richer semantics than the one of Cl,
which is the set of formulae true at a single node. The gain in representational
power is accompanied with increased complexity because it requires a special valua-
tion function that keeps track of the formulae valid at different states of the world.
The valuation finction also makes checking a validity of a formula — a much more
complicated business than in the case of Cl. Developing an inferential apparatus
requires the terminology that describes tbe truth and validity of formulae. The first
concept to be introduced is the inductively defined relation |=.

Definition 3.2.1 (Validity of formulae) Let 0 = (W, R,V) be a Kn'pke. model,
letz e W, ¢, € For L, p € VarL, then (YN, z) = x, which is read “x is true at z
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in M’ if:
(M, z) = p iff z€V(p); .
(M,z) =eny  iff. (M a} = ¢ and (M, ) | o
(Mz) EoVy iff (Mz) ¢ or (M) ¢
M z)=¢—y iff forally €W such that zRy, (M, y) = ¢ implies (M, y) E ¢;
(M, z) L.

There are several degrees of a formula’s validity within the realm of intuitionistic
or si-logic. The weakest degree of validity is the truth at a point in a model. In this
case it is said that a formula is satisfied in a model. Following {48], we denote by
V(#) the truth set of a formula

V() ={z e W | (M, z) E ¢}

Thus, V(¢) is then the set of all nodes where the formula is valid.

A formula ¢ is true in a model if (M, z) = ¢ for every. z € W. The validity in a.
frame is even stronger. A formula ¢ is satisfied in a frame § if it is (I, z) | @ for
some z and some M, such that WM = (F, V). A formula is true at a point z € F if
(M, z) = ¢ for all models such that I = (F, V). Finally, a formula ¢ is vakid in
a frame § if it is true-in all models based on §. A formula ¢ valid in a frame F is
denoted § | ¢.

'The notion of refutation is symmetric to the notion of truth: a formula ¢ is refuted
in a model M if it is not true in it. Pt is then a counter model to ¢. Simila.riy, a
formula is refuted in a frame § if it is not true in it.

To make manipulating models easier they are often represented graphically: the
points are represented by circles, the relation R by arrows, the propositions true at a
point are listed below it to the right of the vertical line, the ones that are false — to
the left. The reflexive pairs Rz are not listed. For example, model M = (W, R, V),
where W = {w), w2}, £ = {p,q,V}, B3 (w1, wy), V(p) = {w1, w2} and V(g) = {wo}
is in Figure 3.2. -

wn Wa
oO———2+0

qlp,pvq |p,q,qu

Figure 3.2: A simple-Kripke model
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3.2.2 Refuting tertium non datur

The notion of a counter model allows one to demonstrate how the objectives stated
in Section 2.3.3 are met by a logic represented by Kripke frames with more than one
node. The example below is famous and used by many researchers. In this work it is
quoted according te [61]. Cousider a model such that W = {wp, w,}, and the relation

o un
o——0
I
Figure 3.3: The model refuting pv (p — 1).

R = ({wo,wn}). Let V{(p) = {wn} and let V(-) = 0 for any other propositional letter.

Graphicallglr, this model is just a pair of nodes joined by a single edge given in Figure

3.3. Let us now compute the truth set V(pV (p — 1)). From Definition 2.1.3 it
follows that '

Veve— L) =VEuVip—L)={u}UuVp— 1) = {wm}ud= (v}

But this means that p vV (p — L) is not valid at wy.

Formula pV (p — 1) is refuted at the root of a simple model. In this context, the
root is the node that does not have any predecessors. Refuting the formula at a root
of a model means that, as long as a model contains at least two nodes and a variable
instantiated to being true at the root’s immediate successor, it can serve as a counter
model for pV (p — L). The only models that do not refute tertium non datur are
the models that consist of a single node or of a collection of isolated single nodes.
‘Such models are not expressive enough for our purposes. Later, it will be shown that.
models that are collections of isolated nodes correspond to the situations that precede

evidence combination and thus are only a subset of the models that interest us.

3.3 'Translating frames of discernment to Kripke

models

The procedure developed in this section should uriambiguously and meaningfully link
the Dempster-Shafer theory and Kripke models. Unambiguous link means that the
correspondence between Kripke models and frames of discernment should be a one to
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" one and onto. Meaningful, in the context, means that one should be able to calculate
the beliefs using both the frame of discernment and its corresponding Kripke niodel
without any loss of information.

The construction begins with defining the Kripke model building procedure based
ou the knowledge of the frame of discernment. Then, the examples from Section 3.1
are presented by Kripke models and the belief functions induced on the frames are
calculated. Finally, it is proved that the belief functions induced on Kripke models
are always equal to the ones calculated directly from the frames of discernment, thus
demonstrating that the proposed procedure gives a meaningful semantic interp-reta-
tion of the Dempster-Shafer theory. The results presented in this section were first
published in [84].

'3.3.1 Constructing set W

Kripke models for frames of discernment are built using an intuitive procedure. The
presentation starts with a very general idea about what is wanted from the semantic
linterpretation of frames of discernment and show how the objectives may be achieved
formally. First of all, the semantic models must serve as inferential tools that facilitate
calculating the support of statements known to be true. The models should also help
to validate or refute formulae whose support is not given exi)licitly, but could be
inferred from the known premises. '

It is already known that attribunting some belief to a particular statement should
at least amount to instantiating a variable in a Kripke model. Cl is the set of formulae
that is validated at a single node Kripke model. If there is only snpport for a single
statement, and the statement is certain, the situation must be in the realm of Cl.
Whenever more than one statement is snpported, the semantics is richer, and the
departure from Cl may be needed. The obvious way to represent such sitnation with
sernantic models is to have different nodes for different statements that are supported.

The next objective is to represent evidence combinatioﬁ and npdate. Introducing
new evidence affects relation R and valuation V. Relation R should show possible
paths of consistent reasoning, while the valuation function is responsible for deter-
mining at which nodes a particular formula is valid. The degree of belief in each
proposition should be determined by the total belief assigned to the nodes where it
is true. First, one needs to decide which nodes to include and then analyse their
relationships, thus coustructing R and V.

The procedure is twofold: it represents mass assignments on some existing frames
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of diécernment, and it provides a tool for combination of evidence represented by two
different mass assignments. While translating frames of discernment to elementary
Kripke models is not too exciting, the evidence combination in terms of Kripke models
is quite effective and leads to constructing an inferential apparatus different from Cl.

In the Dempster-Shafer theory universe there is a frame of discernment 6, which
is a set along with some portion of its power subset 2% discerned by the particular
setup. The mass assignments over elements of 2° form the snpport function S. The
mass assignments also allow one to calculate the beliefs for different propositions, but
recall the remark about the general belief functions: they are a very broad class and
always nsefnl from practical viewpoint. The support functions are more manageable
while being general enough to describe almost any conceivable setup. 1t is important
to remember that different support functions give rise to different Kripke models. In |
some sense, the purpose of the procedure is not to model a frame of discernment
itself, but to find the best representation of support functions defined on frames.

Representing support functions reqnires amending the definition of the objects
that are studied. Instead of operating with semantic models the focus of attention is
now switched to the semantic models with mass assignments. It will be demonstrated
shortly that the structure of a model depends on the support function that induces it.
The starting point in this case is the frame of discernment and the support function
over if.

Assigning probability masses to different subsets of © is nnambiguously described
through the propositions in some langnage £, which serves as a bridge between the
Dempster-Shafer theory universe and the nniverse described by the Kripke models.

As defined earlier, a Kripke model is a triple § = (W,R,V), where W is the
set of possible worlds, each with statements in £ that are true in it. Relation R
shows the possible direction of inference, while valuation V links Var{ and UpW.
The Kripke models for the Dempster-Shafer theory includes information about the
mass assignments for each possible world. In order to distingnish between the Kripke
models as a generai concept and the Kripke models analysed in this work, a notion
of Kripke model with mass assignments is used.

Definition 3.3.1 (Kripke model with mass assignments) A Kripke model with
mass assignments is a four tuple §, = (§,my,)} = (W, R, V,m,,), where W, R, and V
are elements of an intuitionistic Kripke model defined in Chapter 2, and my, - W —

{0,1] is the mass assignment on the elements of set W.
To get a meaningful trausition from © to §, one needs to form set W and then
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determine the relationships among its elements, thus constructing R. Valuation V is
partially determined by probability mass assignments.

Set inclusion affects the beliefs: assigning some probability mass to a subset of
a set changes (increases) the set’s support. The relationship does not affect the
subsets — adding beliefs to more specific propositions increases belief in more general
ones. In terms of semantic models it means that the nodes that represent more
general propositions must see the nodes that represent more specific ones. The last
observation gives us a hint about the way to construct relationship R.

Recall, that the core of a support function S on frame of discernment © is a
collection of elements of 2€ such that their mass assignments are not zero: X € C(5)
if X € 29:, m(X) > 0. One can think of core elements of a frame of discernment as of
statements whose validity is known. It is then natural to expect every core element
to translate into a separate node with some probability mass assigned to it. It will
soon be shown that the intuition is correct, but requires some formal trickery in order
to make it agree with the rest of requirements.

The first element in the pair {§,m,,) from definition 3.3.1 is then determined by
the core of the support function represented through the node mass assignments m,,.
In other words, the support functions with identical cores, but not necessarily identical
mass assignments of the elements, result in the same model §. In the discussion that
follows the abbreviated version of definition 3.3.1 will be used. Whenever a reference
made to a Kripke model § = (W, R, V) it includes all possible mass assignments
. that represent support function S such that its core C(S) induces set W. The
abbreviation makes sense, becanse the models that represent snpport functions with
the same core are semantically equivalent: they validate the same set of formulae,
even though different beliefs can be attribnted to the same statements depending on
MMy

Thus, to translate support function S to the language of Kripke models one has -
to assign a separate node w € W to each element of C(S). On the other hand, even
the simplest support functions often assign some probability mass to the whole of
the frame of discernment ©. While perfectly reasonable from the thecry of evidence
viewpoint, such an assignment is not very convenient from the point the semantic
models’ point of view — it leads to existence of a ‘supernode’ whose support is one
and thus equals to the support of the model’s totality. In semantic terms it is more
convenient to have a node where none of the core elements is known to be true. This
node is different from the node where all the core elements are known to be false or
the node that represents the whole of ©. The meaning of this node will be illustrated
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in more detail once all the necessaiy definitions are given. ‘

The requirement to assign a node to each core element of S formally amounts to
a non-empty valuation for each such element that includes a node that validates this
element and nofhing else, meaning that for any X € C(S), there is a node w € W
such that w € V(r) and w ¢ V(t), where propositions r and ¢ are r = “z € X” and
t=“c€Y"” for any set Y # X. It would also be convenient to have V(o) = W, but
not a single node v such that V(o) = {v}, where ‘obvious’ propositionis o = “z € 6.
To progress further; one now needs to scrutinise relation R. The natural interpretation
of R could be the set inclusion relationship on © — the support of a more general
statement contributes nothing to the support of a its subsets, bnt support of snbsets

increases beliefs in the more general proposition.

Definition 3.3.2 (Set W) Let © be a frame of discernment with support function
S, let C(S) be the core of S. Consider a Kripke model F, = (W, R, V,my) meant to.
represent ©. Language L is the same as defined on page 24, where the set of variables. -
VarL ={x € A: AC ©}. Let p be a variable in language L:

p=‘“ze A", peL; ACH.

~ Then for every set A € C(S), A # ©, there must be a node w € W such thatw € V(p).

Relationship R is determined by set inclusion on ©, and may be pretty easily
described by the definition below.

Definition 3.3.3 (Relation R) Let §n» = (W, R, V,my,) be a semantic model with

mass assignments for frame of discernment ©. Assume that
p="“c€A"; ¢g="z€ B"; pge L; A, BCS,

and let
veV(p), weV(g), wherevywe W

then
1L IfANB#DQ, then V(pAgq) #0;
2 IfANB =0, then vRw and wRv, where aR b means that a cannot see b;

8. BC A andv,w such that w € V(p)\V(q) and v € V(q) requires that vRw and
- wRv, given A, B ¢ C(5); .
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4. If there is w € W such that w € V(p), and m,(w) < 1, then there must exist
v € W such that v ¢ V(p).

The second part of condition 3 may look confusing at first glance. The require-
ments for the sets not to belong to the core of the support function is explained below
and still stems from the need to have non-zero mass assignments for the nodes that
represent core element and still to account for the inclusion relationship. In many
cases condition 4 is equivalent to having r=“c¢ A" and v-€ V(r).

Next, the probability masses dre assigned to existing nodes. There is nothing
too complicated about this step; the already known mass assignments of the core
elements of the support function should be preserved. It is done with one exception:
because of the reasons outlined above, there is no node that corresponds to the whole
of the frame of discernment. Instead, a node that does not validate statements true
at any other node is introduced. This node does not validate the negations of those:

statements either: it rather stores the unassigned mass.

Definition 3.3.4 (Node mass assignments) Let p be as in Definition 5.5.5. Let
S be a simple support function centred around A. The probability masses in the
corresponding Kripke model § = (W, R, V,m,,), where W = {wy;ws} and V(p) =
{un} are then defined according to the following rules:

if m(A) = s, then my(un) = s, ’ (3.8)

and
if W\ V(p) = wq, then my(w) =1—s. - (39)

The subscript w is used for my, to stress the difference between mass assignments
of elements of 2©-and mass assignments of the nodes in W. Even though the values
coincide on the core elements of support function S, the domains of the functions are
different, and they represent different things. The definition above can be extended
to arbitrary support functions:

Definition 3.3.5 Let © be a frame of discernment, let S be a support function over
© and § be a semantic model representing this support function. The probability mass

assignments of the nodes in § are then defined according to

VYA € C(S); 3w e W, such that m,(w) = m(A).
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[t is important to see that in this case existence of a node whose mass is equal to
the mass of element A from the core of the support function, docs not mean that
proposition “z € A” is valid only at this node. Rather, the node supports exactly
this atomic proposition and nothing else. :

To facilitate the discussion, note that a Kripke frame is a directed graph. In a
directed graph the nodes that do not have any outgoing edges except for the ones
pointing to itself is called a terminel node [87].

Only terminal nodes have non-zero mass assignments, non-terminal nodes have
zero mass assignments. The support function for non-terminal nodes is the sum of

mass assignments of the terminal nodes reachable from them:

Vu,w € W such that vRw, my(v) =0, bel(v)= Z My (w). (3.10)
weWuRw

Equation (3.10) gives an explanation why special amendments for the core ele-
ments in Definition 3.3.3 are needed. According to the definition above, it is enough
to have a terminal nade for each core element. There is no problem in case of a simple
support function — there are two separate nodes, each is terminal, and each one has
some mass assigned to it. In case of a more complicated support function one may
run into a situation when some core elements include each other. In this case, the
model should have a non-terminal node with its own mass assignment that may differ
from the sum of the masses of terminal nodes reachable from it. Such a frame can
not be a collection of disconnected nodes. In this case calculating the beliefs becomes
impossible. There is a fairly straightforward trick that helps to overcome the hurdle
without violating any of conditions stated above.

Let us first look at translating a frame with a simple support function to a Kripke
model and then at a proccdure of translating a framc with an arbitrary support

function over it.

3.3.2 A simplest frame

As before let O be a frame of discernment and z be the quantity of interest. Let the
value of the quantity z be within set A C ©, with m(A) = sy, nothing else is known.
~ The support function for this frame of discernment is

0 if B#£A B#6;
S(B) =< s if B=A;
1 if B=06.
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According to the procedure outlined in the previous section, the minimal W is then
{wy, w2}, relation R is empty except for the reflexive pairs. Valuation V is V(p) =
{wn} and W\ V(p) = {ws}, where p as in Definition 3.3.2. Graphical representation
of the model is in Figure 3.4.

wh Wa
o) C

C
Figure 3.4: A single piece of evidence Kripke model

In the model above my,(w1) = s, and my(wz) = 1 — 5;. The assignments are
done under the assumption that the total should be one over the whole model: a very
basic requirement for any evidential setup. These numbers are the basic probability
assignments and may be used for calculating the values of the corresponding belief
function. - -

The set of atomic propositions validated at node ws is left empty. This is in line
with the earlier discnssion abont trying to avoid creating ‘supernodes’. Moreaver
having a node that validates ‘z 'is in ©’ violates the conditions -of Definition 3.3.3:
this node cannot be a terminal node, but it must have a non-zero mass assignment.
Generally, the nodes that correspond to the statement of this kind are not listed:
while not giving any additional information, they must be connected to every node
in a model obscuring the rest of relationships. Recall the earlier remarks about a
‘supernode’. There is no contradiction to the original premise, the mass assignment
of a non-terminal node is the sum of the assignments of the nodes reachable from it.
The belief in the statement above should be zero and it is: as it is composed of the
mass assignments m,,(w;) and m,,(w;). The belief in the statement corre‘sponding to
m(©) = 1 — s is the belief in any statement that is not based on the premise that A is
true, so it is m,,(wy). When the mass assignments are distributed, it is important to
remember that the ultimate goal of presenting frames of discernment through- Kripke

models is to calculate the beliefs, not the mass assignments.

3.3.3 A slightly more complicated model

One of the attractive features of the Dempster-Shafer theory is in its flexibility. In
particular, the only requirement for the mass assignment is not assign any beliefs to
the empty set and to have an overall sum of one. It does not require any kind of mono-
tonicity or additivity. In most cases, especially when modelling human behaviour is
concerned, such ‘natural’ conditions are met. On the other hand, the Dempster-
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Shafer theory evidence combination rule is a more powerful procednre that handles
non monotonic mass assignments as well. The example below shows a non monotonic
mass assignment can be handled with the aid of the proposed interpretation. ‘
Assume (the function is taken from [98]) the following mass assignments about
possible colour of some faraway object which can only be red, white, or blue. The
sensor has some confidence in determining the colours, but it also assigns some lower
masses to possibility of the object being one of two or to any colour. The sitnation is

described by the mass assignment in Table 3.4. Instead of a single centre, the support

Table 3.4: A non-monotonic mass
Hypothesis | Mass | Belief

Null 0 0

Red : 035 |0.35
White 025 |0.25
Blue 0.15 |0.15

Red or White | 0.06 0.66
Red or Blue 0.05 0.55
1 White or Blue | 0.04 0.44
Any 0.1 |10

function is centred around scveral core elements. The core is {R, W,B, RUW,RU
B, WU B,RUW U B}, every core element is represented by an atomic proposition
like z € RUW etc. Using the already familiar notation the support function § is

given below:

(0 _ if X ¢ C(5);

m(R) = if X =~rR;

m(W) = if X =W,

B)=0.15 if X =5

S(X) = 4 m(B) = l ;

m(R) +m(W)+m(RUW) =066 if RUW,

m(R) + m(B)+m(RUB) =055 if RUB;

m(W)+m(B)+m(WUB)=044 if WuUB,

| 1 if X=6.

Every core element must have a node assigned to it. However, this § cannot be
represented by seven disconnected nodes, because some of the core elements include
* somc other corc clements and according to Definition 3.3.3 must see each other (if they
were not core elements). Moreover, if this condition is met, then some non-terminal

nodes must have a non-zero mass which also contradicts the rules introduced earlier.
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A simple trick helps to avoid both of the problems above. Ignore the masses
at first, assign a separate node for every core element. On the picture every node-is
labelled with the core elements rather then with corresponding propositional variables.
To save space in the picture, the core element R UW U B is labelled ©. Copy the
frame using the map e(z) = y,z Ry, yR zVz € O, reflect the result of this operation
on the Kripke model. Finally, induce R according to set inclusion, but only between
nodes in the first and the second rows. Formally, it means that new cdges on the

~ model will only be added between non-terminal nodes (i.e. the ‘ends’ of the edges).

BUWWBUR® B RRUW

o o o ¢ ¢ © O

BUWWDBUR® B R RUW BUW UR® B RRUW
(a) Core elements ' (b) After copying

Buw WBUR B RRUW

{c) Adding the new edges

Figure 3.5: Building a ‘model for a non—moﬂotonic mass assignment

The steps outlined in previous paragraph are in Figure 3.5. At-first, a node is
assigned to each core element. This assignment produces a model in Figure 3.5(a).
The only difference between this model and the models that were considered earlier
(recall disjointed nodes in examples ahout evidence combination) is that all the el-
ements represented by the nodes belong to the same frame of discernment. On the
other hand, the model does not yet give full information that can be retrieved from
the frame of discernment — no subset/ superset relationships are shown, and thus
the only conclusions that can be drawn from the model at the moment are the degrees
of confidence attributed to the core clements.

Picture 3.5(b), shows what happeus if the nodes of the original frame of discern-
ment are copied. It is important to note that even though in terms of sets nothing
‘has changed, the semantic of the model has changed. Kripke model on Figure 3.5(a)
is not equivalent to the one on Figure 3.5(b). A model that contains only single nodes
verifies all the formulac in Boolean logic Cl. Recall that the model in.Fig;urc 3.5(b)
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refutes the law of excluded middle. The goal is to build a logic that allows ‘strict’
inference without resorting to non-constructive proofs,so the process is on the right
track so far.

The last step is shown in Figure 3.5(c). The only nodes that gained new edges were
the nodes that were generated at the very first step. In Kripl-cé model’s terms, this
condition means that only non-terminal nodes can gain new edges, and that there are
no edges between terminal nodes. This condition might seem a little counter intuitive,
but it ‘only appears here because of the nature of the mass assignment since the mass
assignments of the core elements describe the beliefs attribnted ezactly to them. It
is also known that the beliefs that are put upon non-terminal nodes are made of the
masses of assigned o the terminal nodes that can be reached from them. In this
case, the mass assigned to the cvent itself (say object being Red or White) is smaller
than the masses of its snubsets. The small confidence in the event itself is reflected in
the low mass assigned to corresponding terminal node. Higher belief and plansibility
of the same event are reflected in the sums of the masses of the nodes that can be
reached from the corresponding non-terminal node.

. The terminal node corresponding to the same event occurs later then the non-
terminal one. Semantically, it means that even though one can probably verify more
formulae at the terminal node, it can only be done with confidence such that be-
lief=plansibility=mass. There are fewer formulae validated at the earlier node, but

there is higher confidence put on them: belief is no longer equal to plausibility.

3.3.4 Updating the evidence

'The two examples demonstrate how a simple support function and an arbitrary (non-
separable, non-monotone) support functions can be translated to Kripke models. This
demonstration gives us enough insight to proceed towards a more interesting task—
updating the evidence. '

There are two possible situations — homogeneous and heterogeneous evidence.
Heterogeneous evidence involves two different support functions that put some con-
fidence on different statements. If supported statements overlap, then there is non-
contradicting confidence, if the \statements do not overlap, that means that different
piéces of evidence contradict each other. Homogeneous evidence means that there
are different support functions that support exactly the same statements.

Heterogeneous evidence may be thought of as the sitnation when the same decision

maker learns new facts. The homogeneous case corresponds to the situation when
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two or more different decision makers describe their beliefs attributed to the same
facts. , _

The latter sitnation gives less room for inference. The only update that may
happen will change the degrees of confidence attributed to the statements known to
be true. In other words, it does not change the set of trne formulae, but updates their
support.

In case of heterogeneous evidence combination, the set of true formmlae changes.
From the semantic point of view the heterogeneous case is more promising. Even
though the resulting semanties is more complicated, the procedure for heterogeneous
evidence update is simpler, or, better said, less awkward. Heterogeneous evidence
combination is illustrated on Shafer's famous examples already conéidered in the
introduetion to the Dempster-Shafer theory part of the chapter.

Homogeneous evidence combination

Consider two elementary mass assignments (simple support functions)
m(A) = sy; m1(9)=1—51,

ma(A) = sg; my(0) =1 —s,..

Both mass assignments support exactly the same proposition, but give rise to two
different support functions that reflect different degrees of confidence in statement

attributed to set A. Both functions are of the same form given below:

0 if B#£AB#6,
Si(B)={ s; if B=A4,
1 if B=6,

where ¢ = 1,2. This situation can be interpreted as twa decision makers expressing
their opinion on the same matter. Updating the evidence resunlts in a certain common
confidence level. There is nothing new to this situation — both pieces of evidence
are combined the same way as was already demonstrated in relevant sections.

The intersection table for these two mass assignments is in Table 3.3.4. Since both
mass assignments support the same propositions, the new mass assigned to A is the
samc as the mass assigned to its subsets. The table gives:

_'".11 @mg(/l) = 81892 + 51(1 - 52) + 52(1 - Sl) = ‘-91 +'89 — 8189,
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Table 3.5: Homogeneous evidence intcrsection table
my P mog lASl 9(1—31)

Ass - A 5159 A s2(l — 5)

O(1—~s)| As{l~3s2) B (1—15)(1—350)

my & mg(e) = (1 - Sl)(]. - 82).

It was already shown that such mass assignments give a simple support function of

the form
0 if B#£A, B#0,
S‘mlﬁimz(B) = §1 + 89 — 83159 if B= A,
1 " if B=9©.

A simple support is represented by a simplest two-node model. The only point that
is not entirely clear is how this two-node model is produeed as a result of combining
two original models that are constructed unambiguously. A little analysis shows that
there is nothing especially tricky about the situation. The only drawback of such
evidence combination is its apparent awkwardness that requires a few steps to arrive
exactly to the point where it started bar the mass assignments. Original semantics
is represented by two two-node models shown in Figure 3.6(a), since the evidence
is supported by two different mass assignments the masses assigned to the nodes
" are listed next to them. The intersection table 3.3.4 induees the model given in
Figure 3.6(b), the new nodes are labelled with the sets they represent (their mass
assignments are not known yet). After analysing the model in the picture one can see
that some nodes are actually equivalent {they have the same incoming and outgoing
edges), so they can be collapsed into single nodes resulting in model given in Figure
3.6(c), the nodes now are labelled with the sets membership in which they validate.
The last model is different from the model for a single support function earlier with
the new mass assignments listed next to the nodes. The model in Figure 3.6(c) has
~a ‘supernode’, but this situation was already discussed and semantically the model is
equivalent to the one in Figure 3.6(d). '

3.3.5 Building the models

Definition 3.3.3 is used to construct the Kriﬁke models that represent the frames of

discernment describing the examples from Section 3.1.2.
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| m1(4) | mi(©) ' 'Imx(A) | mi(®)
O [o .

O e} 0
|m2(4) | ey | ma(4] 40 6] ma(e)
{a) Core elements prior to evidence update {(b) Translation of intersection table
Co+——0 o . O
| 4 2 | m1 @ ma(A)| my © ma(O)
{(c) The model after collapsing identi- (d) The final model
cal nodes ’

Figure 3.6: this is homogeneous evidence

-Burglary of sweetshop

The story behind this example is found on page 36. Recall, that known facts may
be represented by two elementary frames ©; = {L, R} and ©, = {I, 0} that are
later combined into a universal frame of discernment © = {LI, LO, RI, RO} and two
different probability assignments over its subsets.

First piece of evidence tells the thief is a left-handed person m,({LI,LO}) =
51,m(0) = 1 — s5,,m)(elsewhere) = 0. The second piece of evidence tells that the
thief is an insider ma = ({L1, RI}) = 52, m3(0) = 1 — 53, my(elsewhere) = 0. Even
thbugh there is only one frame of discernment and two pieces of evidence over it, more
formal way to look at the same sitnation includes {wo scparate frames of discernment
with two separate mass assignments combined into © after evidence update.

The same distinction works for Kripke models: prior to the evidence combination
there are two elementary models, similar to the ones in Figure 3.4, that are later
combined into a new, more complicated one. The initial se:tup is represented in Figure
3.7. The first frame is 6, = {L, R} following the notation abuse introduced earlicr,
induces nodes w;, wz. The second frame is 8, = {/, 0} gives nodés ws, wy. The

relation R is empty except for reflexive pairs. It is the situation when two separate
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wy, 1 — 59

70

iy, 51 ° wa, 1 — &

?L W3, 52 ?R

I
Figure 3.7: Burglary of swectshop, initial setup

pieces of evidence are presented but not combined To update the evidence one has

Figure 3.8: Final frame for burglary of sweetshop

to combine two separate models. This is done by looking at the possible intersections
of elements of ©, and ©; and then constructing R according to rules (1)-(4) from
Definition 3.3.3. The resulting model shown in F igure 3.8. To preserve the readability,
the probability. assignments for the points are not listed on the picture, instead, they
are in Table 3.6.

Before looking at the probability mass assignments in the new model, the following
- should be considered. When the data is combined, a new probability assignment
function is constructed. The new function has the core different from the core of
the original mass assignment functions. The terminal nodes in the new model are
different from the terminal nodes of the original models. To get the mass assigninents
for this new function assume that given two pieces of evidence with basic probability
assignments m;(A) = s, and my(B) = sz, the updated belief in A A B, where AA B
is an obvious shorthand for 'z € A” AND ‘z € B’(this abbreviation will be used in
the following sections), is given by m({A A B) = s15; and that the proposition A A B
merits a new, terminal node. Shafer used the same postulate for developing the
evidence combination rule. Keeping the above in mind and using the steps outlined
in Definitions 3.3.3 and 3.3.4, the procedure ylelds the results given in Figure 3.8 and
Table 3.6.

When the graphical representation of tbe model is complete, the sum of basic
probability assignments is checked. The basic probabilities assigned to tbe terminal
nodes add up to one. The degree of support for any of non-terminal nodes is retrieved
by adding the probability assignments of the terminal nodes th:‘;\t could be reached

from them.
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Table 3.6: Probability assignments for Burglary of Sweetshop

Node w; | My (W;) | Node w; | My (W;)
' Terminal Nodes
Ws Sl(l - 82) wr (1 - 81)52
Wg {1 - 5;}(1 = s9) wg 5152
Non-terminal Nodes
wy My (w5) + My (ws) = 51 w3 My (W7) + My (ws) = 52
_ wa My (we) + my(wr) =1 — sy wy My (ws) + My (wg) =1 ~ 59

In Table 3.6 we introduce yet another slight abuse of notation: only the terminal
nodes have probability masses assigned to them; the non-terminal nodes have some
beliefs equal to the sum of masses of the terminal nodes reachable from them. How-
ever, these are not exactly the same as the beliefs discussed in the Dempster-Shafer
portion of the work. For the lack of a better term and to keep the notation consistent
these values arc still called masses and denoted m,,(w;). For example, the belief that .
a thief is left-handed is now equivalent to belief in mi,(w1) = mw(ws) + Mmy(wg) =
m((LI) V (LR)) = s152 + s1(1 — s2) = s;. It is the initial belief attributed to a
left-handed suspect. The created model does not change the initial beliefs. It rather
gives beliefs attributed to some new statements. The next example shows when and

how initial beliefs may be updated.

Cabbage seed

The available knowledge can be represented by two frames of discernment 6, =
- {A,-A} and 6; = {B,~B}. The mass assignments for the elements of these frames
of discernment were given when the example was first analysed on page 37. Assigning
nodes is also straightforward: both frames of discernment are represented by two
nodes that do not see each other. Having two isolated nodes is the case whenever
anly one statement is supported. Such models show the situation when a decision
maker has only two options — either to believe in the statement or in its negation.

The Kripke model representing the example prior to the evidence combination is
identical to the one in the burglary of ‘the sweetshop. The model after the evidence
combination has fewer nodes than the sweetshop’s: the intersection Table 3.2 shows
that since ane of the pieces includes another there are only three terminal nodes.
Figure 3.9 shows the model corresponding to the cabbage seed example.

In Figure 3.9, note that node w; is not a terminal node anymore, even though
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it was in the original model. The opposite is true for node ws: it stayed a terminal
node even after the evidence was combined. Nodes ws and ws are the ones that were
created aefter the evidence was combined. What happens to nodes wy, and wj is
expla-ined by looking at the intersection table. In the formulae below, V| and V, are
the valuation functions of the models prior to the evidence combination, and V is the
valuation function for the model given in Figure 3.9:

Vi(4) = {ws},  Wi(m4) = {wa},

Va(B) ={wr},  Vo(-B)={wn}.

Checking the intersections of the picces of evidence gives us the following set of
statements that merit a terminal node: AAB = A, AA-B =0, ~AA B, and
-A A =B. The model has only three terminal .nodes, one of which, w;s, is inherited
from the original model. The corresponding beliefs are in Table 3.7. A straightforward

w3|A wﬁl-vAAB w5|—-AA—-B

.'w1 w. wa
| B | -4 | -B

Figure 3.9: Cabbage seed

check shows that the beliefs attributed to the terminal nodes add up to one and thus
no normalisation is needed. Calculating the corresponding belief function gives the
same beliefs as in Shafer’s example. The model is a truthful representation of the

classical example.

Table 3.7: Probability assignments for Cabbage Seed

Node w; | T (w;) | Node w; | My (w;)
Terminal Nodes
w3 C Ws | - (1 — C])(l - Cg) .
we (1-c1)e

Non-terminal nodes

wh May(wWs) + My (we) = 1 + €2 — €102 wy | my(ws) = (1 -a)(l -c)

Wy My (ws) + Mwlws) =1 -1 »

To see how combining two frames of discernment affects beliefs, consider the total
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belief attributed to node w;. From Table 3.7 the sum of mass assignments of the

nodes reachable from w, is

Mo (wh) = my(ws) + my{we) = a1+ (1 —c1)e2 = ¢ + ¢2 — 0y,

which, along with c; > ¢;, tells ns that the resulting belief in proposition B has gone
up. At the same time, the support for proposition A stays unchanged.

Alibi

Start again with two elementary 2-node frames: 6, = {G,—~G} and 6, = {I,~[}.
The resulting frame after the evidence combination has nodes for all possible intersec-
tions between elements of ©; and ©,. There are more such nodes than-in the cabbage
seed case. Two pieces of evidence contradict each other, so no piece of evidence from
one frame can include another one. The statements like ‘not guilty AND innocent’
make perfect sense and thus result in new nodes. The only impossible intersection is
then ‘innocent AND guilty’, which is missing from the resulting model. The model

after the evidence combination is shown in Figure 3.10. The model is different from

I'a=G
. |-IAG [ = A-G
wsa We wy
w;A ) w:a>ﬂ
(e | 1 I-r |-G

Figure 3.10: Alibi frame

the two preceding ones: the mass assignments for the terminal nodes do not add
up to one anymore, so some normalisation procedure is needed. The normalisation
follows Shafer: the probability assignments that do not support anything, the beliefs
committed to @ are ignored. The basic probability attribnted to the empty set is
given by s;ss, so the normalising factor is'1 — sys;. The normalised basic probability
assignments are in Table 3.8. .

There is also a non-obvious node w;. This node is needed because having two
non-overlapping pieces of evidence does not necessarily mean that their complements
do not intersect. Intuitively, the situation at w7 can be explained as a kind of state
of ignorance, believing neither piece of evidence: There is no node corresponding to
the empty set.though. The total of available probability assignments now amounts

to one, and that the corresponding support function can be retrieved easily.
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Table 3.8: Alibi Probability Assignments

Node w; | My, (w;) | Node w; | M (w;)
Terminal nodes
si{l—a s9{l—s1)
ws o ws | e
!1—31!!1-—32!
wy 1—8132
Non-terminal nodes
1= - =
w mu(ws) = Yot wr | mu(ws) + m(wr) = 2552
_ 1—32 _. 32(1-2)
Wy mw(‘lU6) +m""(w7) — d—si8a Ws mw(ws) — l-s1s7

3.4 Verification of the approach

So far, it has been demonstrated that the procedure outlined in Section 3.3 helps
to translate Shafer’s popular examplés to the language of Kripke models, and that
combining two models according to rules of Definition 3.3.3 induces the same beliefs
over the resulting model as produced according to the Dempster-Shafer evidence *
combination rule. In this section, it is shown that the approach always works, and
that it provides a meaningful translation of the frames of discernment to semantic
models. The proof is done through showing that the basic probabilities assigned to
the terminal nodes of the constructed models a.]wéys give rise to a belief function,
and that the rules for combining two models provide an analogue to Dempster-Shafer
evidence combination rule.

The observations above shonld be stated as a proposition.

Proposition 3.4.1 Given a support function S on a frame of discernment ©, a
Kripke model with mass assignments on nodes ¥ satisfying the conditions of Defini-
tions 3.3.2, 3.3.9 and 3.5.4 unambiguously represents support function S in a sense

that given a set A C © and a proposition
p=‘ctisin A’

where T 15 some quantily of interest we have

weV(p)

Conversely, given two models ) and §2 representing two support functions S and S»
they can be combined into a new model § sqtisfying conditions of Definitions 3.3.2,
3.8.3 and 3.3.4 and representing support function S defined through mass assignment
m=1m; @msy.
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Proof: The part about the belief functions is straightforward. Set W and relation
R were constructed according to rules (1)-(4) from Decfinition 3.3.3. By construec-
tion, m,,(w;) satisfies conditions (1)-(2) of Definition 2.1.1, and thus gives rise to a
belief function. The constructed models thus represent Dempster-Shafer evidential
frameworks.

Recall that VA C © the belief is given by Bel(A) = > pc,m(B). In a model
¥ = (W, R,V, my) for any node v € W, the belief in statements valid at this node is
Bel(v) =} ewvrw Mu(w). The nodes are ordered accordiﬁg to set inclusion on ©.
Every terminal node corresponds to an element of C(S), every non-terminal node can
see some terminal nodes. Thus, for any set A C © and for the statement *‘p = z
is in A ’’, we have that V(p) includes all the nodes representing core elements that
arc inside of A with masses assigned according to Deﬁnitioh 3.3.4. But this means |
that the beliefs induced over the model are the same as calculated directly from the
frame of discernment. y '

The part about the evidence combination rule is a little more involved. The proof
will be done by considering the properties of set W and relation R in the resulting
model. ‘

First, consider the initial separate models. As there are two different models,
there is a temptation to consider two separate frames of discernment. 1t is not tEe
case: if there are two separate frames of discernment, then -the evidence represented
by onel is not always combinable with the evidence from the other. Instead, assume
that the frame of discernment is large enough to accommodate all the claims and
distinguish between sets .WI and Ws. There are no requirements to sets W, and W,
yet. The procedure described above dealt with the simplest type of evidence: the one
that supports some statements from £ and the complement of their union. In the
analysed exa.mples the beliefs were ﬁmstly binary, as in the example of the left- or
right-handed thief. Imagining three-handed ereatures performing theft in the same
example leads to assigning beliefs to three statements. The binary requirement is not
an absolute must.

In the simplest case, the models consist of disconnected nodes. This structure .
makes relation R empty except for the reflexive pairs. Consider two madels 9, =
(W1, Ry, V1) and Mo = (W, Ry, Vo) based on the pieces of evidence that are combined.
Let A, B € © be some subsets of the frame of discernment, & be the quantity of
interest; p = ‘0 € A’ and ¢ = ‘0 € B’ be the statements of £, and my(X), X €
6, z = 1,2 be the known basic probability assignments.

The elements of respective sets W; are determined according to the available ev-
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idence for each piece. If mi(A) > 0, then Jw! € W; such that Vi(p) = w! and
mi, (w]) = mi(A4).

On W, the condition wa — mi (w]) = 1 is satisfied by construction according to
rule (4) from Definition 3.3.3, and the basic probability assignment for a statement’s
_complement is given in equation (3.9). Moreover, tra.nslaitihg the initial evidential
setnp produced the models in which every node is a terminal node.

When models M, and M, are combined, a new model M = (W, R,V-’,mw) is
generated. Set W of the new model contains all the nodes from W) and W, plus it
has new nodes reflecting the combined evidence.

Assume thaf. propositions p and g are as above, and that wil.€ Vi(p) and wd €
Va(g); assume also that AN B # @. The new model then has nodes w* € V(p),
w? € V(g), and a new node, w4™? such that {w4"?} = V(pAg). Semantically, wA"?
is the node where the proposition ‘¢ € ANB’ is true. According to Definition 3.3.3, the
new node is in the following relation to its ‘ancestor’ nodes w4 Rw4"8, wB RwA"B. Itis
AnB) — A)an )

The sitnation above is the most straightforward case illustrated on the burglary of

a terminal node whose basic probability assignment is ., (w

the sweetshop example. Definition 3.3.3 describes the other cases as well. The cases
when AN B =0 or A C B result in keeping some of the nodes from 2% in terminal
positions and keeping their original basic probability assignments. Such ‘preserved’
assignments need a little purely formal clarification.

Let v € W) be such a node, let mL (v) be its basic probability assignment in W;.
In updated model 9N this node has the same probability assignment mw(u) = ml (v).
The ‘preserved assignment’ can be seen as m,(v) = mL(v) -1 = ml(v)ma(f € ©)
to stress the parallelism with the Dempster-Sbafer rule for subsets, which always
operates with pairs of probability assignments. One also needs to remember that
probability assignments of all non-terminal nodes are zeros.

It is now time to check whether the conditions of Definition 3.1.2 are satisfied.
Equation (3.3) is always satisfied. Verification is a matter of translating between the
languages of subsets and Kripke models. The probability assignments of the subsets
of © are now represented by the probability assignments of the nodes of W.. Both
models MM, and M satisfy }° .y, mi,(w]) = 1. Given the correspondence between
subsets of © and elements of VV:-, define the set

C={wveW|wRuv}.

C C W, with C = W only when the two pieces of evidence flatly contradict each
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_other. The case of evidence that is impossible to combine was considered and ruled
out by Shafer. In all other cases, there is a proper set inclusion. Whenever inclusion

C € W is proper, the inequality

> my@mi) < Y miw) Y mi)=1
T i e weW: veW;
w 1.V 2

is true, so equation (3.3) is satisfied.
Equation (3.4) is the normalising factor. The normalising factor for model 9M is

calculated according to

N =1-B=1-Y miwmi() = 3 mwmi),
wit v wily

where the summation is taken over all the possible pairs w € W) and v € W,.
Recalling the earlier remark about the nodes that stay terminal in the combined:
model, one can see that the normalising factor used in the interpretation is the same.
as in equation (3.4).

* Checking the conditions of equations (3.5) and (3.6) is now straightforward. Equa-
tion (3.5) is trivially satisfied: according to Definition 3.3.3, no node is in V(#), and
thus no basic belief is attributed to the empty set. In model 9 the probability
assignment of proposition p is calculated by . ‘

1 .
m(p) = N Z: mu{('w'),

weEV(p)

where w's are the nodes within the valuation of p. The probability assignments of

any terminal node w* € W are based on the probability assignments of its ancestors

w} € Wy, w} € W, using .
me (W) = my, (w})m? (wh)

and that my,(v) = 0 whenever v € W is not a terminal node. This effectively means
that whenever V(A4) = {w} we have that m(A) = my(w), where the left-hand side
refers to the probability assignments over frame © and the right-hand side to the
probability assignments over set W. The parallelism works whencver the cvidence
represented by different probability assignments is combinable. Thus the probability
-assignment m over W is indeed the orthogonal sum of basic probability assignments
m), and m2 over Wy and W, as desired. O

Thus, any support function can be represented by a Kripke model. It would also
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be nseful to see whether the converse is true: does it mean that any Kripke model
with mass assignment on nodes represents as a support function. The answer is yes
in case if the masses assigned to terminal nodes of a model represent core elements
of some support function. The only requirement to a K;ipke model to represent a
support function is to have some terminal nodes. This requirement only amounts to
excluding the cyclical constructions, that are semantically equivalent to single nodes

(in case of transitive nodes).

Proposition 3.4.2 Let § = (W, R,V,m,) be a Kripke model with mass assignments
on nodes. Then there is a support function S over frame O, such that for any X €
C(S) there is a node w € W such that my,(w) = m(X), and that for any set A C ©
we have that S{A) = Zwev( T A:)mw(w), where x is some quantity of interest.

Proof: The first half is obvious: every terminal node corresponding to a statement
z € X is some element in C{S). The second part is also automatic: relation R is a par-
tial order; the ordering of subsets by sct inclusion on € is also a partial order. There-
fore, it is possible to find a subset A of © such that S(A) = ZweV(‘:c e Ay Mw(w).
Q. ' :
The resnlts above demonstrate that any Kripke model can correspond to a Dempster-
Shafer support function and vice-versa. This means that a formula valid in some _
intuitionistic Kripke model corresponds to some situation desc¢ribed by the means of
the Dempster-Shafer theory. This observation also points to the minimal intuition-
istic logic Int. To see why it is true, it is nseful to abstract from the definition of a
logic through a calculus and look at a logic as a set of true formulae. From this angle,
Boalean logic Cl is the set of formulae valid in a sihg]e node intuitionistic Kripke
model, and the minimal intuitionistic logic Int is the sct of all formulac in langnage
L valid in all intnitionistic frames-[48]. As it was demonstrated that any intuitionistic
Kripke model with mass assignments corresponds to a support function, the set of
formulae validated in our case is the latter. The Dempster-Shafer theory is repre-
sented by the minimal intuitionistic logic. On one side, the result may be viewed
as disappointing: there are many stronger logics. On the other hand, the logic in
question is complete and sound and certainly provides a usable reasoning apparatus.

3.5 Embedding issues

So far we have not any explicit restrictions on the semantic models that represent

support functions. It does not mean, however, that we cannot benefit from numerous
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embedding results available for intermediate logics [48]. Similar but non-universal
results are possible for models that represent different support functions. The non-
uuiversal nature of the results should not deter one from exploring the question. Plac-
ing a particular model within a class of models that represent some well-established
intermediate logic can make inference over that model more effective. Knowing inclu-
ston relationship with respect to systems admitting finite axiomatisation allows one
to use their syntax for inference within the analysed setup.

A few simple embedding observations should give the taste of the problem. Int C
L C Cl, where L is any intermediate logic [48]. This interval is quite broad: there
are infinitely many intermediate logics. To get nou-trivial results one can look into
particular si-logics. Any counected frame representing a support function in refutes
Dummctt’s formula (p — q) V(¢ — p), and in this case the inference can exclude
tautology (p — g) V (¢ — p) at some uodes. There are a few more general axioms
that are satisfied depending on the uumher of evidence combiunations performed and
oun possible branchings within each piece of evidence.

The following definitions are needed for the later discussion.

Definition 3.5.1 (Chains) A chain of length n in a frame § = (W, R) is a set
C C W such that for any v,w € C either vRw or wRv must be true. The length of
a chain is the number of elements in it. The depth of a frame is determined by its
longest chain. An antichain is a set A C W such that for any v,w € A both vRw
and wRv are true. The width of a frame is determined by its longest antichain. The
branching of ¢ frame is the mazimal number of distinct immediate successors of a

node.

The fé.mily of axioms bw, isa genéralisdtion of Dummett’s formula (with renamed
variables): bwn, = VILo(pi — Vig;p;), n > 1. The corresponding logic is BW,,. bw,
is validated by a frame if its every rooted subframe is of width < n. The width
of rooted subframes in Kripke models induced by evidence combination depends on
the number of subsets within every piece of evideuce and by the number of times
the evidence combination rule was applied. The majority of cases described hy the
Dempster-Shafer theory deals with finite universes, making it possible to select n
large enough to satisfy bw,.

A similar argument works for the family of axioms bd,,, where bd; = p, V—p, isa
familiar law of excluded middle or (A10) iu a slightly modified notation. A member of
this family of axioms is given by the recursive formula dd, ) = pa41 V (Prsy — bdy).

The corresponding family of logics is BD,,. A frame is known to refute 'bdn if it has .
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" a chain of length n + 1. The lengtb of a chain in a frame within Cps depends only on
tbe number of times the evidence combination was applied. .

The fa.thily of axioms bbn = /\:-'zo((p,' — V{;&jpj) — V,-?A_J-pj) — V:—‘=0p,-, n2 1is
validated by finite frames of branching < n giving rise to a family of logics T,,. The
branching of a frame in Cpg is determined by the maximal mumber of subsets within
each piece of evidence. Thus there is a fairly straightforward criterion for this family
of axioms too.

Locking at the conditions above, one can construct the conditions for a Kripke
frame ¥ satisfying all three axioms for an appropriate n € N. This can be written
as Int + bw, A bd, A bb, C ForF, where Forg is a set of formulae valid in §. The
same line of reasoning suggests that if the estimate for n was accorate then for n— 1
the relationsﬁip is For§ C Int + bw,_y A bd,_, A bb,,_,. This approach allows one
to place For¥ in the interval [ BW,UBD,UT,, BW,_,UBD,,_,UT,_;].

Proceeding in the same fashion, the set of formulae available for reasoning in each
particular case can be significantly transformed thus making the inferential apparatus

at disposal of the decision maker even more effective.

3.6 Incorporating the ‘empty’ evidence

The construction above is based on the premise that pV (p — 1) is refuted in most
of semantic models. This section provides a simple example that illustrates how
attributing unconditional belief to the formula pV (p — L) can violate even the basic
intuition. ,

Recall the burglary of tbe sweetshop exa.mpie from page 36. The corresponding
Kripke model was constructed on page 57. The constructive premises are violated by
allowing Sherlock Holmes to incorporate empty evidence along witb the one for which
he has support. So, instead of having some belief in hypothesis about a left-handed
thief, let us assnme that no evidence whatsoever about the burglar being left-handed
is available, s, = 0. Is it reasonable in this case to just assume that a person was
definitely a right-handed person? From the coustructivist point of view the answer is
‘no’. pV (p — L) is true only if p or —p is decidable. For any other logic that accepts
A10 the answer is ‘yes’. .

Let us now leave the constructivist shell and try to incorporate the empty evi-
dence into the model. The question then becomes: should one assume that whenever
" V(p) = 0 and whenever w is a-terminal node such that w € V{=p) that m,(w) = 1?
Acce'pting the assumption corresponds to the model in Figure 3.11. The basic proba-
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bility assignments for terminal nodes RI and RO are the same as the assignments for
the nodes [ and O. In other words, adding an extra node R does not change anything.
Such a sitnation does not contradict our basic intuition; introducing ‘empty evidence’

" does not change anything. Moreover, the model in Figure 3.11 is the only possible
| RI | RO

NN

| 1 | R l o

Figure 3.11: Burglary of sweetshop with empty evidence

result of combining a piece of non-conclusive evidence with whatever other evidence
is available. We illustrate this observation with another Shafer’s example.

Consider now the alibi example, and assume that the second witness does not
provide any information in support of the snspect’s innocence. If pV (p — 1) is true, .
then the corresponding model is identical to the one in Figure 3.11. Two situations,
quite different in non-degenerate case, become the same if one of the ﬁieces of evidence
is reduced to ignorance. Such a situation does not lead to a paradox or to an incorrect’
probability combination. Yet it is better avoided as it enables derivation that is
ultimately vacnous and increases the complexity of the model without increasing the
amount of knowledge it represents.

The ultimate goal of the current work is to develop an cffective reasoning apparatus
that can be implemented. From this point of view, a possibility to increase the
complexity of a model withont gaining anything in terms of inferential power is to be
avoided.
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Chapter 4

Updating knowledge in the
Dempster-Shafer theory

The procedure linking the Dempster-Shafer theory frames of discernment with the
semantic models was established. It was also shown that the procedure preserved
the structure of the underlying frame of discernment and gave rise to the same belief
function as Shafer’s. In this chapter, the properties of the proposed framework are -
explored and further parallels between semantic models and frames of discernment
are drawn. ‘ -

The Dempster-Shafer theory provides a set of tools for incorporating possible
changes in knowledge. These operations are different from inference on already built
models. The aim of this chapter is to understand the effects of changing the frames
of discernment on the corresponding Kripke models. To make the exposition more
consistent, the Dempster-Shafer theory concepts and examples are given first, and
then the connection with Kripke models is exposed.” For brevity, we write in this
chapter V(A) > w that shonld be nnderstood as V(p) 3 w, where p = ‘z € A’. We
continue using notation V (¢) for truth sets of formulae.

4.1 Refining

There are two kinds of transformations of a frame of discernment. One, called frame
refinement, accounts for learning new facts that make the universe more detailed;
ahother, called frame coarsening, accounts for the circumstances that make some
of the previous knowledge irrelevant and thus simplify the universe. In terms of
sets, refinement partitions some of the sets within a frame of discernment, and the

coarsening merges some of the sets together. The analysis starts with the refinement
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and then proceeds to the coarsening operation. The definitions are according to [82].

Definition 4.1.1 (Frame refinement) Let © = {ay,as,...,an} be a frame of dis-
cernment, let §) be another frame of discernment. Frame S is refined from O if for
every singleton {a;} € 2° there is a subset T; € 2%, such that {T; QQ;:' =12,...,n}
is a partition of 2. '

1. Y;#0 fori=1,...,n,
2. T,-n'r,-=ﬂfori_7éj,

The refinement is a straightforward operation. A single element in the old frame
is split into several elements in the new one. It is not difficult to find a function

establishing correspondence between these sets. All that is needed is an onto map

satisfying a few natural conditions. This function is called a refining mapping. '

Definition 4.1.2 (Refining mapping) Let © and §2 be two frames of discernment
and o : 22 — 29 be a map. o is a refining mapping if the following conditions are
met:

1. The collection o ({a;}) forms a partition on S,

2. It is a singleton-union mapping:
og:9— 0

and
o:{a;} - Ti=c{({a:i})

for all singletons in 2®. For non-singletons o must satisfy
0:A=Ugea{ai} = UgeaTsi.

The operation is called a singleton-union mapping because if o{{a}) = T; then
{A) = o{Us,ea{a}) = Uneac({ai}) = UaeaT; for a singleton-union A = Ua; € A{a;}.
Intuitively, one can think of elements of o{4) C Q as of a detail propaositions of

proposition A. By the same token, subset A C O represents a summary proposition
of o(A) C Q.
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Refining a frame of discernment resnlts in a new frame of discernment and, con-
sequently, in a new Kripke model. The new model can always be built from scratch
using the procedure introduced in Section 3.3. Depending on the model’s compleﬁty,
although doing so might be computationally expensive. It is much more effective-to
have some analogue of map ¢ on Kripke models. While daing so, it is important
to keep in mind that the definition of refining mapping on frames of discernment is
independent of possible mass assignments over the refined frames. Clearly, it cannot
be the case for the Kripke models. The same frame of discernment may give rise to
different Kripke models dépending on its mass assignments. So, at least one assnmp-
tion must be made before proceeding a.ily further: the new partition elements in the
refined frame should have non-zero mass assignments. The requirement is formalised
in due course. At the moment, let us look at a simple example.

Let © and (2 be two frames of discernment, let § and §' be corresponding Kripke
models, and let o be a map between 2° and 2. There should be a pracedure trans-
forming § into §'. Given frame of discernment 6, the corresponding Kripke model
¥ = (W,R,V,m,) must have a node for each subset # € 8, such that m() > 0.
This condition is obvious in the context of the semantic interpretation of frames of
discernment, but it will later help to determine the representational limits of the in-
terpretation. The relation R is fully determined by the inclusion relation on € and
by the rules given in Definition 3.3.3. According to the definition of refinement, only
the sets corresponding to the terminal nodes are partitioned. In terms of Kripke
models, a partitioning results in adding more terminal nddes to W and updating R
accordingly. '

Using the new partitions as a basis for adding new nodes to the set of possible
worlds may increase the complexity of the model and does not always provide the
most effective reasoning tool. On the bright side, adding new nodes is much less
_computationally expensive than building a new Kripke model from scratch. A few
examples in the next section should help to see the advantages and drawbacks of this

approach. -

4.1.1 .Reﬁnement example

This section presents an example of a frame refinement based on the principles out-
lined above. The cxample demonstrates how different mass assignments over the same
frame of discernmeut result in different Kripke models. To spare the effort needed for
inventing yet another faux-detective story Shafer’s examples are revisited. Recall the
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burglary of the sweetshop example in Section 3.1.2. The frame of discernment after
cvidence combination is © = {LI, LO, RI, RO}. Now assumc that Sherlock Holmes
has some idea about the sex of the burglar in each possible situation.
It is important to note the difference between introducing a new piece of evidence

- and refining a frame. In case of introducing a new piece of evidence, some beliefs abont
the burglar being male or female are introduced and then combined with already
known information leading to updated beliefs about tbe burglar’s identity. It is not
the case with the refinement. Tbe belief in the hypothesis about thief being a left-
handed insider is not amended; the already known beliefs are redistributed between
female and male left-handed insiders. The belief in the general proposition about the
burglar being a left-handed insider stays unaffected. This assumption is in line with
the discussion about the rolc of the mass assignment in forming a Kripke model and
is not always true for a general frame of discernment.

" Gaining knowledge about the sex of the intruder changes the initial frame © into -
Q= {lif,lof,lim,lom,7if,r0f,rim,rom}, the map o : 28, 2% is obvious:

o({L1}) = {lif lim},
o({LOY) = {lof,lom},
o({RI}) = {rif,rim},
o({RO}) = {rof,rom}.

(4)

The sets T; = {#m,*f}, where % = LI', LO, RI, RO, form a partition of 2. The
rest of the conditions from Definition 4.1.2 is satisfied by construction, so ¢ is a
refinement. No specific pieces of evidence {M, F'} were introduced into the picture.
If a belief about the sex of the offender is to be calculated, it has to be retrieved from
the appropriate statements.

First, assume that every singleton in the refined frame €2 has a non-zero mass
assignment. Let us see why this assumption must be made. Consider map o defined
in equation (4.1). Assume now that one of the singletons in Q) has a mass assignment
equal to zero, say {lif}. But this means that  does not discern this proposition.
From the semantic representation’s poinlt of view the frame of discernment becomes

Q = {lof,lim,lom,rif,rof , rim,rom} and the refining mapping isno longer defined
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by equation (4.1). The new map ¢’ is given below:

SULTY = (tim),
o'({LO}) = A{lof,lom},
d({RI}) = {rif,rim},
o'({LO}) = {rof,rom}.

(4.2):

Equations (4.1) and (4.2) have different images for set {1} and thus represent two
different refining maps. Every singleton in 2 should merit a new node in the corre-
sponding Kripke model, unless there is a condition about assigning new nodes only
to the elements with non-zero mass assignments.

Let us now return to the refinement described by ¢. Taking a little leap of rea-
soning rectified later, relation R is extended in the obvious way: LI =limUlif. So,
because {if C LI, limm C LI, and V(LI) = {ws}, V'(lim) = {we}, V'(lif) = {wi0}, .
we have wg Rwyg, wg Rwg and so on.

The old Kripke frame corresponding’to the example is shown in Figure 3.8 on _
page 58. The new evidence requires every subset represented by a terminal node of
the frame to be split in two. So, each terminal node from the old model sees two
new nodes. The new model is shown in Figure 4.1. The formulae true at ws,---,ws
are the same as in the old frame. The refined evidence is reflected on the new
terminal nodes wy, - -+ ,wyg. The new validated formulae are not listed because of

space considerations.

wg wyg w1 w2 Wiz W4 ws Wig

L Ws wr we

un wg wy wo

| L | 1 lo IR
Figure 4.1: Refined burglary of swectshop I

4.1.2 Refining versus -evidence combination

The difference between the frame refinement and the evidence combination becomes
clearer after looking at the example below. Let us see the effects of introducing the
sex of the offender into the setup. Assume that the evidence about the offender’s

sex is available based only on the knowledge that the burglar is an insider. The
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refined frame of discernment is then ¢ = {lif,rif, lim,rim, RO, LO}. Such a frame
is not a result of combining © = { LI, LO, RI, RO} with {M, F}. Yet it is a perfectly
legitimate refinement!. The only difference is in o, which, in order to be representable

by a Kripke model, becomes

o(LI) = (lif, lim),
o(RI) = (rim,rif),
o(RO) = RO,
o(LO) = LO.

The corresponding Kripke frame is shown in Figure 4.2. Combining two independent

lim ULif rim rif
. wg X'WS] . wy We
un w3>§4c>§2
lL . |1 lo R

Figure 4.2: Refined burglary of sweetshop 11

frames of discernment © = {LI, LO, RI, RO} and & = {M, F} according to the pro-
cedure in Section 3.3 results in yet another Kripke frame in Figure 4.3. Even though
it is possible to construct models with equal mass assignments of the corresponding

nodes, the models in Figures 4.1 and 4.3 do not verify the same sets of formulae.

| L | 1 | =71 | =L

Figure 4.3: burglary of sweetshop after another evidence combination

'Introducing additional conditions such that RONM = LONM = LONF = RONF = § may
result in & = {lif,rif,lim,rim, RO, LO}. Such models will not be semantically equivalent.

75



4.1.3 Formalising model refinement

The example above is very straightforward and logical, but not too strict. The rea-
soning is as follows: without much justification, a new node was assigned to each
singleton of the refined frame. While doing so is not necessarily wrong, it may not
always be the case. Even though it is straightforward, the procedure of building
the modcls from frames of discernment first calls for translating sets in a frame of |
discernment to stétenients in propositional language L.

The definition of refinement on frames of discernment does not take the mass
assignments into consideration. It is only concerned with the sets discerned by a
frame. The Kripke models considered here should also take into account the mass
assignments. It only makes sense to assign new nodes to the scts in the core of the
refined model’s support function. To proceed further this condition must be made

explicit.

Definition 4.1.3 (Set W’ on refined frames) Let § = (W, R,V,m,) be a Kripke
model over frame of discernment ©; and let & = (W' R’ V' m)) be its refinement
over frame Q0. Let mq be the mass assignment over Q. Define the set of possible

worlds of ® as
W .=wu {wA : mQ(A) >0,AC Q} (4.3)

Definition 4.1.4.(Relation R’ on refined frames) Let § = (W,R,V,m,) be a
Kripke model and § = (W', R, V', m]) its refinement. Relation R’ satisfies the
following properties

1. RCR;
2. wlv, viRw fér allv,we W\ W,

5. wR'v and v € W'\ W implies w is a terminal node in § ({w} [ R= {w})

The next restriction ersures that the new mass assignments actually refine the
already known facts rather than just re.?hufﬂe the known things randomly. The con-
dition amounts to checking whether the core elements of the new support function

are within the partitions of the refined frame.

Proposition 4.1.1 {Conditions on refinement’s support function) Let frame
Q be a refinement of frame O, let o : 22 — 29 be the refining mapping, S a support
function on ©, and S' a support function on ). Then S’ must satisfy the following

condition:
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{z} € C(S'} only if x € o({y}) for some {y} € C(S), (4.4)

where C(-) is a core of a support function.

Proof: Assume the opposite (that {y} ¢ C(S)). This means that support for {y} is
zero. Therefore, set {z} C o({y}) also has zero support by monotonicity property of
support function with respect to set inclusion, which is a contradiction. O

The definition above makes restrictions on the possible mass assignments explicit.
The restrictions are needed because the operations do not produce a totally new
frame of discernment, but rather modify the existing one. The mass assignment on
the refined frame should not contradict any previously gained knowledge. The mass
assignment restricted according to (4.4) will only result in a model within the limits
of the developed logic. :

Consider the burglary of the sweetshop again. Assume that Sherlock Holmes
knows something about the sex of tbe burglar, but not for every possible situation.
In other words, assume the same refining mapping o, but a new mass assignment.

" The new knowledge is given by the mass assignments below

m({lim}) = s,

m({lif}) = s,
m({lom,lof,rim}) = s, ' (4.5)
m({lim,lif,rif}) = s,
m(everywhere else) = 0.

The mass assignments above give rise to a support function S’, hut the -conditions of
equation (4.4) are violated. For instance, {lom,lof,rim} is a core element of S/, but
there is no singleton {z} in the core of support function S such that {lim, lof,rim} C -
o({z}). Building a refined Kripke model with the mass assignments of the terminal
nodes given by equation (4.5) is still possible, but this model would not result from
refining the model in Figure 3.8. If the model given in Figure 4.2 is kept, then
assigning masses to the terminal nodes of the model becomes quite an impossible
task. Following the earlier procedure will result in assigning some mass to a non-
" terminal node, which leads to contradiction. o
Refining frames of discernment has several nice mathematical properties, which
should be transferred to Kripke models. To see whether a property is preserved, the
formal description of the proposed procedure must be completed. The limitations
applied to the support functions and ordering relations were already shown. Below,
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it is shown how the sets of pt;ssible worlds in two models are linked. The universes
under consideration are finite, and thus it is always paossible to find the smallest subset
with a non-zero basic probability assignment.

Let © be a frame of discernment, let 2 be its refinement, let ¢ : 22 — 29 be the
refining map, and § = (W, R, V,my) and § = (W', R', V', m])) be the Kripke models
corresponding to € and §2. According to the just outlined procedure W C W’ and
R C R'. One can even make a stronger statement abont the ordering relations in
both frames X | RC X [ R, VX € W. '

Consider w; € W such that V(a;) = {w;} and o({a;}) = T;. What happens with
the valuation of a; on Q7 V' (o(a;)) must include w;. Because the operation just adds

new nodes, the model must also include the nodes corresponding to T;:
Vi(o(a:)) = V(@) UV (1)) = V(g) U V' (UjUj;) (4.6)

V{(a;) is known and V(U;ui) = 0, therefore V’(U;v5) must correspond to nodes in
W'\ W. Thus, a new node has to be assigned to every v; whose mass assignment is
non-zero mo(vi) > 0 and that ¢ € 2 such that mg(¢) > 0 and ¢ C v}. Tjs form a

partition of , vjs in their own partition T;, and thus Ui (Ujuf) = Q.

4.2 Properties of refinement

Before exploring the propefties of the refined frames, it must be established whether
the frames in question are well-defined. If the Kripke model analog of the refinement

is defined correctly, every refinement mapping will result in a unique Kripke frame.
Proposition 4.2.1 Kripke model refinement is o well-defined operation.

Proof. Let §, = (W, Ry, Vi, m)) and §» = (W, Rz, V5, m2) be two Kripke models
corresponding to frame of discernment A, both constructed aceording to definitions
3.3.2- 3.3.4. Two models are identical np to a node permutation if there is a permu-
tation 7 : W), — W, such that Vu,v € W) having uR v implies 7(u)Ram(v). The
cardinalities of both sets are equal by construction, and thus only one-to-one maps are
to be considered. Assume there is no such map. Then, there are nodes z;,y, € W,
such that ) Ryy but 7(z))} R ow(1 ) for all w : W) — Wy, According to the procedure
for building Kripke models, if there is a node z, € W, then there is a set A CA
such that Vi(A) = z). Therefore V2(A) is not empty either, so there must be a node
Va(A) = z2. Similarly, if z)Ryyn then g C A, where Vi(p) = 31, Va(p) = 52 and
z2 Royo. O
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Thus, every frame of discernment corresponds to a unique, up to a node permu-
tation, Kripke model before refinement. Each partition of the frame of discernment
produces a unique model, so the refinings and frames of discernment are in one-to-
one correspondence, as desired. A well-defined transformation preserves some set

operations. The details are in the theorem below quoted from [1].

Theorem 4.2.1 {Preservation properties) Refining mapping o : 22 — 29 pre-
serves set operations and relations:

1. ¢ is a one-to-one mapping from 22 into 2%, and 0(©) = Q;

!

2 Foradl A/ BCO '
c(AUB) = o(A)Ua(B),
g(ANB) = o(A)No(B),
o(A\B) = o(A)\o(B),
s(6\B) = Q\o(B),

(4.7

Consider a Kripke model § = (W, R, V,m,;) corresponding to the frame of discern--

ment © and the model’s refinement § = (W’ R/, V', ml)) corresponding to frame of
discernment €. Let o : 2° — 29 be the refining mapping. It is already known that
V'(o(a)) = V(a) UV'(T), where T = o(a) for all ¢ C ©. The question is whether
V(e(AU B)) = V'(0(A)) U V'(6(B)) or not. Since (AU B) = o(A)Uo(B), it is
enongh to know if V(AU B) = V(A)UV(B) is satisfied. The latter is trne according
to the Definition 3.2.1 of a valnation map. '

The same argument holds for the rest of equalities in equation (4.7). Thus, given
the parallelism between the propositions in £ and sets in ©, the equalities (4.8)
directly follow from Definition 3.2.1:

vie) = 0,

V(AUB) = V(A)UV(B), (4.8)
V(AnB) = V(A)nV(B), |

V(A\B) = V(4)\V(B)

In a models’ terms, a refining is a simple operation adding extra nodes reachable from
some of the original model’s terminal nodes. Moreover, the properties of a refinement
given by Shafer apply to all possible futnre mass assignment on the refined frame.
The proposed translation procedure only deals with a well-behaved subset of mass
assignments. The summary of the properties of a Kripke model’s refinement is in the

- proposition below.
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Theorem 4.2.2 (Kripke model refinement) Let ©, Q be two frames of discern-
ment, let o : 2° — 2% be a refinement mapping and m : 2% — [0,1] be a mass
assignment over () satisfying the conditions of equation ({.4). Let § = (W,R,V,m,)
be a Kripke model induced by © and §' = (W', R, V', m)) by Q. Call § a refinement
of §. The following must be true for model § and ils refinement §F'.

1.

V{w} € 29. \ 2% if m({w}) > 0 Jv e W’ such that V'({w}) ={v};  (4.9)

2. Relation R is a restriction of R' to set W:

Ywe W (w I R) C (w ] RY; (4.10)

$. For any singleton a € ©, such that'V(a) = {w} and o(a) = T
V(@) = wl R (411)
4. On refined frame § for any A, B C © the equalities below are true
V(a(AUB)) = V(a(A) UV'(e(B)) = (V(4) | R)U(V(B) T R), (412)

Vi(o(An B) = V(e(A) N V(o(B) = (V(A4) | )N (V(B) | ), (4.13)
Vi(0(A\ B) = V(A \ V/(o(B) = (VA TR\ (V(B) [ R), (414)
Vi(e(©\ B) = V@\VIe(B) =W\ (V(B) T R). - (415

Proof. Equations (4.9), (4.10) and (4.11) are the immediate consequences of the def-
initions of the corresponding concepts. Equations (4.12)-(4.15) follow from equation
(4.8) and Definition 3.2.1 of validity of formulae. ' a.

The properties listed in Theorem 4.2.2 are useful, because they allow for the
manipulation of models almost as easily as frames of discernment. The properties
above are true regardless of the mass assignment on the refined frame. The next
question is to which extent the refining can be reversed in the frames of discernment,

and what are the corresponding effects of this reversal on the Kripke models.
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4.3 Coarsening

The opposite of refining is coarsening. In the Dempstér—Shafer theory, the coarsening
is viewed as an operation secondary to refining. This angle of view works well for the
taken approach too. A refining map ¢ is not necessarily a bijection. The existence of
the inverse, ¢!, is then not guaranteed, but some approximation can be produced.
This approximation is the coarsening map. The c‘oaxjsening comes in two different

flavors: inner and outer coarsening.

Definition 4.3.1 (Coarsening) Assume that o : 2° ~» 22 is a refining. Mapping
ar_l__ ;2% 9®
is then called the inner coarsening of o. It is defined by
o' (T)={z €O |o({z}) C T}

Mapping

———

-11
D AR LI L

is called the outer coarsening of o and is defined by
oY) = {z € 0| o({z}) N T # 0}

forall T C Q.

Given the nice properties of the refinement, there is some expectation of convenient
algebraic properties from its converse. Just as expected, some set operations are
preserved, but the set-preserving properties of coarsening are mmch weaker than for

refining.

Theorem 4.3.1 (Coarsening properties, Shafer 1974) The inner and outer coars-

enings preserve set operations and the set relation:

-1

+ .
1 o preserves set union:

o (PUQ) = (e (P) U (Q)), (4.16)

Jor all P,Q C Q"
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2. 71" preserves set intersection:
o™V (PNQ) = (67 (P)N (a7 (Q)), (4.17)
for all P,Q C
3. For set difference, the following is true for all R C Q:

Q\R) = ©\o"(R),

- 418
STRNR) = 0\o M (R) 19
4. ¢V and ot preserve set inclusion: if P C Q in 2% tﬁen
o717 (P) € o717 (Q), '
(P) € Q). (419)

The immediate consequence of Theorem 4.3.1 fills in the gaps in the inner/outer-

coarsening — union/intersection paradigm:

Theorem 4.3.2 (Coarsening and set operations) Let the setup be the same as

in the previous theorem. Then the following are true:

o (PUQ) DoV (P)U o‘—l- (@) (4.20)
and |

e(PNQ) Co (P Ne(Q) (4.21)
forall P,Q CQ [1].

1

Clearly, 6™ =071, when o is an isomorphism: If it is not, the relationship is not

as straightforward, but still qunite predictable. The details are in the theorem below.

Theorem 4.3.3 Let 622 — 22 be a refining map, let 6™ and 0~ be inner and

outer coarsenings, tl}en the following equalities are true:
1o (0) =0=0"""();
2 o7 () =6=0c"1();

3 o7 (1) Ca " () forall Y CQ;
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4. 077 (0(A)) = A= 0"V (0(A)) forall AC O, i.e. oV g =00 = ide;

5. 0" (M) CTand T C a(a'lé(T)) forall T C

6. 5(A)C T iff AC o~V (T) and T C o(A) iff =1 (T) C 4 [8Y).

Whenever a coarsening is applied to a frame of discernment, the effect on the cor-
responding Kripke model amounts to reducing the number of nodes and updating
the ordering relation accordingly. The only cumbersome parts of the procedure are
updating the masses of the nodes and ensuring that the new mass assignments still
give rise to a mass function: Below, these effects are described in some detail and
the analogies are drawn between the coarsening and its Kripke model counterpart.
- Just as it happened with the refinement, the scope of the procedure in the realm of
Kripke models is narrower. An illustrative example opens the exposition followed by

the rigorous part.

4.3.1 Coarsening and Kripke models

Assume that § = (W, R,V,m,) is a Kripke model on frame of discernment ©,
et .wl,wg € W be two nodes in the model. A fragment of § is shown in Figure
4.4(a). Now, assume that o : 2° — 2% is a refining map transforming © into .
F = (W, R,V m) is a Kripke model on £, where V/(o(w;)) = {w, ws, ws} and
V'(o(w,)) = {w2, ws, ws}. The relevant fragment of ¥ is given in Figure 4.4(b). Let

W3z Wy Ws Wsp
o o7 0

VAV

Wy Wo . w1y Wo
{(a) Before refining (b) After refining

Figure 4.4: Frame and is refinement

Y

A, B C © be subsets satisfying V(A) = {wn} and V(B) = {w2}. Now if o(A) =T,
-and o(B) = Tpg in model ¥, valuations are given by V/(T4) = {w;,ws, ws} and
V(Tg) = {ws, ws, ws}. Coarscning has the predictable result of removing some of
the terminal nodes: V(o™ (T4)) = V(o7 (T4)) = V(A) = {w} according to
Theorem 4.3.3. In this case, the inner and outer coarsenings are equal. It happened
because the coarsened sets were the images of singletons in the original frame. If phe
coarsened sets were not images of singletons in the original, then the results of inner

and outer coarsening might differ. To sce the difference, consider set T such that

83



VI(To) = {ws,wg,ws}. Now V(o= (Te)) = {wr}, but V(e™7 (1)) = {wy,ws}.
The coarsening is a ‘reversal operation’ on frames of discernment, which can only be
defined in terms of previously conducted refining. As the example above shows,. it
is different on Kripke models: by definition, the nodes corresponding to the refining
partitions are the terminal nodes, and the coarsening of a Kripke model results in
removing some of its terminal nodes. To understand the effects of removing the ter-
minal nodes on the truth values of different propositions from £, some interpretation
of V' is needed.

The examples above demonstrated that in the models the coarsening amounted
to removing some terminal nodes from the model and npdating the'ordering relation
‘on the set of possible worlds accordingly. Removing alt the edges in the downward
closure of the removed nodes reflects outer coarsening, while removing only the edges
stemming from the nodes whose upward closure is within the coarsened set reflects

inner coarsening.

Definition 4.3.2 (Coarsening on set of nodes) Let § = (W, R, V,m,) and §' =
(W, R, V', m.) be two Kripke models such that W C W' and R = R'n (W x W).

Define outer coarsening p~' : 2%’ — 2W g¢nd inner coarsening p1t : 2% — 2W,
such that
PUX) = {weW | (w]R)\{w}CX}, (4.22)

(XY = (weW|weX | R, (w[R)NX #£0}, (4.23)

where X € UpW’ and X NW = §.

The condition. X N W = @ ensures that sets X only contain newly added terminal
nodes. If this condition is not met, then X cannot correspond to any set T forming
a partition and cannot be coarsened. Condition wRy = y € X in equation (4.23)
cancels the transitivity of R": only the immediate predecessors of the terminal nodes
should be present in the coarsencd subsct. The same condition in equation (4.22) is
guaranteed by (w [ R') \ {w} € X. The relationship between valuation functions
of both models follows directly from Definition 4.3.2. Both the inner and the onter
coarsenings are maps between 2 and 2°, and maps p~!” and p_‘+ link 2% and
2% Maps V : VarL — 2% and V/ : VarL — 2% are the maps between elements

of frames of discernment and sets of possible worlds. The coarsening of a frame of



discernment can thus be related to the coarsening of a Kripke model through’

Ve (X)) = p™V" (VI(X))

CV(e(X)) = p Y (V'(X)) for any X € Q. (4.24)

The left hand sides of the equations in (4.24) have V, and the right hand sides have
V’: the result of changing the domain. Left hand sides describe the facts in model §,
right hand sides tell us about §'.

4.3.2 Coarsening example

Let © = {a1,az,a3} be a frame of discernment, let Q = {ry, 721,722,731, 732, 733}
be its refining. The refining mapping is then o({a;}) = {ri;; € 2}, and it is a
one-to-one correspondence between 2€ and 2%. Let us now consider coarsening dif-
ferent sets in 2. In the simplest case, the results of a refining are simply reversed
o~ (a(A)) = 07" (6(A)), the equality holds for any A € ©. Consider now X C Q-
which is not a result of refining any set in 8: A C O, such that o(A) = X.
The inner and outer coarsening of this set are no longer equal. For example, take
X = ({rn1,ra}), there is no set A C © such that ¢(A) = X, therefore the inner and
outer coarsenings do not need to be equal: ¢! (X) = o7} ({r11,721}) = {a1}, but
o (X) = o ({ru,mar}) = (a1, a2} |

Let us now translate the example in the previous paragraph to Kripke frames.
Let § = (W,R,V,m,) be the frame i‘epresenting O, and let 8 = (W, R, V' m.)
reﬁrescn't frame of discernment €. The models satisfy the: conditions of the definition

of a frame refinement, so ® is a refinement of frame J.

W3y Woz  Wan

(o] 00
C/wal l/maa
o] o] o] o]
w wa wa un wa w3

(a) Frame § (b) Frame &

Figure 4.5: Coarsening example

Equatious (4.23) and (4.22) are used to calculate the coarsenings of different sub-
sets in W’. Take A = {w;,we} C W. Indeed, if V(ap) = {w2}, where a; € VarL,
then V'(o(az)) = A, so inner and outer coarsenings of A should be equal: p~!" (4) =
p " (A) = {wy}. Consider now X = {wz,ws} € W’. There is no formula ¢, such

that V'(o(¢)) = X, so the inner and outer coarsenings of the set should not be equal:
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p~1 7 (X) =0, but p~"* (X) = {ws, ws}. The calcnlations ean be continued in a similar
fashion for the rest of the subsets in 2. The natural question is: if mg and mgz are
the mass assignments over frames § and &, wonld the results of coarsening mean that
in case of outer coarsening mg({w2, w3}) = mz{{wxn}) + mzg({wa })? Even though
the intnition tells us that it shonld be the case, giving the answer requires further
analysis. '

" In the examples above, the issues of mass assignments in the coarsened frames
were deliberately left out. The issue of coarsening the mass assignments is quite far
from trivial in both frames of discernment and Kripke models. Moreover, coarsen-
ing plays a pivotal role in classifying the support functions. The discussion on the
topic involves a few references to the formal properties of the operations in question,
namely, coarsening. So, to proceed further some time has to be devoted to the formal

properties of a frame coarsening.

4.3.3 Propertieé of coarsening Kripke models

The theorem below gives a little insight into the relationship between the coarsenings-
in frame of discernments and Kripke model universes. Most of the properties are
quite predictable and almost immediately follow from the relevant definitious and

correspouding properties of the frames of discernment.

Theorem 4.3.4 (Properties of coarsening) Let o : 2° — 2%, be a refining of ©

- . 1+
1 be an inner and o™}

into ), o~ an outer coarsenings of 2. Let § = (W, R,V m,,)
and § = (W', R, V', m,) be the corresponding Kripke models, p=*~, p™'" : 2%' — 2W

‘be § inner and outer coarsenings: Then for any sets P, Q C Q the following are true:

V(e (PUQ)) = p " (VI(P) Up " (V'(Q)) (4.25)
V(e (PNQ) =p"" (V(P)np™ (VI(Q)) (4.26)
V(e @\ P) = W\ o (V(P)) @2
Ve @\ P) =W\ p " (V/(P)) (4.28)
| PCQ= o (VI(P) € (VI(Q)) (4.29)
PCQ=p " (V(P) Cp " (V(Q) (4.30)
V(e (PUQ) 207 (V'(P))Up™ " (V(Q)) (4.31)
V(e™ (POQ) S o (V(P) N p " (V'(Q)) (4.32)
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P @) =" (0)=0 (4.33)
P V(@) =T V() =W (4.34)
p(X) S T(X)VX C W (4.35)

Proof sketch. The proof is based on putting together definitious of the operations
in question. To demonstrate the line of reasoning equation (4.25) is praved.

V(e (PUQ)) = V(o™ (P)U o~ (Q)) follows from equation (4.16), accord-
ing to properties given in equation (4.8) V(o ' (P) U o™ (Q)) = V(e (P)) U
V(o= (Q)), which after substitution given in equation (4.16) becomes V(o~!" (P))U
V(e (@) = 5 (V/(P)) U p™1" (V/(Q)) as desired.

The rest of identities in Theorem 4.3.1 are proved using the argument very similar
to the one shown above. . ' O

Equations (4.27) and (4.28) are the immediate cousequences of equalities (4.18).
The only point to be checked is whether V() = W. Surprisingly, this equality did
not appear in the discussion earlier. According to Definition 3.3.3 there is a node for-
every singleton a € ©, such that m(a) > 0. Thus, V(8) is the set of nodes where :
being a part of any subset of © is true, which includes all the nodes of the model, or
the whole set W.

There is no immediate analogue to this property on frames of discernment. The
valuation of the core of a support function on a frame always equals the totality-
of the possible worlds. On the other hand, the core of a support function is not
neceséari]y equal to the frame’s nuniversal set. Speaking strictly, the semantic models
did not represent. abstract frames, they represented particular belief functions over

the frames. In the next section, this relationship is addressed in more detail.

4.3.4 Mass assignment and updating frames

The redistribution of the masses in case of a frame refinement was straightforward in -
both frames of discernment and Kripke models. The frame refinement redistributes
the belief already assigned to a set among its non-overlapping subsets. So, to update
the corresponding support functions the masses of the old focal elements shonld be
redistributed among the new ones. Such transformation was just as easy in the.case
of Kripke models, the mass assignment of old terminal nodes was pushed to new
* terminal nodes they could reach.

To illustrate the point of the previous paragraph, let us again look at Figures

4.5(a) and 4.5(b). Assume that in model F, prior to the refinement, we have masses
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mg(w;), mz(wsz) and mgz(ws) assigned to corresponding nodes. Dencte the mass
assignments on refined frame @ by me. Take mg(ws). After the refinement this mnass
should be distributed between the new terminal nodes wsy and wss. The equality
have ma(ws1) + me(wse) = mg(w:) should alse hold.

Coarsening the sets of terminal nodes accessible from a single non-terminal node
does not present much trouble. Let the masses of nodes w3, w3 and w3z be given
by me(wa1), me(wssz) and me(wss). Coarsening X = {wa;, wss, w33} wonld not pose
any problem. Results of both inner and outer coarsening are wy; the mass assignment
on the coarsened model should be mg(ws) = me(wan) + me(ws) + me(wss).

In a set whose coarsening is less trivial, the situation becomes slightly more com-
plicated. Let Y = {wsy,wsp, w3, w3}, then p~!" (Y) = wy, but the mass assign-
ment mg{ws) = me({wa) + me{ww) + me(ws) + me(wsz) is no longer equal to
its pre-refinement mass. Quter coarsening becomes p~'¥(Y) = {w,,w;}. The mass
assignment now becomes even trickier: some portion. of it should be assigned to
node w; and the remainder should be assigned to node wj, which is not always a.
terminal node. It is not clear what happened with the rest of the terminal nodes-
they could reach. The only reascnable, if excessive, sclution to introduce a new

node w, which ‘stores’ the leftover portion of coarsened mass. First, define a set

Figure 4.6: Frame ® after coarsening

Y'*={weVY |z ev| R\{v,w}, vRw, z € Y}. The mass of this node is given by
mg(wr) = 3 uewr wey- Ma(w). The expressions in the previous phrase are awkward,
but have a very simple meaning. Set ¥V* is a collection of nodes in Y that belong to
some upward closure not fully contained in Y. The upward closure of nede ws is fully
contained in Y, but the upward closure of ws is not, so ¥* = {ws;, ws}. The mass
assignment node w, (v for remainder) is just a sum of masses in Y*. In the example
under scrutiny it is m(w,) = mg(ws;) + me(ws). Frame & then takes shape shown
in Figure 4.6. '

There is a problem though: the coarsening operation should be defined for all
the sets in 2%') so the ‘remainder’ node in each case will be different. Not using a
remainder node solves the problem. Instead, every node in the coarsened frame must
have the mass equal to the sum of masses of the terminal nodes it sees. The support

for coarsened images of subsets of 2% is then the sum of the masses of new terminal
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nodes in it. The definition below gives a formal summary of the observations given

in this paragraph.

Definition 4.3.3 (Mass assignment on a coarsened Kripke frame)
Let F = (W,R), & = (W', R') be two Kripke frames, let p~2",p7'" 1 2% — 2% pe
inner and outer coarsening of ® into §. Let m3, mg be the mass assignments over
the frames. The mass assignments are then related through
1 . g :
mg(w) = N Z me(v;), where w is a terminal node in §, (4.36)
vieW wR'y;

where N = 3w (ZwR’vi m@('vi)) is the normalising coefficient. The support for

coarsened images of subsets on 2% is calculated by

SE(XN= > mglw), ©(4.37)

wi€p~ 7 (X)

or

S (XN = Y maw), (4.38)

wigp~1* (X)

where S : 2% — {0,1] is a belief function over §.

The normalising coefficient N is one, when frame ® is refined from some other frame.
N may differ from one if the frame to which coarsening is applied is not a result
of a refining. Checking whether mass assignment mg gives rise to a belief function
is trivial: no new mass assignments are introduced. Instead, the already known
assignments are reshuflled to create a different belief distribntion, and no further
check is needed.

To see how the definition works, let us refer to the same model. Consider the inner
coarsening ™" ({wn, wxn}) = ws, p71" ({ws, wse, wss}) = ws, and p7' ({ws}) =
ws. Continuing the line of reasoning suggested in the previous paragraph and intro-
ducing extra nodes storing the leftover beliefs results in the model identical to the
original one. On the other hand, it is obvious that the coarsening should not be
trivial. A trivial coarsening distingnishes the same propositions with the same mass
assignments before and after coarsening.

To substantiate the point, a few coarsened mass assignments are calculated for the
model in question. There are six terminal nodes in frame &, so set 2% has 26—1 = 63

non-empty subsets. Calculating all the mass assignments is not so interesting, and
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the first five give a clear idea of the whole process.
P_l_({wl}) = p7' " ({wr, wn}) = wn;

p_l__({ﬂ»“m}) = ¢ ({wn, we}) - P ({wa, war, wa}) = we

the list conld be continued for the rest of the subsets.

The attention now can be directed towards the mass assignments of the nodes
in the coarsened frame. The masses are assigned according to the rules giveh in the
original description of the procedure. Recall that only the terminal nodes have non-
zero mass assignments. The non-terminal nodes are supported by the evidence visible
from them: the support of a non-terminal node is calenlated by adding the masses
of the terminal nodes accessible from it. According to this procedure mgz{uy) =
me(w)) becanse these nodes are terminal in both models. mg(w2) = me{wa) +
me(ws) and mz(w;) = me(ws) + me(waz) + me(wss). The support attributed to
the coarsened images of different subsets of W’ is then calculated from the masses of
the nodes in their coarsened images. For example, since p™'" ({wag, wa1}) = {wa, w3},
the coarsened support for the propositions verified at wee and ws; is equal to mz{ws)+ .
mg{ws) and so on. There are many more different statements in the coarsened frame
with same degree of support as there were in the original frame. The coarsened frame
does not distinguish between some of the propositions distinet in the original frame.
In some sense, the proposed mass assignment approach ensures that tbe coarsening
actnally makes the frame cruder. ' :

4.4 Refining, coarsening and support functions

The operations of frame refinement and coarsening serve two fundamental purposes.
The first task is to enable the decision maker to implement the new knowledge into
an already existing framcwork. The second purpose is less obvious, but no less impor-
tant. By analysing the possible refinings and coarsenings on frames of discernment,
Shafer was able to prove several important facts about different types of the belief
functions. In particular, he proved that every inclusion in the scheme of different
support functions shown in Figure 3.1 is a proper inclusion.

According to Shafer, actual evidence can be represented by simple support, sep-
arable support and support functions, but not by general belief functions. In the
realm of Kripke models, understanding which types of support functions can be ex-
pressed through the means of the proposed procedure helps determine the limits of
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the approach’s applicability. The limits of the interpretation’s expressive power were
al.ready established. Understanding which types of support functions can be inter-
preted via the proposed procedure will enable us to understand if the semantics of
Int represents the whole of the Dempster-Shafer theory or not.

The answer to the latter question is positive, but with reservations. To understand
the reservations, a short overview of Shafer’s findings about the support functions is
given, and then the results relevant for the approach are chosen.

The work so far operated with the notions of simple and separable support func-
tions and a belief function, but not with a support function. Recall, that the distinc-
tion between these functions was discussed in Section 3.1.2. Introducing such a basic
notion was posi:poned until late in the progress because a support function is defined
as a coarscning of a belief function and thus could not be introduced any time earlicr.
The definition below is due to Shafer.

Definition 4.4.1 (Consistent belief functions) Let © and Q be two frames of

discernment, let o : 28 — 2% be a refining mapping. Bely : 2° — {0,1] and Bel’:
o0 [0,1] are belief functions on © and ). Bel and Bely are consistent if for any
set A C 9 the following is true

Belg(A) = Bel(o(A)). ’

In this case, Belp is a restriction of Bel to ©. The restriction of a belief function to
a coarsened frame is denoted Bely = Bel|2°.

Whenever a refining is performed according to the proposed procedure on a Kripke
model, the original support function is the restriction of thel refined one. This obser-
vation is not necessarily true for the frames of discernment, but always works for the
Kripke models. A Kripke model with mass assignment does not represent a frame
of discernment, but a frame of discernment with a belief function over it. In other
words, different belief functions over the same frame of discernment may result in
different Kripke models. The distinction between support functions and separable
support functions is given through the possibility of coarsening a belief function into

a separable support function.

Definition 4.4.2 {(Support functions) Let © be a frame of discernment. A belief
function Bel : 2° — [0,1] is a support function if there is a refinement 2 of © and
some separable support function S : 2% — [0,1], such that Bel = 5|2°.
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For every support function, there is a common refinement of a such function with
some separable support function. The condition is nothing but demanding some
‘middle ground’ between support functions and their simpler counterparts which can
be reached from both domains. The condition, as it is stated in the definition, is not
too useful for determining whether a belief function is a support function or not. The
theorem below gives the necessary practical tools.

Theorem 4.4.1 (Conditions on Support functions) Let © be a frame of dis-
cernment, let Bel : 22 — [0,1] be a belief function on ©, let C(Bel) be its core.

The following are equivalent:
1. Bel is a support function;
2. C(Bet) has a positive commonality number;
8. C(Bel) has a positive basic probability assignment [1].

Theorem 4.4.1 is useful for checking if the belief function belongs to a support func-

tions class. Can Kripke models represent support functions? Can Kripke models

represent belief functions that are not support functions? To answer both questions,

the examples of belief and support functions arc given first. Plenty of simple and sep-,

arable support functions on Kripke models were already constructed, so the discussion
. will be centred around support functions and belief functions.

Consider Shafer’s example of a belief function that is not a support function. Let
O = {a,b, ¢, d}, the focal elements of belief function S are m({a, b}) = s, m({c}) =
1 — 5y and m(A) = 0 for all other sets. The core of this belief function is C(S) =
{a,b,c}. According to the last condition of Theorem 4.4.1 this belief function is not
a support function because m(C(S)) = 0.

Frame O with this belief function cannot be represented by a Kripke model, but the
reasan is different. First of all, there is a singleton in © with a zero mass assignment
which does not merit a node. Following the developed procedure resuits in the model
no different from the model over a smaller frame of discernment not including {d}.
Thus, the procedure is only capable of representing the beliefs S such that C(S) = ©.
Still, the cases in which the mass assignment of the core was zero were not ruled ont.

The distinction between representing a belief function that is not a support func-
tionl and a support function is somehow trickier. All the belief functions given by the
mass assignments in the previous paragraph can be easily represented by two isolated

nodes, and in this case the semantic model would not look any different from a model
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representing a simple support function centred around a single focal element. The
difference is in the semantics of the nodes. While in the case of a simple support func-
tion one of the nodes supports some particular piece of evidence, and the other node
collects unassigned beliefs, in the case of representing a belief function that is not a
support function every node supports some particular piece of evidence. A simple
procedure helps to check whether a model represents a belief or a support function.

Recall the procedure used to build a model represcnting a support function in
which some core elements include others. The procedure was described on page 53.
The idea of making a copy of each node representing a core element and then updating
the-relation R accordingly works for the problem at hand too. Let §={(W,R,V,my)
be a model, F = (W', R, V', ml) its refinement, and ¢ : 2¥ — 2% & refinement
mapping. Define ¢ as o{{w}) = {w'} for all terminal nodes w in §. Update R’
according to the rules. Model § represents a support function if there is a node v’ 'in
W', such that v/ [ R = {v'} U W'\ W. If there is no such node, then § represents
a belief function that is not a support function. The condition can be restated as
checking whether applying ¢ to a model yields a node whose immediate successors’
masses amount to one.

The testing procedure outlined in the previous paragraph is in agreement with
Shafer’s observations. Combining a belief function with a support function produces
another belief function, which is in agreement with the earlier observations. The
limits of the proposed representation can be outlined and some conclusions about
the semantic of both the Dempster-Shafer evidence combination rule and evidence
update can be made. ' -

The procedure in Chapter 3 is capable of representing all types of belief functions: '
belief functions, support functions, separable support functions, and simple support
functions. The procedure is only suitable for support functions § : 2 — [0,1]
such that C(S) = ©. This limitation is important from the semantic point of view.
Consider two frames of discernment & and §2, such that © C 2. Let mg and mg ‘
be the mass assignments over them. Define mq(X) = me(X) for all X C 6 and
let m,(Y) = 0 otherwise. From the evidential point of view these two frames are
different, and refining them can yield totally different results. From the semantic point
of view the two are identical and will be represented by tbe same model. Moreover,
refinements or coarsenings of the corresponding Kripke- models will not represent all
the possible results of refinements and coarsenings of © and 2.

The limits of representation are well in line with the original premises outlined
in Chapter 2. The logic should not only represent the Dempster-Shafer theory world
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view, it should also contribute to building a system for consistent reasoning. The
. cansistency in Kripke models requires that a proposition originally known to be true
cannot become false later. The limitation on the mass assignments introduced in this
section and on the models themselves makes this change of validity impossible. The
requirement for the core of support function to be equal to the frame of discernment
was needed to limit the scope only to formulae with non-zero support.

It was already mentioned that Shafer limited actual observable evidence to the
situations described by support functions, but not by general belief functions. Ex-
position above suggests that only the support functions whase core is equal to the
frame of discernment are suitable for a consistent inferential apparatus. The main
strength of the proposed approach lies in its analogue to the evidence combination
rule. Any two Kripke models may be combined according to the analogue of the
Dempster-Shafer evidence combination rule. The possibilities for evidence updates
done with the aid of frame refinement or coarsening are limited to the transformations
- which do not violate the semantic integrity of the model: the transformations do not

change the set of valid variables in the non-transformed nodes.
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Chapter 5
Discussion

The results presented in this work belong to more than one field: the proposed inter-
pretation of the Dempster'-.Shafer theory is useful for uncértainty representation; the
discussion in Chapter 2 attempts to answer some epistemological questioﬁs, the re-
sulting formalism is within limits of multivalued logic. Below, the main contribntions
* are recaptured, and possible future research directions are ontlined in a structured

way.

5.1 The contribution

"The main inspiration behind this work was to construct a logic specifically for the
needs of the Dempster-Shafer theory. The apparatus should not only allow for trans-
lating the evidential setnp to some propositional language, buf should also help un-
derstand the semantics of the theory. The latter goal differentiates the proposed in-
terpretation from the earlier logical approaches to the Dempster-Shafer theory. Most
-of the earlier logic interpretations started with analysis of the meaning of the logical
connectives, and the functions describing these connectives were chosen early in the
development. The approach in this work is different. First, an effort to understand
the nature of the mathematical objects viewed through the prism of the Dempster-
Shafer theory was made. Therc are infinitely many propositional languages, and
most of them can be used for describing the Dempster-Shafer theory universe. The
problem is interesting because there is no bbjective criterion that governs the choice
of a propositional language. When viewed from this angle, the interpretations men-
tioned above can be classified as being ad hoc or naive. However, the semantics of
such logic systems are influcnced by the choice of the propositional language. The
Dempster-Shafer theory is a universal theory applicable to any kinds of sets and
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universes. Having some particular logic connectives for its interpretation is unneces-
sarily restricti\}e. To avoid this shortfall, the problem was addressed from the other
end: without specifying the language, the author tried to understand the general se-
mantics of the logic expressible through the evidential nniverses. Once the semantic
was understood, the pool of suitable languages was narrowed, and the criteria for a
propositional language definition became clearer.

Putting the priority on the semantics requircs selectirig a ground theory providing
the direction of search. This ground tbeory must answer the fundamental questions
about the nature of the mathematical objects. An important feature of the Dempster-
Shafer theory is its abilify to incorporate changes in the world. Viewing the universe
as a dynamic system moves the understanding of the mathematical objects away from
Russell-Wittgenstein paradigms. To achieve a reasonable balance between imprecise
and rigorous, the analysis of the nature of mathematical objects was conducted from
the viewpoint of construetive mathematics or Brouwer’s intuitionism. Accepting a
certain philosophical stance had formal implications. From the very beginning it
was assumed that formula p V —p is true only if one of the disjunction members is
decidable. ' '

Once the philosophical questions were addressed, the attention was switched to
the formal part of the work. Given the counsiderations above, representing Dempster-
Shafer frames of discernment through Kripke models was a natural choice. Even
though semantic models were used for interpreting the Dempster-Shafer theory theory
earlier, the proposed procedure is different. Only models that are both reflexive,
transitive and antisymmetric were used. The set of formnlae validated in the resulting
models was analysed and shown to be equal to the ‘minimal’ intuitionist logic Int
thus ensuring that the formalism is useful in a sense that underlying logic is complete
and sound.

Another distinguishing feature of the proposed approach is its full parallelism with
the Dempster-Shafer theory: while many earlier interpretations offered the methods
for calculating the propositions’ beliefs and have some kind of analogue to the evi-
dence combination rule, they lack the parallels between frame transformations in the
evidential setup and the logie constructions. .

The all embracing nature of the developed procedure makes it possible to use
the framework-as reasoning apparatus in decision-making systems that base their
inference either on imprecise or uncertain information. This possible application is
well in line with the original inspiration behind the whole wark which followed from

the anthor’s interest in decision-making agents and different formalisms used to rank

96



the alternatives. The next section provides a more detailed overview of the differences

between the proposed approach and earlier interpretations.

5.2 Comparison with earlier interpretations

The procedure developed in this work offers a comprehensive approach to logic inter-
pretation of the Dempster-Shafer theory. The earliest applications of the Dempster-
Shafer theory used Boolean logic for inference. In this case only calculating the beliefs
was different from the classical probability theory. The set of true propositions was
determined only by the non-zero mass assignments. Such situation may be described
by validating all the formulae true at a single node. Using a single-node semantic
model does not capture the spirit of the Dempster-Shafer theory too well. Having a
single node does not reflect the possibility to learn new facts and.operate with dif-
ferent sets of beliefs at different moments of time. Using Boolean logic thus does not
really reflect the state of affairs as it is implied by the frames of discernment.

The problem with Boolean inference was observed quite early and numerous inter-
pretatioﬁs that used richer semantics followed. Some of these results were reviewed in
Chapter 1. The proposed framework differs from most of them. First of all, most of
proposed interpretations, while accepting the need to have different semantic models
in order to represent the Dempster-Shafer theory, focussed their attention on ex-
pressing the beliefs through modal operators. This premise led to constructing modal
logics whose semantics were determined by the choice of connectives rather than by
the underlying theory. As an example of such logics the already reviewed LH% can be
mentioned [76]. Operator-centred approach may lead to negative consequences as in
[71] where the particular requirements to modal connective led to a logic that were not
capable to provide an analogue of the Dempster-Shafer evidence combination rule.

The approach which is the most close in spirit to the approach in this work was
used by Tsiporkova et al. [77], [78], who took the most general definition of the modal
operator and looked into what properties followed from linking the Dempster-Shafer
evidential setup and modal logics. The results presented by the authors include
. the procedure that induces beliefs and has some analogue of the Dempster-Shafer
evidence combination rule. On the other hand, there is no analysis of the resulting
set. of semantic models, and the completeness properties of the logic are not explored.

Boutilier [75] takes the approach in which the sct of modal connectives is defined
based on the author’s understanding of the evidential setup, and the main focus of the
work is on analysing the semantic models. The modal models introduced by Boutilier
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reflect the possibility to learn facts, and the accessibility relation is a total preorder.
Therefore, the models introduced by Boutiller allow for clusters of possible worlds
that are-equally likely. Note that a total pre-order (A4, <) can be factorised into a
total order (A/ ~, <) (or a chain) by canonical projection # : A — A/ ~, where
A/ ~ is the quotient set {set of equivalence classes [a) = {b€ A:b~a} and 7 is a
map a — [a]).

In the proposed approach, relation R is a partial order (antisymmetric), which
means that different nodes can only represent different worlds. A chain corresponding
to A/ ~ is a particular case of R (when it is a total order). In this seﬁse, models
induced by the proposed approach are richer.

The othér significant difference between Boutillier's approach and the current
approach is Bonttilier’s desire to develop qualitative rather than quantitative frame-
work, which results in providing a procedure for getting a non-numerical ordering of
the worlds rather than a developed apparatus for calculating the beliefs in proposi-
tions.

Most of the proposed frameworks do not pay much attention to studying the
properties of induced semantic models. The autbor believes that studying the se-
mantic models, especially in combinatorial or algebraic context, leads to interesting
results and may provide useful tools for developing effective algorithms for the whole
undertaking.

Early graphical representation of the Dempster-Shafer approach can be found in
Barnett’s work [79], [82] dating from the early eighties. The results are, bowever,
not universal; the evidential setups are represented as binary trees that may be used
to calculate the beliefs. The model only covers the setups described by.separable
support functions, and no semantic analysis is available as the authors developed
their approach within the realm of Boolean logic as a reasoning apparatus.

None of the earlier approaches which are known to the anthor followed the princi-
ples of constructive mathematics, and none of the proposed logics explicitly ruled out
tertium non datur. Instead, additional axioms were often introduced. Even though
the situation when terfium non datur is explicitly refuted does not occur too often,
the possibility to incorporate ‘empty evidence’ should be avoided as the example in
Section 3.6 demonstrates.

Overall, the proposed approach may be described as a framework that addresses
all the aspects of reasoning with beliefs: finding a set of true formulae, calculating
the beliefs, and providing graphical representation. The approach can also be seen

as the one that provides the minimal set of true formulae. As shown by Alechina the
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set of true formulae validated in the induced semantic models is equal to Int [99].

5.3 Summary

The propased approach represents a support function S over a Dempster-Shafer frame
of discernment © as a semantic model M with weighted nodes. The distinguishing
feature of the approach is its ability to represent support functions and evidence
combination through non-trivial semantic models.

The traditional approach to reasoning in the Dempster-Shafer universe is to use
Boolean logic, which is semantically equivalent to all formulae valid at a-single node.
However, in many cases it leads to ‘too many’ formulae being valid.

An attractive property of non-trivial semantic models is their ability to refute
certain formulae at different nodes. In the current work-it was shown that the under-
lying logic, whaose formulae are guaranteed to be valid at any node of any model is
Int. Thus, any formula that is not in Int may be refuted at some node of a semantic
model. 1t does not mean that given a formula and a model it is guaranteed that-the
formula will be refuted at some node. It only means that given a formula not in Int
there is a model that refutes it. It is also possible to find formulae refuted by the
model if the model is known.

The simplest example of the relation above is pV (p — 1), and any model that
has two connected nodes, instantiating p in a ‘later’ node leads to p vV (p — L) being
invalid at the earlier one. Depending on the model structure the set of formulae that
is not valid at certain nodes changes. Knowing the valuation of particular formulae
gives a possibility to limit the set of ;possible inferences at each particular node since
there is a set of formulae ¢ ¢Int that are not valid at that node.

In terms of building an inferential apparatus the limitations above mean that only
.logically possible conclusions are made based on each belief (the nodes of a model
represent beliefs). .

Let us now return to the example given in Section 3.3.3. Recall that the support
function described a sensor checking the colour of some faraway object. Now let us
try to make inference based on measurements of many snch sensors. We also need to
take into account a belief that some of them may be broken without any opportunity
to check if they are indeed broken: the sensors are not accessible for examination (e.g.
they are on Mars).

There are a few points that should be considered in a sitnation like that.

1. The difference between probabilistic/statistical approach and the Dempster-
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Shafer approach — one cannot really formulate and test a statistical hypoth- -
esis. It is not an experiment that may hc reproduced, thus a probability law
describing the odds that the seusor is broken is not available, because we cannot
formulate the requirements for a test to achieve desirable statistical significance.
In this case, beliefs are, perhaps, a more appropriate concept, even though it is
a matter of opinion. The Dempster-Shafer theory is a computational formalism
to deal with beliefs, not probabilities.

. The set of possible values of the parameter z measured by the sensor is ©.
Select a relevant subset of ©, where mass assignments are not zero and- build
a sematic model with mass assignments according to Definitions 3.3.2, 3.3.3
and 3.3.4. Possible inference at each node of this model will be different (i.e.
sets of provahle formulae are different). Using models that represent logic Int
allows one to operate within a richer semantic. In case of Boolean logic the
model is trivial. With Int there is a possibility of different nodes that rep-
resent different possible worlds that could correspond to the same data, and
which conld produce different inference. The mass assignments provide some

numerical estimate how believable each world is.

. To illustrate the previons point consider the following situation. Assume that
temperature of red objects may be measured, but that the colour sensor can-
not measure temperature, so that some other, difficult to operate, sensor must
be used. The temperature of blue and white objects is irrelevant. In case of .
Boolean semantics there is notbing that prevents a decision maker from evalu-
ating formulae that involve p V (p — L), where p =‘ ‘object is hot’’ even
at the nodes that correspond to, say, white objects. Moreover, according to the
axioms of Boolean logic, the agent must use this formula as a tautology even
in cases when there is no information about the temperature of the object and,
strictly speaking, using any proposition involving it, is not justified.

. There could be too many possible worlds, and the problem of proving/validating
too many formulae. In the proposed approach, the nodes represent only non-
trivial beliefs (i.e. the ones that are neither one or zero}), and this refutes certain
formulae from the very beginning. Having numerical mass assignments on the
nodes can further help to prioritize the inference process by focussing on the
most ‘believable’ worlds rather than proving all possible formulae. This ability
may be quite important for computational applications.
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5. The decision can be made whether the belief in some state of affairs (world) is

strong enough or not and some additional measurement have to he made.

6. New evidence can be obtained, and it can change the beliefs. The process of
incorporating new evidence results in updating the models as well, and the
procedures for it were developed (refinement, coarsening) in Chapter 4. Thus,
after obtaining and incorporating new evidence, the new inference process may

reuse many results of previous computations.

The possibility to limit the nnmber of valid formulae at a particular node also suggests
a direction for future research that was analysed in some detail in Section 3.5. Even
though there are no explicit conditions that the semantic models representing support
functions should satisfy, some properties can be inferred from the evidential setup. It
was shown that having at least two connected nodes leads to refuting pVv (p — 1),
there are similar conditions on the presence of chains and so on. Many intermediate
logics are defined through conditions on frames which can be applicable to particular
models representing support functions. Determining which conditions on frames are
satisfied by a particular semantic model will help the decision maker to limit the set
of valid formulae and thus lead to more effective inference.

In the most general sense the proposed approach agrees with the ideas bchind
the rule based systems that operate using probabilistic logic networks [100]. The
latter is a much more ambitious work aimed at providing both fundamental theory
and implementation of the anthors’ ideas about cognitive developﬂ:ent which they
credit to works of Piaget and Vygotsky. The same authors discuss the aspects of the
uncertain inference and come to the conclusion that one of the hardest tasks is to
control preference with regard to which rules apply first and what should wait until

more knowledge is available:

The subtlest part of uncertain inference is inference control: the choice

which inferences to do, in what order [101].

The semantic models contribute to addressing the problem outlined above, by giving
a natural hierarchy of the rules based on the information at disposal of a decision
maker at a particular state of the world. When viewed from this angle of view, the
proposed formalism is especially attractive. Asitis observed in the paper just quoted,
people are not very efficient in applying inference rules, but they exceed machines in
their ability to choose these rules. The Dempster-Shafer theory is a formalism aimed

at representing human beliefs rather than additive probabilities. It can model human
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behaviour when the probability theory is not applicable. Thus a Dempster-Shafer

theory based mechanism for inference rule selection can be an alternative approach.
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