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Abstract 

Issues of formalisirig and interpreting epistemic uncertainty have always played a 

prominent role in Artificial Intelligence. The Dempster-Shafer (DS) theory of partial 

beliefs is one of the most-well known formalisms to address the partial knowledge. 

Similarly to the DS theory, which is a généralisation of the classical probability theory, 

fuzzy logie provides an alternative reasoning apparatus as compared to Boolean logie. 

Both théories are featured prominently within the Artificial Intelligence domain, 

but the unified framework accounting for ali the aspects of imprecise knowledge is yet 

to be developed. Fuzzy logie apparatus is often used for reasoning based on vague 

information, and the beliefs are often processed with the aid of Boolean logie. The 

situation clearly calls for the development of a logie formalism targeted specifically 

for the needs of the theory of beliefs. Several frameworks exist based on interpreting 

epistemic uncertainty through an appropriately defined modal operator. There is an 

epistemic problem with this kind of frameworks: while addressing uncertain informa­

tion, they also allow for non-constructive proofs, and in this sense the number of true 

statements within these frameworks is too large. 

In this work, it is argued that an inferential apparatus for the theory of beliefs 

should follow premises of Brouwer's intuitionism. A logie refuting tertium non daturìs 

constructed by deflning a correspondence between the support functions representing 

beliefs in the DS theory and semantic models based on intuitionistic Kripke models 

with weighted nodes. Without addional constraints on the semantic models and with-

out modal operators, the constructed logie is equivallent to the minimal intuitionistic 

logie. A number of possible constraints is considered resulting in additional axioms 

and making the proposed logie intermediate. Further analysis of the properties of 

the created framework shows that the approach préserves the Dempster-Shafer be-

ìief assignments and thus expresses modality through the belief assignments of the 

formulae within the developed logie. 
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Chapter 1 

Introduction 

This work présents an interprétation of the Dempster-Shafer theory [l] through a non-

Boolean logie. From a pure mathematician's point of view it is an applied problem. 

From a computer scientist's viewpoint it is a theoretical work that draws new links 

between several related fields. In order to better appreciate the results achieved and 

the décisions taken along the way it is important to view this work in the wider context 

of the respective fields which inspired it. Even though the focus is on developing a 

logie formalism, the most important part of the work analyses the relationship and 

parallels betweén the proposed formalism and thé evidential theory. In this sensé the 

work is différent from a dissertation in pure logie, such as [2] or [3]. The reasons for 

the choice of a logie are différent from the ones of a pure mathematician. The author 

did not choose the logie that was the most interesting from the mathematica! point 

of view. Instead, the logie that is the most meaningful from the Dempster-Shafer 

theory point of view was selected. 

Semantic models or Kripke models are extensively used in this work for both 

representing and studying the evidential setups. From a computer scientist's point 

of view a Kripke model is first of all a directed graph. Within the domain, graphs 

are very attractive objects: they are easy to represent as a data structure, there are 

many efficient algorithms to manipulate them, the amount of formai knowledge about 

graphs is vast. Moreover, the earlier graphical représentations of the Dempster-Shafer 

frames of discernment lacked generality and semantic analysis. Taking the above in 

considération, makes providing a procedure that allows one to get both the graphical 

représentation and the semantic interprétation of the Dempster-Shafer theory rather 

attractive. 

The idea behind the whole undertaking is very simple. Boolean logie adequately 

represents the world described by classical probability theory, whereas the Dempster-
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Shafer theory universe ïs différent and merits its own inferential apparatus. There 

is no consensus about what this apparatus should be, but a large part of the pro-

posed ones use modal logics (see the review below). Use pf a modal O p e r a t o r for 

inference within a Dempster-Shafer universe contradicts the author's understanding 

of the nature of the beliefs, so a modality-free logie is proposed. Philosophical and 

mathematical factors influenced the décision. Both choices are justified in due course. 

1.1 The uncertainty représentation 

The discussion about the nature of uncertain information is centred on two types of 

uncertainty: aleatory and epistemic. Aleatory uncertainty is the lack of knowledge 

about the system due to the system's random behaviour. Epistemic uncertainty stems 

from the lack of knowledge about the system that may well be operating according to 

some unknown non-random rules [4). Aleatory uncertainty is traditionally addressed 

by probability theory, and there is little doubt about the theory's ability to do so 

[5]. The attention to epistemic uncertainty is more récent, and there is no consensus 

on the best approach. The review of the interprétations proposed so far is found in 

[4, 6, 7]. 

The Dempster-Shafer theory falls into a broader category of non-Bayesian statis-

tics developed for solving différent problems associated with the formalisation and 

interprétation of epistemic uncertainty. The décision making paradoxes are among 

the best known problems of this type [8]. The common feature of such approaches 

is their readiness to give up the additive probability measure on the universal set. 

What is used instead of the additive probability measure differs from one approach 

to another. The Dempster-Shafer theory abandons both the additivity of probability 

measure and the certainty of either event or its complément [9]. Schmeidler and later 

Wakker gave up the additivity and used fuzzy intégrais for alternative ranking in 

décision under uncertainty [10, 11, 12]. 

Unlike many other théories, the Dempster-Shafer theory's beginnings are not dif-

ficult to trace. Dempster's article about upper and lower probabilities first appeared 

in 1967 [13], and the généralisation of the Bayesian rule in the new setup appeared 

in [14]. A few years later, Shafer developed Dempster's ideas into a full formalism in 

fus doctoral dissertation [1]. It is interesting that the thesis presented a more gen­

eral version of the theory than the monograph [9] that appeared later. The thesis 

addressed ail possible setups, but the monograph limited its attention to the finite 

case only. 
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The Dempster-Shafer theory illustrâtes the modular nature of the formalisms for 

uncertain information. While the beliefs that replace the probabilities of the Bayesian 

setup are not necessarily additive, the sets which they represent are crisp. The 

Dempster-Shafer theory évidence combination rule relies heavily on Möbius trans-

form [15], which is a combinatorial result only applicable to countable crisp sets. The 

originai development used non-additive measures to describe crisp events. A fuzzy 

analogue of Möbius transform cxists, but it was proposcd later [16]. The évidence 

combination rule may be defined differently depending on the relationship among the 

sources of information [17]. 

1.2 Fuzzy formalisms 

For the problem at hand it is convenient to think about fuzzy theory as a field 

that encompasses two distinct components. These fields are fuzzy measure theory 

and fuzzy logie. The two are clearly connected and one can, to a large extent, be 

developed from the other. In the sétting of this work it is more convenient to look at 

them independently. 

The author distinguishes between fuzzy logie in a narrow and a broad sense; the 

distinction is due to Hàjek [18]. Fuzzy logie in a narrow sense is the logie that is con-

structed to formalise imprecise S t a t e m e n t s and thus facilitate formai reasoning. Fuzzy 

logie in a broad sense includes everything that deals with classes whose boundaries 

are not sharp. Building a non-Boolean inferential apparatus for the Dempster-Shafer 

theory is within the boundaries of the fuzzy logie in a narrow sense. 

1.2.1 Fuzzy sets 

The traces of questioning the bivalent logicai statements are already présent in Aris-

totle's works [19]. Computer scientists tend to relate the beginning of an alternative 

logic's development to the publication of Zadeh's article 'Fuzzy Sets' [20] in 1965. 

The article is a convenient référence point that served as a catalyst for the scientific 

commuhity's interest in new ways to represent and utilise uncertainty. On the other 

hand, one of the most used fuzzy concepts, the Choquet integral, was introduced in 

the fifties without any référence to fuzzy sets. Choquet used the term 'capacities' 

instead, so the référence point is more or less arbitrary and refleets the birth' of a 

term rather than of a theory. 

The core idea of a continuous set membership function is quite intuitive and 

} 
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fruitful: fuzzy set theory is a large field in itself that serves as a foundation for the 
development of new directions in the fields as divergent as set theory and topology 
[21, 22], A good review of the fuzzy set theory and the corresponding issues can 
be found in [23]. Fuzzy sets as tools for epistemic uncertainty représentation and 
interprétation are discussed in [24, 25]. Fuzzy sets are possibly the most popular 
fuzzy concept for applications. There are numerous applications in virtually any 
branch of computer science. A few, works mentioned in the end of the paragraph 
can serve as a taster of how fuzzy sets are used in the field of pattern récognition: 
[26, 27, 28, 29, 30]. 

Given the new nature of the objects in question, one might expect that the classical 
measure theory would fail to address the needs of the fuzzy sets. However, the solution 
to the problem is more interesting than it looks at the first glance. A non-additive 
analogue of the Lebesgue's measure was first presented by Choquet in 'Theory of 
Capacities'[3l]. Choquet also proposed a functional that could be used for calculating 
expected values of variables over sets characterised by capacities rather than measures. 
Zadeh later offered a more general version of Choquet's capacities which he called 
fuzzy measures [32], thus making Choquet's functional a fuzzy integrai. Fuzzy measure 
is often interpreted as a généralisation of a familiar Lebesgue measure [33] and thus 
any kind of aggregation operator on it should reduce to the Lebesgue integrai. This 
requirement is satisfied by Choquet's integrai [34, 35] making it possible to develop 
a full fledged fuzzy integration theory. The fuzzy integration theory was, developed 
by Sugeno [36], who also proposed his own aggregation min-max operator suitable 
for non-additive measures. This functional is called 'Sugeno integrai', even though it 
is not an integrai in the same sensé as Choquet's integrai: it does not reduce to the 
Lebesgue integrai in the additive case. 

The Choquet and Sugeno intégrais are not the only possible aggregation func-
tionals available for non-additive set functions. A number of alternatives were pre­
sented over the course of time, for example [37]. None of them, however, became as 
widespread as the two discussed above. The later advances in fuzzy integration the­
ory include a unified framework called a i-conorm integrai, which has both Choquet 
and Sugeno intégrais as particular cases [38]. A structured. review of the state of the 
art in the fuzzy integration theory in the mid-nineties is in [39]. 
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1.2.2 t- nor ms 

The inferential apparatus for dealing with imprecise information is based on two 

cornerstones — the £-norm and the modal operator. The idea of a multivalued logie 

is older than the idea of a fuzzy set. Multivalued logie and fuzzy logie are not 

synonymous. The agenda of the latter is wider: it is the theory that is meant to deal 

with ali kinds of imprecise or vague information, while the multivalued logie deals with 

the partial truth of statements [40]. On the other hand, most of the theory avaìlable 

for multivalued logics is utilised to a différent extent by the fuzzy community. 

Some óf the earliest formai developments in the field are due to Lukasiewicz, 

whose works first appeared in 1920-s [41, 42], Lukasiewicz first introduced a three-

valued logie that was later generalised to n-valued finite case. The logics with real-

valued truth O p e r a t o r s owe their existence to ż-norms, a continuous or semi-continuous 
généralisation of the conjunction operator in classical logie. The définition of the i-
norm is not very restrictive. 

Definition 1.2.1 (r—norm) A t-norm is a junction * : [ 0 , l j 2 —* [0,1] such that 
Vx, y, z e [0,1] it is 

1. Commutative: x *y = y * x; 

2. Associative: (x*y)* z = x* (y* z); 

3. Monotone: x\ < x2 implies x\ * y < x2 * y, and y\ < y2 implies x*y\ < x • y2; 

4- Satisfies boundary conditions: 1 •* x = x and 0 * x = 0. 

The dual concept, a t-conorm is produced by calculating 1 — (1 — x) * (1 — y). 

The définition is not very restrictive and it makes many différent i-norms pos­
sible which lead to various multivalued logics. The link between i-norms and mul­
tivalued logics is through a z-norm's residuum. It is known that the implication 
can be expressed as Vx, y € [0,1], i - » y = max(z|:c * z < y) [18]. Research in t-
norms is an active field, and many results, both theoretical and applied, are presented 
[43, 44, 45, 46]. Another important property of a /-norm is its algebraic connection: 
[0,1] equipped with a i-norm and its residuum forms a residuated lattice [47], thus 
allowing one to look for algebraic parallels when a logie is analysed. The algebraic 
parallels between logics and residuated lattices will be discussed in due course. 

The second logie-building cornerstone is the modal operator. In some sensé, in-
troducing a new operator results in more dramatic changes to the system than a 
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différent définition of the connectives. The effects of introducing the modal operator 
are discussed in more détail in Chapter 2. At the moment, it is enough to remember 
that the minimal effects of adding a modal operator to the Boolean propositional 
language include at least one new axiom (in addition to the axioms of Boolean logie) 
and a new inference rule [48]. This is not the case with a residuum of a ż-norm: most 
multivalued logics use only modus ponens as the inference rule and operate within 
essentially the same propositional language as the Boolean logie. 

The modal operator is not necessarily unique, as différent modal logics may have 
différent modal operators. The définition of modal operators and the set of axioms 
that they must satisfy dépends on the area that a particular logie describes. There 
is no consensus among the researchers on what a modal operator is [49]. Among the 
well-known modal logics are the temporal logie [50]; the deontic logie that opérâtes 
with concepts like obligation; the epistemic logie that formalises différent types of 
knowledge with the modal operator 'is known that', and many others [51]. A global 
picture of the general modal logie and its various spécifie strands may be found in 
[48, 52, 53]. 

Even though introducing a modal operator is an effective logie building step that 
enables the construction of a bespoke inferential apparatus for différent situations, 
the author argues against it. The détails of the argument are presented in the next 
chapter. At the moment, it is enough to observe, that 1 the modal operator in an 
inferential apparatus for the system of beliefs is 'excessive', because the modality is 
already expressed through the fuzzy measure of the subsets in the uni versai set. The 
purpose of the work is thus to construct an interprétation that allows a i-norm based 
logie construction, but not an introduction of new operators ('new' with respect to the 
propositional language of the Booleanlogic). This approach can be called 'semantic-
centred': instead of defining new operators or inferential rules, the author thinks of 
a logie as a set of true formulae and tries to understand which set gives an adequate 
description of the theory in question. 

Another possible approach to creating the logics that are neither Boolean nor 
modal is through amending some already existing logie. The Boolean logie is the 
most established one, and its set of axioms is often used as yardstick when a new 
logie is analysed. Amending means either adding or removing some of the axioms 
from the set of the Boolean axioms. One of the earlier developments of this kind is 
due to Brouwer, whose constructive mathematics is based on rejecting the tertium 
non datur axiom: p V ( p - » l ) [54, 55]. The resulting logie was called an intuitionist 
logie. Depending on the need, some extra axioms that are not tertium non datur 
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can be added, thus forming a superintuitionistic or, as the modem usage goes, an 
intermediate logie. The interest in thèse logics was first spurred by the attempts to 
create a new kind of mathematics, which does not allow a non-constructive proof and 
is generally stricter than the classical theory. Brouwer went further in his attempts to 
redevelop the mathematica! notions. For example, he replaced a function with more 
general notions of a séquence and a fan [56, 57]. Not ali of Brouwer's héritage is used 
in the présent times. Moreover, the form in which Brouwer's ideas are known to the 
majority is due to his student Heyting, who published intuitionist works using the 
conventional notation [58]. Brouwer's intuitionism falls into a wider trend in mathe­
matics called constructive mathematics [59]. The monograph [60] gives an account of 
Soviet constructive mathematics. 

The new axioms can be presented based on two différent premises. A choice of 
a t-norm puts certain restrictions on the set of true formulae. Several well-known 
logics such as Łukasiewics logie and product logie were created this way. Another 
approach is based on the requirement to meet certain semantic properties without 
any référence to a particular i-norm. Such an approach leads to the development of 
both two-valued and multivalued logics: the Medvedev logie of finite problems and. 
many others were created this way. The intermediate logics are not necessarily finitely 
axiomatizable. Moreover, the logie proposed in this work is not finitely axiomatiz-
able, but has a simple définition based on a first-order condition on the underlying 
semantical structures. The field is just too large to give a detailed overview. A good 
overview of important intermediate logics is in [48, 61, 62], the rest of références is 
given as the need arises. 

This work explores the properties of the intermediate logics using the well-known 
correspondence between logics and lattices. The primary tool for semantics explo­
ration is a Kripke model. Viewing logie as algebra is not unique for modal or multi­
valued logie. Many completeness results within Boolean logie owe their existence to 
the algebraic représentation and parallels. An 'algebraic' view of the familiar Boolean 
logie can be found in [63]. A good summary of the relevant results is in already cited 
[48, 61, 64] as well as [65, 66]. The algebraic view of logie falls within metamath-
ematical view of the subject. The classical exposition to metamathematics is in 
[67, 68]. 

While the algebraic approach is applicable to a very wide spectrum of logie prob­
lems, the semantic models proposed by Kripke are not equally universal. Although 
the classical Boolean logie may be represented using a Kripke model, the model is 
degenerate and thus not interesting. The situation changes dramatically when in-



termediate or modal logics are involved. Usihg Kripke models allows for an easier 

translation to the language of lattices, and it helps tq use combinatorial results for 

the semantic analysis among other uses. The construction presented in this work also 

relies on Kripke models, so the discussion of the particular merits of the approach is 

postponed until the relevant notation is introduced and the results are proved. It is 

also worth mentioning that originally the Kripke models were introduced as a tool 

for the philosophers. A detailed analysis of Kripke's philosophy can be found either 

in his own works, [69] or in monograph [70]. 

1.3 The Dempster-Shafer theory interprétations 

This work is synthetic in its nature: it contributes to the décision making theory by 

constructing a procédure that maps the Dempster-Shafer belief theory to the semantic 

models and then uses algebraic methods to analyse the semantics of the resuit. The 

idea is quite natural: while the Boolean logic provides a perfectly adéquate inferential 

apparatus for the Bayesian statistics, it is not the case with the belief theory. There 

are several challenges to be addressed. A 'usefur interprétation should be gênerai 

enough to translate any possible Dempster-Shafer universe to a semantic model, yet 

flexible enough to allow for later évidence updates through both the Dempster-Shafer 

évidence combination rule and trame transformations. Not ail multivalued logics 

can do both things. For example, the logic in [71] cannot represent the Dempster-

Shafer évidence combination rule. Aside from the formai considérations, différent 

interprétations of the meaning of beliefs are possible. The discussion on the topic is 

quite fruitful, as in [40, 72], which offer a more gênerai discussion on the requirements 

to such interprétation. The discussion about différent interprétations of the Dempster-

Shafer theory inevitably addresses the question of processing uncertainty and the 

place of logics in it. 

According to Klir [7] the uncertainty is processed on three levels: Formalisation, 

Measurement and Utilisation. The Dempster-Shafer theory is a formalisation tech­

nique, logic is used for the utilisation of uncertain information. Logic interprétations 

of the Dempster-Shafer theory always make décisions about the relationship between 

différent levels of processing uncertainty. Often thèse décision are based on under-

standing uncertainty as modality. 

Even though the rigorous discussion about choosing the appropriate set of tools 

is postponed until the next chapter, the overview of the existing interprétations is 

not quite possible without référence to a few technical concepts. The modal logic is 
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commonly defined as an extension of the Boolean logie, which among other things 

includes modal connectives: • (necessity) and 0 (possibility). The formai properties 

of thèse operators may differ depending on the logie and will be introduced as the 

need arises. Another concept used by most non-classical logics, is a possible world. 

Wliile the Boolean logie opérâtes with a static world, non-standard logics often allow 

for différent states of affairs (worlds) in which différent variables are instantiated. The 

collection of possible worlds, along with accessibility relation and function that links 

the worlds and forrhulae are referred to as semantic or Kripke models. 

One of the earlier developments in the field was the possibilistic logie proposed by 

Dubois and Prade [73]. It is a logie of weighted formulae that is in agreement with 

Zadeh's understanding of necessity and possibility measures. The possibilistic logie 

was not developed specifically for the needs of the Dempster-Shafer theory. Dubois 

et al. presented a framework that départs from the truth functionality of the fuzzy 

logie thus providing a general approach for the researchers who do not view uncertain 

propositions as truth-functional. Following the same philosophy Farinas and Herzig 

[74] proposed a qualitative possibility logie, in which they axiomatize the notion of 

qualitative possibility based on ordering possibilities and necessities of propositions. 

Another logie in this family is due to Boutilier [75] who developed two possibilistic 

logics for reasoning under uncertainty. Boutilier's results include two logics CO and 

CO*. Both constructions are extensions of Boolean logie. Even though the resulting 

constructions are modal logics, the approach is différent from the majority of modal 

logics that appear in the literature. There are two modal operators. The first modal 

operator is familiar • (modal necessity) that stands for truth in accessible worlds. The 

other operator is unusual G describing the truth in inaccessible worlds. The semantics 

is based on Kripke models for two valued logics. The uncertainty of propositions is 

described through the possibility and necessity measures. The meaning of a possibility 

measure is interpreted in terms of the amount of surprise associated with a statement. 

The higher the possibility measure of a statement the lower is the observer's surprise 

when the statement is true. 

Ultimately, Boutilier aims to develop a qualitative reasoning apparatus and a 

large part of work is devoted to going from quantitative notions to the qualitative 

ones. Qualitative ordering is possible and given. There is a distinction between 

epistemic possibility and physically or logically possible worlds that an agent can 

possibly consider adopting. 

The possible world semantics is used, the accessibility relation R is understood as 

ranking according to the degree of possibility, R is refìexive and transitive, preorder. 
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R is a total preorder: two states of affairs must be comparable according to their 

degree of possibility. wRv means that'v is at least as possible as w. In other worlds, 

the accessibility ranking gives ordering from least possible to the most possible world. 

Language is a countable set P of propositional variables along with connectives - i , D, 

Semantic CO models in this case are M = (W, R, V), where R is transitive, 

connected binary relation on set of possible worlds W and V is a multivalued map 

between P and W. The semantic models also contain clusters of worlds (vRw AwRv) 

that are always présent. The clusters can be thought of as the sets of worlds that are 

equally possible. The truth of formulae is defined through the modelling relation 

1. M (= w d a iff for.each v such that wRv, M \=v a. 

2. M \=w Î J a iff for each v such that vRw, M \=v a. 

The connective • is then the truth in the worlds that are at least as probable as w, 

and connective t ï is the truth in ail inaccessible worlds, i.e. the ones that are less 

possible than w. 

The logie CO* is the smallest extension that assigns positive degrees of pos­

sibility to every logically possible world. CO* is closed under rules of CO and 

has an extra axiom, a model in this logie is then any CO-model such that { / : 

/ maps P into { 0 , 1 } } Ç {w* : w G W] 

In order to have qualitative reasoning but not to lose in expressive power, Boutilier 

introduces quite a few non-standard logicai connectives and ultimately gives a set of 

axioms. The final product is a logie that includes Boolean logie, several additional 

axioms and is closed under necessitation and modus ponens. Overall, the approach 

produces an ordering of the formulae but no truth values. The main idea is similar 

to the approach taken in this work except that there is a modality and things are not 

quantified, but instead ordered using relation R. The drawback of the approach is 

that it does not allow for an analogue of the Dempster-Shafer évidence combination 

rule, as there are no numerica] possibilités. 

The logics reviewed above used two valued connectives. Using multivalued con­

nectives for the Dempster-Shafer theory interprétation was also done. One of the 

better known attempts is due to Hâjek et al. [76] who proposed an extension of the 

Boolean logie by introducing the beliefs on Boolean formulae. The belief in this inter­

prétation is understood as a truth degree of a fuzzy proposition B<p which stands for 

'tp is believed'. The belief is defined as probability of modal necessity. A set of new 

axioms is introduced. The resuit is a combination of logie S5 with fuzzy approach 

named L I I | - a combination of product and Lukasiewicz logics. 
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The notion of probability is generalised by taking into consideration expressions 
like 

" b e l i e f degree of <p" = " t r u t h degree of By11, 
where B<p is a fuzzy proposition "B is believed". 

The semantic of such logic is studied with aid of probabilistic Kripke models: 
.ft = (M,fj), where M is a D-Kripke model (modal Kripke model). A modal Kripke 
model is defined as 371 = (W, R, V) where R is an equivalence relation, and valuation 
function V is extended to modalities, fj. in a •-probabilistic Kripke model is a finitely 
additive probability measure over the algebra of subsets of W. Beliefs in this setting 
become the probabilities of necessities. It is shown that beliefs can be represented by 
some Kripke model. \ 

Logic L I l l is a logic built with constants 0, \ and 1 using connectives — — * n 
and 0 (Lukasiewicz and Goguen implications and product conjunction). There are 
many other connectives defined through the three already mentioned operations. The 
evaluations are given through values of function e: F o r ( L I l | ) {0 , | , 1} . Finally, 
L I 1 | is used to define a logic that includes both Boolean and multivalued formulae 
and has a probability operator. As a result, the notions of tautology and provability 
are redefined. The final axiom set for the logic includes modal logic S5, provable 
formulae in S5, axioms for fuzzy notion of being probable and L I l l axioms. 

Overall the construction is powerful and displays good completeness properties. 
Unlike the previous construction, there is some analogue of Dempster-Shafer evidence 
combination rule. Given the richness of the construction, combining different models 
in it becomes quite complicated. Obtaining new probability assignment now involves 
combining three pairs of modalities. 

The two logics above were built for the case 6e/(0) = 0. Replacing S5 with a 
weaker KB4 logic makes it possible to repeat similar construction for belief functions 
allowing 6e/(0) > 0. 

Boeva, Tsiropkova and De Baets [77, 78] take the approach that is the most close 
to the approach taken in this work. The authors attempt to build the minimal modal 
logic for the needs of the Dempster-Shafer theory. Bocva et al. depart from the model 
in which value'assignment function requires exactly one proposition to be true at each 
world. Instead, they allow for an arbitrary number of propositions to be true in each 
possible world. The plausibility and belief measures are induced by the accessibility 
relation which they view as a multivalued mapping from set of formulae to sets of 
worlds. 

The multivalued mapping is a map F : X —* Y that assigns a subset F(x) C Y 
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to every x € X . The domain of a multivalued mapping us given by dom(.F) = {x € 
X : F{x) ^ 0 } . Subsets of Y then may have differently defined inverse images, 
among which the inverse, the superinverse and the pure inverse are distinguished. 
The multivalued mappings and probability measures can be related. Consider a 
probability measure P on P(X). It is then possible to find a multivalued mapping 
T, such that P(dom(T)) > 0. Dempster's upper and lower probabilities are then 
interpreted as probability measures of inverse and superinverse images of différent 
subsets within domain T. The basic probability assignments can also be expressed 
through the inverse images of the sets within domain T. 

The définition of the modal logic used by.the authors is standard: a set of atomic 
propositions, logical connectives A, V, — a n d modal operators of possibil-
ity 0 and necessity • . The modal logic is analyzed through the semantic models 
3TÎ = (W, R, V). The modality is understood through the accessibility relation: 0 is 
équivalent to being in the truth set of a proposition, and • is équivalent to being able 
to see éléments from a truth set. 

Viewing the accessibility relation R as a multivalued mapping allows one to find 
the plausibility and belief measures of propositions. Such approach induces plau-
sibility and belief measure and basic probability assignments on any model using 
a probability measure on set V(W) as a starting point. The resulting models are 
reasonably well-behaved and satisfy Weak Singleton Valuation Assumption requiring 
that at least one proposition is true in each world, thus giving some protection against 
vacuous reasoning. 

The weak singleton valuation assumption is important in the context of the current 
work. The models that are build upon the same premise are used to generate the 
intermediate logic. 

In order to be a full-fledged représentation of the Dempster-Shafer theory, the 
models should also be able to represent the Dempster-Shafer évidence combina-
tion rule. The proposed procédure is quite simple: two models (W\, Ri, Vi, Pi) and 
(VV2, R2, V2, Pi) are combined by taking Cartesian products of corresponding sets and 
the new probability measure is the product of corresponding measures. Regardless of 
the simplicity of the procédure, it results in a new model which is équivalent to the 
orthogonal sum of its components. 

The authors of the approach did not analyze the resulting class of semantic models 
and did not analyze the corresponding modal logic as a set of true formulae. The 
proposed approach is différent from most other modal logic interprétations of the 
Dempster-Shafer theory in a sensé that it does not introduce any requirements on 
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the modality, but ìnstead uses the most general définition of it and then builds a 

logie using only the most fundamental premises. In the next chapter this argument is 

taken even further. By arguing in favor of developing an interprétation that bypasses 

the modality altogether and attempts to express the possibilistic reasoning through 

the means of an intermediate logie. 

The logics overview of which was just given share one fundamental thing in com­

mon: they start with some understanding of uncertainty as modality and build their 

models from there. For the sake of brevity, this approach is called operator-centred. 

The starting point is a spécifie définition of the modal operator. This définition is 

based on an author's intuition about the nature of the beliefs. The resulting logie is 

then to a certain degree determined by the choice of the operator in the propositional 

language. The approach in this work is différent, as it attempts to translate the 

Dempster-Shafer theory beliefs to the Kripke models and then to analyse the seman-

tics of the resulting models. The operators are chosen from those that can express the 

createci semantics. Using a modal operator was ruled out from the very beginning. 

The detailed justification of this choice and the discussion about its conséquences are 

in Chapter 2. However, even if the modality were introduced, the choice of possible 

logics would stili be différent from the ones discussed above. 

The approach taken in this work is similar in spirit to one of the earliest graphical 

interprétations of the Dempster-Shafer theory due to Barnett [79] who first proposed 

a linear time algorithm for calculating the beliefs. The proposed algorithm worked 

with only one particular type of belief functions producing binary trees. Later im-

provements on the technique include [80] and a work by Shafer and Logan [81]. Guan 

and Bell took the method to its logicai conclusion giving both the formai description 

and the corresponding algorithms [82]. The works mentioned above do not give a se-

mantic représentation of the theory; their purpose is quite différent. Ali of the works 

represent the Dempster-Shafer universe with the aid of trees, using them to calculate 

the beliefs without venturing into semantics. 

To this point, a very brief overview of the main relevant théories and approaches 

was given. The main coalescence points that, to a certain extent, served as the guiding 

markers in the development of the work's approach have also been presented. Further 

discussion on the background and available results is impossible without introducing 

rigorous définitions and quoting actual results. Any further références to published 

results will be given as need arises and only the notions needed for understanding 

new results will be given. The next chapter addresses the question of a formalism 

choice for the interprétation. 
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1.4 What follows 
The next chapter is devoted to the discussion about the nature of mathematical 
objects. The purpose of the chapter is to demonstrate how the philosophical consid­
érations may affect the formai choice when an interprétation is constructed. After 
reviewing the relevant théories, the argument in favour of following the intuitionist 
view of the world is given and the décision to create an intermediate logie is made. 
The material of this chapter is due to appear in [83]. 

Chapter 3 gives the necessary background about the Dempster-Shafer theory and 
semantic models and présents the procedure that links them. After analysing severa! 
examples, it is then proved that the procedure préserves the beliefs of the original 
frame of discernment. Similarly it is shown that the évidence combination rule is 
translated to the language of the semantic models [84]. Once the approach is verified, 
some attention is paid to the resulting superintuitionistic logie which is shown to be 
sound and complete. The completeness results are produced by analysing semantically 
équivalent algebraic duals of Kripke frames generated by application of the procedure 
proposed earlier in the chapter. 

Chapter 4 explores the parallels between frame updates and semantic models. 
While studying the effects of frame coarsening and refinement on a semantic model, 
it demonstrates the representational limitations of the approach. The last chapter 
gives a brief overview of open questions and possible directions of research. 
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Chapter 2 

Selecting the framework 

In the previous chapter several différent interprétations of the Dempster-Shafer theory 

based on modal logics were mentioned. The major problem with thèse formalisms 

is, in the author's view, the possibiHty of a non-constructive proof. The current 

work does not présent yet another logie that works relatively well, but attempts to 

understand how to construct a family of logics that do not allow non-constructive 

proofs and can be used for inference within the realm of the Dempster-Shafer theory. 

The author takes advantage of the 'modular design' of building a logie in a propo-

sitional language. As long as there is some définition of a propositional language, 

one can explore the semantics of logics built upon it. The logicai connectives can be 

defined later. For the problem at hand the choice of suitable logicai connectives is 

limited by the known semantic limitations. Most other publications on the matter 

approach the problem from the other end — either the connectives are chosen first, 

or the axioms are stated explicitly before the logie is being built. 

While having many merits of its own, defining a logie explicitly through a set of 

axioms rules out ali of the logics that do not admit finite axiomatisations. On the 

other hand, it is known that many otherwise well-behaved logics do not admit finite 

axiomatisation. Specifying a Hilbert-style calculus is not the only way to represent 

a logie, especiaìly within' the computing domain. The discussion below is not very 

technical, as the formai considérations are postponed until the next chapter. It is, 

however, impossible to choose a formalism without resorting to at least some formai 

concepts, which are given below. 
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2.1 The théories in question 

The main topic of this work is the justification of the formalism choice for intcrpreting 

the Dempster-Shafer theory. The approach taken by the author is focused on under-

standing the semantic of the constructed formalism. The semantic tool of choice is 

Kripke models. There is a vast amount of literature about both Kripke semantics and 

the Dempster-Shafer theory. The Dempster-Shafer theory overview below is based 

on Shafer's original essay [1], The semantic models are defined according to [48]. 

The définition of a Kripke model used in this work is slightly différent from the one 

used in important works like [18], but given the popularity of the concept it is quite 

difHcult to décide on a particular notational convention. An interesting review of 

différent définitions of Kripke model is given in [85]. A more detailed introduction to 

both théories is given when the formai aspects of représentation are discussed. The 

définitions below are solely meant to make the epistemological discussion consistent. 

2.1.1 The Dempster-Shafer theory 

There is no complète spécification of the propositional language used in the Dempster-

Shafer theory. Instead, there are several conditions that the statements of this lan­

guage should meet. The propositions are related to subsets of a given set. Let 9 be 

a quantity of interest and 0 be the range of its values. The possible propositions are 

of the form 

"The true value of 9 is in T" 

where T Ç G. The universe formed this way is not as restrictive as it may seem, 

arid ail the possible statements are in one-to-one correspondence with subsets of 0 . 

In the Dempster-Shafer theory range of values 0 and its known subsets are called a 

frame of discemment. 

A frame of discernment does not include actual propositions. It describes the 

domain of the values that quantities in the propositions can assume. Therefore the 

propositions considered in the Dempster-Shafer theory form a propositional language 

£, which is not yet defined. C can be defined when the possible candidate logics are 

considered. A good discussion about how to define a propositional language is found 

in [63, 86]. 

That said, intuitive guesses can be made about the nature of the relation between 
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C and 0 . Indeed, assume that p, q € C\ A, B Ç 0 and that p and </ stand for: 

p = "the true value of Q is in A, " 

ç = "the true value of 0 is in B . " 

It is not illogical then to assume that 

p A q = "the true value of 6 is in A D S." 

The correspondence between A in £ and n in 0 is not necessarily true for ail the frames 

of discernment and ail the languages, but it is very intuitive. The correspondence 

is true when £ is the language of Boolean propositional calculus — the situation 

considered in Shafer's monograph. 

A belief function is defined on the trame of discernment through the set of require-

ments. 

Définition 2.1.1 (Belief function) Let © be a /rame of discernment and Bel : 

2 e —y [0,1] be a set function such that 

1. Be/(0) = 0; 

2. Bel{Q) = 1; 

3. For every positive integer n and every collection A\,... ,An of subsets of 0 , 

Bd(Ai U . . . U 40 > E/c ( l , . . . ,n}; /^('- 1 ) m + l B e ' (fW A ) • 

Bel is then a belief function on 0 . 

The Dempster-Shafer theory also uses the concept of a basic probability assign-

ment 

Définition 2.1.2 (Basic probability assignment) Quantity m(A) is called a ba­

sic probability number (assignment in newer works) if it obeys the following restric­

tions: 

1. m(0) = 0; 

m(A) measures the belief that is committed exactly to A. A belief function and a basic 

probability assignment are related through:. 
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The équation above serves as an alternative définition of a belief function. 

Naturally, a logicai interprétation of Dempster-Shafer theory must preserve the prop-

erties above. The définitions demonstrate the dual nature of the basic probability 

assignments and the belief functions. The mathematical apparatus dealing with this 

duality allows conversion in either direction. 

Evidence is updated by introducing new propositions with their own mass assign­

ments. The new pièces of évidence transform already established beliefs. Two différ­

ent frames of discernment within the same universe may be combined too. Combining 

new and existing information is done by taking the orthogonal sum of the respective 

mass assignments. Formai définition of the orthogonal sum is not yet needed and at 

the moment it is enough to know that there is a meaningful interprétation of it in the 

proposed formalism. The goal at the moment is to find a logie that can adequately 

represent frames of discernment. 

2.1.2 Kripke models 

Kripke models are a famous tool for exploring différent modal logics. It is important 

to remember that. Kripke models are not exclusively applicable to the modal logics. 

They provide a formalism for addressing a wider range of objects. 

Definition 2.1.3 (Kripke Model) Given propositional language C, intuitionistic 

Kripke model is a triple SUI = {W, R, V), where W is a set, R is a partial order on 

W, and V : V a r £ —• \JpW Ç 2W is a valuation map, where \JpW is the collection 

of ail upward closed subsets of poset (W, R): x G M Ç W and xRy imply y G M for 

ail M G UpW\ Together R and V satisfy the property of persistence of propositional 

variables: VviuNp(vRw —• (v G V(p) —* w G V(p))). 

The éléments of W are sometimes called possible worlds or, less dramatically, 

points. xRy, x,y G W is read either 'x sees y7 or ly is reachable from x\ The 

définition is not very restrictive and leaves a lot of space for the manoeuvre. A 

usable interprétation of the Dempster-Shafer theory may be developed by an intuitive 

understanding of the universe described through Kripke models. The éléments of W 

can be thought of as différent states of information or knowledge. The valuation V 

provides the link between the actual knowledge (the propositions of C) and the states 
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of knowledge (points of W). Différent statements are true in différent states. The 
relation R shows what could be inferred from différent states of knowledge. If point 
x sees point y, it means that the information available at y may be inferred from 
information available at x. Point x occurs earlier than point y. If a proposition is 
true at point x, it cannot become false at later points reachable from x. Conversely, a 
proposition false at some point can become true at a later point reflecting the ability 
to discover new facts. Graphically Kripke models are represented as directed graphs 
with vertex set W and adjacency matrix given by relation R (see [87] for a définition 
of the adjacency matrix). 

2.2 The nature of mathematical objects 

The Kripke models can be used to analyse the semantics of any logie and they provide 
alternative définitions of logics in certain cases. The idea of the proposed approach 
is to develop a procedure that allows an adequate représentation of the frames of 
discernment by Kripke models using some propositional language and thus to induce 
a family of logics whose formulae are valid in the corresponding Kripke frames. The 
strategy does not necessarily lead to a unique solution: depending on the choice of the 
propositional language the same models can correspond to différent logics. The search 
domain can be narrowed by looking at the philosophical and conséquent semantic 
distinctions among the three main strands of logics: Boolean logie, modal logie and 
intuitionistic logie. The exposition starts with some phenomenological remarks that 
are later applied to the 'candidate logics'. Even though there is no 'single best' logie 
for inference within the Dempster-Shafer theory, the discussion outlines the main 
arguments in favour of using intuitionistic logie or its non-classical extensions, as well 
as author's motivation for not introducing modal operators. 

2.2.1 Historical Remarks 

This work is devoted to the development of a mathematical formalism suitable for rea-
soning within the Dempster-Shafer theory. Thus, the subject of enquiry is a collection 
of mathematical objects. In the belief theory the ability to update the knowledge, 
possibly as a resuit of the interaction with the outside world, is important. The 
constructed collection of the mathematical objects should not be independent from 
the notion of time. Discussing the temporality of mathematical objects cannot.be 
done without a short foray into the philosophy of mathematics. The définitions of a 
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mathematical object and its basic properties are important for the decision made in 
this chapter, so the exposition starts with quoting the relevant views. The outline of 
the main philosophical issues is by no means comprehensive: only the issues that the 
author considers relevant for the problem at hand are mentioned. 

While the discussion of the nature of mathematical objects is ages old, this work 
confines itself to the formalisms that date back to the X I X and X X centuries. Boole 
was the first person to introduce an example of a non-numerical algebra and the first 
example of a symbolic logic [88] thus paving the way for symbolic mathematics as we 
know it. The familiar Boolean logic in the modern notation is, however, due to Frege 
[89]. 

The Russell-Whitehead 'Principia Mathematica' [90] was published in 1910-3. It 
famously tried to develop all mathematical truths from a well-defined set of axioms 
and inference rules in symbolic (Boolean) logic. As the authors of [91] put it, Boole 
wanted to study the mathematics of logic whereas Russell and Frege wanted to study 
the logic of mathematics. 

The Lindenbaum-Tarski approach provides a way to construct an algebra out of 
a classical propositional calculus. The constructed algebra is a distributive lattice. 
Moreover, the method works with both the classical propositional calculus and with 
any algebra formed by a closed (according to some definition) set of formulae in 
any propositional language [68]. As it will become clear later the latter fact is very 
important for the procedure being developed. 

Wittgenstein published his 'Tractatus Logico-Philosophicus' in 1921 [92], While 
agreeing with Russell at certain points Wittgenstein introduces a different under­
standing of what a mathematical object is and what is the purpose of mathematics 
and philosophy. In 1918 Brouwer begins the systematic intuitionistic reconstruction 
of mathematics with the paper 'Begründung der Mengenlehre unabhängig vom lo­
gischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre.' 
('Founding Set Theory Independently of the Principle of the Excluded Middle. Part 
One, General Set Theory') [93]. 

Around the same time, Husserl developed his phenomenological approach to math­
ematics [94]. A detailed account of the similarities and differences of the philosophical 
approaches can be found in [95]. This work only looks at a few basic distinctions be­
tween the approaches that are relevant to the development of the proposed formalism. 

20 



2.2.2 Phenomenological remarks 

In addressing the stated goal of the work, the anthor follows several basic définitions. 
First of ail, Wittgenstein's définition of the world captures the basic idea of artificial 
intelligence (quoted from [92]). 

' 1 .13 The facts in logicai space are the world. 

2.034 The structure of a fact consists of the structures of states of affaire. 

2.04 The totality of existing states of affairs is the world. 

The next important distinction is about the nature of the states of affairs that in 
our case are represented by the mathematica! objects. One of the main distinctions 
is in the relation between the mathematical objects and time. Several dichotomies 
are possible [95]: 

• Static/dynamic: an object is static exactly if at no moment are parts added to 
it, or removed from it. It is dynamic if at some moment there are parts added 
to it, or removed from it. 

• Temporal/atemporal: an object is temporal exactly if it exists in time, and 
atemporal exactly if it does not exist in time. 

• Intratemporal/omnitemporal: a temporal object is omnitemporal exactly if it is 
static and exists at every moment. A temporal object is intratemporal exactly 
if it is not omnitemporal. 

A décision making formalism representing some model of the real world is not 
static, and thus the distinction between omnitemporal and intratemporal becomes 
important. Van Atten présents three logicai possibilities [95]: 

1. Ali mathematical objects are omnitemporal. (Husserl) 

2. No mathematical objects are omnitemporal. (Brouwer) 

3. Some mathematical objects are omnitemporal, some are not. 

One of the fundamental premises of the theory of beliefs is the possibility to learn 
and incorporate new knowledge into the already known. The author also wants some 
uniformity of the objects, so the first and the third views are ruled out. Brouwer's 
view is the most attractive for the stated purpose. 
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Brouwer's philosophical views led him to the development of his own system of 

mathematica! foundations that he called intuitionist mathematics. Brouwer further 

élaborâtes on his view of mathematica! objects: 

In intuitionist mathematics a mathematical entity is not necessarily pre­

determinate, and may, in its state of free growth, at some time acquire a 

property it did not possess before [95]. 

Intuitionism is often viewed within a broader constructivist approach to mathe­

matics. Constructivists, however, need not accept the idea of dynamic objects. The 

objects of interest are dynamic, hence the outlook may be restricted to intuitionist 

mathematics. 

The concern with the notion of time is not unique for the intuitionism. Temporal 

logie is one of the most well-known and developed examples of the approaches that 

explicitly incorporate the notion of time into mathematical objects. On a more gen­

eral level, temporal logics are a class of modal logics in which the modality expresses 

temporal relations. These modal logics are the obvious candidates for the reason-

ing apparatus for the Dempster-Shafer theory and the sélection process starts with 

looking at their behaviour. 

Even though it is already established that the objects of interest are dynamic and 

intratemporal there is more than one .choice to be made. In a nutshell, one has to 

decide what is primary: the concept of the flow of time or the concept of change [50]. 

The author believes that the nature of the objects described by the Dempster-

Shafer theory is better described through the approach when the notion of change is 

accepted as primary. Accepting primacy of the flow of time is the stand taken by the 

temporal logie. If the flow of time is primary, then the propositions hold truth values 

for some time and may change them as time passes. In intuitionistic Kripke semantic 

models such a situation is not quite possible: a variable can be instantiated at some 

moment of time, but it cannot change its value at a later time. Instead, accepting the 

primacy of the change transforms the moments of time into the équivalence classes, 

the situation rendered through the concept of the state of the world. 

Temporal logie is then not a suitable candidate under the given premises. It does 

not mean that temporal logie cannot provide reasoning tools for the Dempster-Shafer 

theory: the successful applications of a temporal logie were discussed in Section 1.3. 

Brouwer separates mathematics into old formalism; pre-intuitivism of Borei, Lebesgue 

and Poincaré; and new formalism. The intuitionism has two acts. 
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First act of intuitionism completely separates mathematics from the 

phenomena of language described by theoretical logie, recognising that 

intuitionist mathematics is an essentially language less activity of the mind 

having its origin in the perception of a move of time. 

Second act of intuitionism admits two ways of creating new math­
ematica] entities: firstly in the shape of more or less freely proceeding 
infinite séquences of mathematica! entities previously acquired (e.g. infi­
nite décimal fractions); secondly in the shape of mathematica! species, i.e. 
properties supposable for the mathematica! entities previously acquired, 
satisfying the condition that if they hold for a certain mathematica! en-
tity, they also hold for all mathematical entities which have been defined 
to be 'equal' to it, définitions of equality having to satisfy the conditions 
of symmetry, reflexivity and transitivity [56]. 

While commenting on the first act of intuitionism Brouwer introduces the notion 

of a fieeing property f: 

(i) for each natural number n it can be decided whether or not n possesses the 

property / ; 

(ii) no way of calculating a natural number n possessing / is known; 

(iii) the assumption that at least one natural number possesses / is not knowmto 

be an absurdity. 

The acceptance of the fieeing property leads to the rejection of the tertium non 
datur principle and raises the problem of interpreting and intuiting the continuum, 

solved by the second act. At the same time, the second act weakens the restrictions 

of the first act: while for any proposition p it is known that p V (p —* J . ) is true only 

if p is decidable, it follows from the second act that -*p V —i—ip is provable (absurdity 

or absurdity of absurdity in Brouwer's words). 

In phenomenological terms, Brouwer's approach is an example of a strong revi-

sionism that has the potential of both limiting and extending the actual practice. In 

the next section the phenomenological reasons are used to select a sui table formalism. 

2.3 Implications on the formalism préférence 

Let us see how Brouwer's revisionist approach influenced the actual development of 

intuitionist formalism, and what is relevant for the current work. For the sake of 
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easier readability Brouwer's ideas are not presented in their original form. Instead, 

the modem notation is used according to Heyting's interprétation of intuitionism [58]. 

The familiar Boolean algebra serves as a starting point for différent revisionist 

approaches to mathematics. Often, the easiest way of defining a new logic is through 

its relationship with the Boolean algebra, so the définition of Boolean logic is a natural 

starting point. 

2.3.1 Boolean logic 

Boolean logic is a S y s t e m of a set A supplied with binary operators V, A and —», one 

unary operator - i and a constant X . Set A with the connectives and punctuation 

marks forms language C. Set A is then a set of variables of £ , V a r £ ; variables and 

constants are used to build inductively defined formulae in the set For£ : 

(i) _L and a G V a r £ are formulae; 

(ii) If a, 6 G F o r £ then a V b, a A 6, -ia and a —» b are formulae too. 

In classical Boolean logic, for any éléments po,Pi G V a r £ there a r e ten true proposi­

tions called the axioms of Boolean logic. 

(Al) po — (pi ->Po) i ' 

(A2) (po (pi -> p 2 )) -> ((p 0 -+ Pi ) (po P2))\ 

(A3) po Api po; 

(A4) po Api -> pi\ 

(A5) po -> (pi ->po A p i ) ; 

(A6) Po - * P o Vpi; 

(A7) pi ^ P o V p i ; 

(A8) (p 0 -> VT) - » ((Pi P2) - » (Po V pi -> P2)); 

(A9) X ^ p 0 ; 

(A10) p o V ( p o ^ X ) . 
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The inference rules are: 

Modus ponens: given formulae <j> and <p —* ijj obtain tp. 

Substitution: given a formula <fi obtain <f>s, where s, a substitution, is a map from 

V a r £ to F o r £ defined inductively: ps = s(p) for every p € Var£ , Xs = J_ and 

(ip 0 4>)s = ips 0 'fis, for 0 G { V , A, - * } . 

Boolean logie as defined above is denoted CI. It is immediately clear that CI 

cannot be used as a reasoning framework within the realm of intuitionist mathematics: 

axiom (AIO) is not necessarily true in intuitionist mathematics. Boolean logie is the 

logie of atemporal objects, the set of true formulae in the world that never changes. 

2.3.2 Modal logie 

A modal logie is often defined as an extension of Cl. However, there is a number of 

modal logics that are extensions of intuitionistic logics. Because most applications of 

modal logics to the Dempster-Shafer theory are based on the extension of classical 

logie, below we do not discuss intuitionistic modal logie. 

A modal language MC is obtained by enriching language C with the new unary 

connective • and the corresponding formula formation rule. 

• If <j> is an MC formula then (•</>) is also an MC formula. 

The formula formation rules for C also work in MC, The smallest modal logie *KMC 

is then: 

(a) Axioms (Al)-(AIO); 

(b) An additional modal axiom (A l i ) O(p0 —» pi) —* (dpo —* Opi); 

(c) The inference rules are modus ponens, substitution of modal formulae instead 

of variables and the rule of 

Necessitation: given a formula <f>, we infer \3<f>. 

KMc is the logie of some abstract necessity that describes the common properties 

characteristic of ali interprétations of the operator • . It is a minimal modal logie, 

in a sense that any property of this logie will also be a property of any other modal 

logie built through defining • in some meaningful way The modal language with the 

operator of abstract necessity is weaker than the language of a temporal logie that 

requires two additional operators. 

There is a variety of différent modal logics: temporal logie, deontic logie, epistemic 

logie and so on, which owe their existence to différent understandings of the meaning 
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of the modality. Defining, interpreting and formahsing modality is an amazing field 

which is not discussed hère. Instead, a look àt the semantic implications of having a 

modal operator is taken. : 

The possibility of gaining new knowledge at différent states of the world is the 

basic accepted premise. In the logie universe gaining new knowledge equates to instan-

tiating new variables. This possibility. is best illustrated through the corresponding 

Kripke models. No notion of a Kripke model is introduced at the moment, so the 

discussion on the matter is limited to the observation that Ci can be represented by 

a single node and that intuitionistic and modal extensions of Cl require more com-

plicated models: Even though K.Mc is in some sense a minimal modal logie it is stili 

stronger than CI: ClC KMc [48]. 

A modal extension of Cl is therefore unsuitable for building an intuitionist frame-

work for the Dempster-Shafer theory, àt least when non-constructive proofs are not 

allowed. It must be added that, if the authors do not reject the possibility of a 

non-constructive proof, différent flavors of modal logie are a popular choice as shown 

earlier. A more detailed review of the publications on the matter is in [76]. 

2.3.3 Intuitionistic logie 

The 'minimal' intuitionistic logie Int may be defined using the same propositional 

language C as Boolean logie Cl. Int also admits axioms (Al)-(A9), but not (AIO) 

of Cl and uses the same inference rules, modus ponens and substitution, as Cl. The 

notions of dérivation and dérivations from assumptions are the ones of CI . In a 

superficial way, one can think of Int as of CI without (AIO). 

The différences between Cl and Int run deeper than a simple exclusion of an 

axiom. On the formai level, excluding one axiom has a negative effect: fewer formulae 

are true in a weakened logie. A smaller set of true formulae is balanced by a gain 

in semantic. Boolean logie is a logie of atemporal objects. Intuitionist mathematics 

takes the epistemic aspect of the truth into account: the tfuth of a proposition may 

not be known a priori, but can be learnt later. Allowing the world to change due 

to learning new things requires a richer semantics than the one of Boolean logie. 

Learning new things is reflected through the concept of a possible world or a state of 

the world. 

In terms of semantic models, Int can be defined as a set of formulae true in ail pos­

sible Kripke frames with transitive nodes. Worlds may have différent states at which 

différent things are known. Hence, the same variable can be instantiated at some 
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worlds, but not at others. The worlds are linked through the accessibility relation 

in that the knowledge in the related worlds is non-contradictory. Non-contradictory 

knowiedge means that if a variable was instantiated to some value, this value cannot 

be changed at a later stage. The value must stay the sanie in ali successor nodes. 

The truth of propositions is established according to intuitionist understanding: 

(i) 4> A ip is true at a state (world) x if both 4> and ip are true at x. 

(ii) <fi V ij) is true at a state (world) x if either 4> or ip is true at x. 

(ih) 4> —» V is true at a state (world) x if for every subséquent possible state y, <j> is 

true at y if and only if ip is true at y. 

(iv) ± is true nowhere [48]. 

Boolean logie Cl is an intuitionistic logie which consists of ali formulae true at a 

single state of the world x. Intuitionistic propositional logie Int in a language C is 

then a set of formulae that are true in ali worlds and ali possible configurations of 

such worlds. It is a well-known fact that any connected model with more than one 

reflexive node réfutes (AIO) in £ , see [61] and Section 3.2.2 for détails. 

Int is a weaker logie than Cl: it is known that IntÇCl. The properties of Int 

are quite well-known, and are not discussed here. 

By now, a brief look was taken at three important logie formalisms: Boolean 

Logic Cl, Intuitionistic logie Int and Modal Logic KMc- Among the three only the 

intuitionistic one does not contradict the basic premises of intuitionist mathematics. 

Thèse three logics can be ordered as I n t Ç C l c K ^ r - The ordering reflects only the 

first half of the définition of a strong revisionist approach (see page 23). The second 

half that mentions the potential of extension of the existing practice is realised through 

the super intuitionistic logie. 

Logic Int serves as a basis for an infinite family of logics known as superintuitionis-

tic or intermediate logics. In this work 'superintuitionistic logie1 is used as a preferred 

term, partly because of the author's personal préférences and partly to stress the fact 

that the logics in question are extensions of Int. 

A superintuitionistic logie, or an si-logic for short, in language C is any set L of 

£-formulae satisfying the conditions: 

(i) Int Ç L\ 

(ii) L is closed under Modus Ponens; 
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(iii) L is c l o s e d under uniform substitution. 

The largest si-logic is F o r £ , known as inconsistent si-logic. Every si-logic that 

is not inconsistent is consistent. For every consistent si-logic L it is known that 

Int Ç L C Cl . 

Référence was made to all the configurations of possible worlds while defining both 

K.MC and Int, a 'configuration' is represented by a Kripke model. Unlike KMC and 

Int différent si :logics are valid in différent classes of models. 

Up to now the discussion used a notion of some language C defined in a fairly 

general way. Now, when a logie as a set of formulae is explored to a certain extent, 

the question of defining the connectives in C can be faced. 

Aside from the obvious choice of Boolean connectives, there is a whole universe of 

i-norm based multivalued logics. However, among the £-norm based logics only the 

Gödel-Dummett logie belongs to si-logics1. 

2.4 Modalities versus Beliefs 

Having an additional modal O p e r a t o r in the propositional language is seen as an 

advantage by many authors. This requires defining the axioms associated with this 

O p e r a t o r that are not a part of the original Dempster-Shafer theory. Moreover, using 

modal extension of Cl requires using both reflexive and irreflexive nodes in semantic 

models which contradicts earlier observations about intuitionistic semantic models 

as it is shown below. The discussion about logics representing the Dempster-Shafer 

theory is mostly centred on choosing a suitable candidate from the impressive array 

of known modal connectives. There is no requirement for the nodes to be reflexive 

for modal logics. 

This work uses relational or possible world semantics. In this framework relation 

R is the altemativeness relation and xRy means that y is an alternative (or possible) 

world for x. Under this assumption the meaning of • and o = - O - i on Kripke models 

becomes clear. is true at a node w if 4> is true at ail nodes reachabie from w, o<j> 

is true if <f> is true in at least one node reachabie from w. Given this, the attention to 

whether a node is reflexive or not should be paid. 

Consider now the simplest single-node models in Figure 2.1. In the picture 

reflexive nodes are empty circles and irreflexive ones are filled. The model in both 

cases consists of a single node w. The formulae true at the node are listed on the left 

1The author is very grateful to C.Fermüller for drawing his attention to this fact 

28 



of it, and the ones that are false on the right. 

Dp • 
w 

p,op 
• p —* p 

(a) Irreflexive node 

Figure 2.1 A simple modal model 

For both frames, # = (W, R) with W = {w} and V(p) = 0. Relations R are dif­

férent for différent models: for the model in Figure 2.1(a) R = 0 and in Figure 2.1(b) 

R = {(w,w)}. This 'minor' différence leads to a significant semantic différence be-

tween the models. The necessity O p e r a t o r is validated on an irreflexive node, but is 

refuted on a reflexive one. The séquence can be continued. A few formulae are listed 

in both cases. 

Consider now an irreflexive node in the Dempster-Shafer theory context. Even 

if ali the belief is attributed to the node such that p is false, p stili must be true 

somewhere else. 

2.5 The formalism choice 

The question of the best logicai formalism for interpreting the Dempster-Shafer the­

ory is lìkely to stay open for a long time, mostly because several différent viewpoints 

have resulted in feasible results. The choice of a particular formalism is still largely 

determined by the factors outside of the Dempster-Shafer theory proper. Often such 

a choice is based on focusing attention on some particular aspect of the theory. The 

choice is based on some attempt to interpret the beliefs with the aid of either modal-

ities or the truth values of propositions. This approach is 'dangerous' because of the 

fundamental différence between the t'wo concepts. As Hajék puts it [76]: 

Truth degrees in fuzzy logie must be clearly distinguished from belief 

degrees in the Dempster-Shafer theory. 

Fuzzy logie is the logie of comparative truths that are understood as truth-

functional. Belief degrees are not truth-functional. 

The statement above does not explicitly mean that there is no connection between 

the degrees of truth and the degrees of belief. An si-logic can be used to find a degree of 
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truth of a proposition with a belief attributed to it. However, to make the exposition 

clearer, the notions of modality and belief are kept separate in this work. 

The author argues in favour of taking a more general approach. The claim is 

substantiated through an attempt to understand the nature of mathematical objects 

that constitute the Dempster-Shafer theory universe from a phenomenological point of 

view first. The presented argument is by no means exhaustive. It rather shows a fairly 

obvious distinction which, if noticed early enough, leads a researcher in a différent 

direction. The approach yields a practical resuit: the models induced according to the 

principles described above validate Int. The rest of the work présents the approach 

in detail. 
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Chapter 3 

Semantic models for the belief 

theory 

This chapter describes the semantic représentation of Dempster-Shafer frames of dis-

cernment and demonstrate how to calculate the beliefs in différent propositions from 

thèse models. The given procédure also provides a meaningful interprétation of the 

Dempster-Shafer évidence combination rule. 

The chapter is organised'as follows. The first two sections provide the necessary 

background to the Dempster-Shafer theory and the semantic models. Several relevant 

examplcs that illustrate the features of the théories in question are analysed. Once the 

necessary background is introduced, the formai description of the proposed procédure 

is developed and illustrated on a set of examples. After demonstrating that the beliefs 

induced on the semantic models are the same as in the original setup the author 

progresses to the formai vérification of the approach. 

3.1 Revisiting the theory of beliefs 

Two théories have inspired this research: the Dempster-Shafer theory and the theory 

of Semantic models also known as Kripke models. The review begins with introduc­

tion to the Dempster-Shafer theory. The author tried to avoid repeating the informa­

tion already presented in the earlier chapters as much as possible, but some concepts 

mentioned casually in the earlier chapters need the formai définitions provided in this 

section. 

31 



3.1.1 The formalism 

The exposition below is very basic, and the quoted results can be found in any book on 

the topic. To minimise the possible distortions of the original concept, the définitions 

are quoted according to Shafer's essay [9] unless stated otherwise. 

-The Dempster-Shafer theory initially was built to deal with finite sets [9, 13, 14]. 

Later, the infinite universe was introduccd by Shafer himself in his doctoral thesis 

[1]. From the practical viewpoint there is stili nothing wrong with starting with the 

finite sets. 

The Dempster-Shafer theory started as a généralisation of Bayesian theory and 

was defined through amending certain parts. Both Bayesian and the Dempster-Shafer 

theory describe their universe through set 0 : a finite non-empty set that, along with 

ali of its subsets, in the Dempster-Shafer theory is called the /rame of discemment. 

Guan and Bell in [96] suggest to think about 0 as oí1 the set of ali possible trae values 

that a quantity we are interested in can take.' 

Two fundamental concepts of Bayesian statistics are the Bayesian (probabilistic) 

density and the Bayesian function. A function d : 0 —+ [0,1] is a Bayesian density if 

A function bay : 2 e —• [0,1] is a Bayesian function if the following three conditions 

are met: 

l.-&cn/(0) = 0; 

2. bay{9) = 1; 

3. bay(A U B) = bay{A) + bay(B) whenever A fi B = 0. 

Condition 3 can be easily generalised to finite unions of any subsets: 

3a. 

bay(Al U...UAn)= £ ( - l ) ^ 1 ^ ^ ) . (3.1) 
/C{l,...,n} 

In the case of two overlapping sets, formula (3.1) becomes a more familiar bay(AU 

B) = bay(A) + bay(B) — bay(A D B). The Bayesian functions are used to describe 

probabilities of events in a probabilistic space. There are several équivalent alternative 

ways to state the last condition. Bayesian density functions and Bayesian functions 

are in a one-to-one correspondence. The Demspter-Shafer theory opérâtes with the 

belief functions defined on page 17. 

There is an obvious parallel between Bayesian functions and beliefs: in a two-

set case condition 3 from Définition 2.1.1 becomes either Bel(A U B) > Bel(A) + 
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Bel(B) - Bel(A n B) or Bel{A U 6 ) > Bel(A) + Bel(B) in case A fi B = 0. Ail the 
Bayesian functions are belief functions but not vice-versa, as the Dempster-Shafer 
theory généralises the Bayesian statistics. Belief functions are too general to be 
immediately applicable, while basic probability assignments are more manageable and 
ailow one to calculate corresponding beliefs. Basic probability assignments defined 
on page 17 are neither additive nor monotone. 

Equation (2.1) is used as an alternative définition of a belief function. The défi­
nitions demonstrate the dual nature of basic probability assignments and belief func­
tions. The mathematical apparatus dealing with this duality allows for conversion in 
either direction. On the other hand, when an actual frame of discernment 0 is con-
sidered, the problem of either finding a belief function or assigning basic probabilities 
to différent éléments of 2 e is far from obvious. 

Depending on the need, other 'belief-like' functions are used: commonality func­
tions, plausibility functions, doubt functions and ignorance, a detailed review of which 
can be found in [96]. Given a mass assignment, the rest of the arsenal can be devel-
oped easily. Of those only the plausibility function is used in the current work: 

pls(A) = l~bel(Â)i (3.2) 

where A is a subset of 0 , and A = 0 \ A is a set complément of A. 
The Bayesian rule updates known probabilities of events that are not indepcndent. 

Définition 3.1.1 (Bayesian Rule) Given a Bayesian function bay and 
one can calculate the conditional probability bay(X \ B) of X G 2 e under B is 
bay(- | B) : 2 e —> [0,1] and for bay(B) > 0 the Bayesian rule applies: 

• f Y : m bay(XnB) 
h a y ( X 1 B ) = bay(B) • 

Dempster-Shafer évidence combination rule combines known beliefs in a more 
relaxed setting of the Dempster-Shafer theory: 

Définition 3.1.2 (Dempster-Shafer évidence combination rule) tórni andina 
be basic probability assignments on the same frame 0 . Suppose 

51 m i (X)n i2 (y ) < 1. • (3.3) 
xny=0 
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Denote 

N = Yl miOXWr). (3-4) 

Then the function m : 2 e —• [O,1] defined by 

m(0) = O, (3.5) 

and 

' m w = jí E ™>i{x)™*{y) (3.6) 
xr\Y=A 

for ali subsets A ^ 0 of O is a basic probability assignment. 

Assignment m is called the orthogonal sum of mi and mi and is denoted m = mi©m2. 
The theorem below gives a formal interpretation of the analogy between the 

Bayesian and Dempster-Shafer rules [96]. 

Theorem 3.1 .1 Let TUB be a mass function such that 

TTIB(B) = 1, mB(elsewhere) = 0 

Then 

1. A mass function m and ms are combinable iff 

bel(B) < 1. 

2. If ni and ms are combinable, denote 

bel(X\B) = (bel@belB)(X), pls(X\B) = {pls ®plsB)(X). 

' T h e n _ _ 
6 d bel(X U B) - bel(B) = pls(X n B) 

1 - bel(B) pls{B) 

for ali B C G . 

3.1.2 Calculating the beliefs 
The problem is addressed in several steps. In the beginning, the simplest situation 

with the evidence in support of only one statement is taken, as the analysis evolved 
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more complicateci situations are introduced. The belief function in the simplest case 

needs to reflect only how mudi belief is attributed exactly to the only proposition and 

make sure that the total belief over the whole of the frame of discernment is equal to 

one. Belief functions of this type are called simple support functions. The functions 

obtained by combining différent simple support functions are called separable support 

functions. Separable support function form a subset of a more general class of support 

functions, which are a particular case of belief functions. The distinction bctween 

différent types of belief functions is not very important at the moment. The relation 

between différent types of belief functions is given in Figure 3.1. The simplest support 

Simple Support Functions 

Separable Support Functions 

Support Functions 

Belief Functions 

Figure 3.1: Support functions 

function that describes the bcliefs attributed to a specific subset A of 9 requires the 

following basic probability assignments: 

m{A) = su m{B) = l - s l t m{B) = 0, (3.7) 

whenever B ^ A. It is important to note that m(->A) = 0, basic probability assign­

ments are not probabilities. The analog of probabilities in this case is the support 

function. As a simple support function is a belief function, the probability assign­

ments give 

1 0 if B ? A, B 5* 6 ; 

S l if B = A] 

1 if B = e. 
This simple support function is said to be centred on B. 

As analysis shows, a large proportion of possible situations can be modelled using 

simple and separable support functions. However, an interprétation that is only 

capable of representing the frames of discernment with separable support functions 

is too restrictive. This restriction should be avoided if possible. The representational 

limits of the approach are discussed in some detail in Chapter 4. 

The background introduced to the point allows one to see how the beliefs in 
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différent propositions can be calculated, and how they can be updated with the aid 

of the Dempster-Shafer évidence combination rule. The application of the Dempster-

Shafer rule is demonstrated on the sanie humorous examples that Shafer used in his 

book [9], and that later became quite populär among the wider research community. 

This work follows the tradition and employs the familiär stories to illustrate both 

known facts about the theory and to show that the proposed procédures are adequate 

to the setting. 

In his book Shafer used four short stories: the burglary of the sweetshop, the 

cabbage seed, the alibi and the biased coin. As his analysis progressed, he showed 

that the alibi and the biased coin were effectively the same setting, so only the first 

three cases are used in this work. The stories and the calculations are according to 

[96]. 

The burglary of the sweetshop 

Sherlock Holmes investigates the burglary of the sweetshop. Initial évidence shows 

that the burglar is left-handed. Sherlock Holmes attributes a degree of belief S i to the 

fact. Later, new évidence émerges: it was an insider job. The degree of confidence 

about this new piece of évidence is s2- There is a left-handed clerk in the shop who 

comes under suspicion. What is the degree of belief in this clerk's guilt? 

The burglary of the sweetshop example involves two separate, but not contradic-

tory pièces of évidence. There are two separate frames of discernment to be combined. 

The first frame is 8 1 = {L, -<L} corresponding to the évidence about the burglar be-

ing left-handed or otherwise. Similarly, 62 = { / , ->/} reflects the évidence that the 

burglar may or may not be an insider. To calculate the belief in the left-handed 

clerk's guilt, the basic probability assignments on each of the frames of discernment 

are needed first. 

It is already known that mi({L}) = Si meaning that m i ( { 0 i } ) = 1 — s\. Similarly, 

on the second frame m2({I}) = s2 and ma({02}) = 1 — S2- The frame of discernment 

0 that is produced after combining 0i and 02 is 0 = {LAI, LA-»/ , - i /*A/, ->LA->I}, 

while the probability assignments for the éléments 0 are found according to the 

procedure given in Definition 3.1.2. From now on this frame is referred to as 0 = 

{LI, LO, RI, RO} making use of the obvious: LAI is left-handed insider, LI; LA-*I 

is left-handed non-insider or left-handed outsider, LO etc. To make things easier, the 

orthogonal sum of probability assignments is calculated with help the of intersection 

Table 3.1. The cells in the body of the table correspond to the intersections of the 

éléments in the frame of discernment 0 produced by combining Q\ and 02- Following 
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Table 3.1: Intersection table for burglary of sweetshop 
m\ © m 2 {LI,RI}s2 e i - 5 2 

{UiLO}sl {L[}siS2 {LIiLO}s1[l 

e i - si {LI,RI}(l-s1)s2 e ( i - S l ) ( i - -2) 

the tradition, rows and cofumns are labelled with both sets and their probability mass 
assignments. 

Reading the results from Table 3.1 gives 

(mi © m2){{LI}) = s i s 2 l (mi © m2)({LI, LO}) = S i ( l - s2), 

(mi © m 2 ) ( { L / , fi/}) = (1 - s i ) s 2 , (mi © m 2 ) ( 6 ) = s i ( l - s2), 

(mi © m2)(elsevjhere) = 0. 

Knowing the probability mass assignments on the new frame allows one to calculate 
the belief, plausibility and any other function of interest. 

In case of the left-handed clerk, the confidence in his guilt is estimated by looking 
at the interval between the value of the belief and the plausibility functions defined 
in équations (2.1) and (3.2). 

belmiem2({LI}) = s i s 2 , 

plsmi9m2({U}) = l - 6 c i m i e m a ( e \ { L / } ) = l - 6 e / m i f f i m 2 ( { LI,LO,RO}) = 1 - 0 = 1 , 

thus placing the confidence values into the interval 

[belmi(Bm2({LI}), plsmi@m2({LI})] = [ s i 5 2 l l ] -

T h e cabbage seed 

A mathematician of questionable gardening skills plants a seed in the pot. When first 
shoots are sprouted, the gardener puts support of ci that it is a cabbage (statement 
A). On a closer inspection the plant has two leaves, so it is a member of brassica genus 
with support of c 2 (this statement is B). The frame of discernment 6 in this case is the 
set of ali plants. To simplify the notation put A = {cabbages} and B = {brassicas}. 
Common sense also suggests that c 2 > Ci, even though this condition is not formally 
required. 
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Table 3.2: Probabi ity mass assignments for the cabbage seed 
m i © 7tt2 B C2 8 1 — C2 

A c i A c i c 2 A c i ( l - c 2 ) 

6 1 - c i B (1 - C l ) c 2 8 (1 - c i ) ( l - c 2 ) 

This example is différent from the burglary of the sweetshop. The two pièces of 

évidence still do not contradict each other, but one pièce includes another. If the 

plant is a cabbage, then it must belong to brassica gènus, but not vise-versa. 

Combining the évidence is then finding the orthogonal sura of the following mass 

assignments 

m\{A) = c i , 77 i i (6 ) = 1 - c i , m i ( e / s e t u / i e r e ) = 0 

and 

m2(B) = c 2 , m 2 ( 8 ) = 1 - C2, 7n2{elsewhere) = 0. 

The intersection table for m,\ and m2 is given in Table 3.2and it follows that 

( m i © m2)(A) = cic2 + c i ( l - c 2 ) = cx\ ' ( m j © m2)(B) = (1 - C i ) c 2 ) 

(mi © m 2 ) ( 8 ) = (1 — C i ) ( l - C2), (mj © m2)(elsewhere) = 0. 

Calculating probability intervais for both A and B then gives 

belmifBm2(A) = (mx@m2)(A) - c i , 

belmiem2{B) = ( m i ®m2){A) + ( m i © m 2 ) ( ß ) = cx + (1 - c i ) c 2 = Ci + c 2 - cxc2 

and, similarly, 

plsmi&m2(A) = 1 -plsmiQm2{e\A) = 1 - 0 = 1; 

plsmi&n2(B) = 1 - p / s m i e m 2 ( 8 \ B) = 1 - 0 = 1. 

The confidence intervais are then 

[belm1®m2{B),plsmi(Bm2{B)] = [ c i + C 2 - C i C 2 , 1]. 

The belief intervais above show that the new évidence did not change anything about 

38 



our beliefs in the fact that the plant could be a cabbage: they stayed the sanie. The 

belicf in brassica was strengthened after the évidence about thc plant being a cabbage 

was incorporated. To sum up, the beliefs in the detailed proposition did not change, 

but the belief in the general statement increased. 

Alibi 

The last example demonstrates the third possibility: two contradictory pièces of 

évidence. In terms of sets, such situation corresponds to two pièces of évidence 

represented by two non-overlapping sets. 

One person is arrested on a murder charge. A reliable witness provides an alibi 

for the accused with a degree of support si for the claim of innocence. On the other 

hand, circumstantial évidence gives s 2 support for the accused's guilt. This évidence 

can be represented as two frames @i = { / , ~>/}, where / is the set of ail people who 

have an alibi, and 0 2

 = {G, ~>G}, where G is the set of ail people who are guilty 

according to circumstantial évidence. The resulting frame 0 incorporâtes both Qx 

and 6 2 - The new frame will have two différent probability mass assignments: m\ for 

the first piece of évidence and m 2 for the second. Two pièces of évidence, however, 

contradict each other. In terms of sets within ©1 and © 2 it means that there are sets 

whose intersection is empty. Indeed, consider I Ci G. A person can either be guilty 

or have an alibi, but not both, so / fi G — 0. Both mi(7) and m 2 (G) are not zéros, 

so some of the earlier beliefs are attributed to the empty set or just wasted. The 

probability assignments are given by 

m i ( { ^ } ) — s i i m i ( { © i } ) = 1 — Si» mi(elsewhere) = 0, 

m2{{G}) — 5 2 ) « i 2 ( { © 2 } ) = 1 — S2i m2(elsewhere) = 0. 

Table 3.3 is the intersection table for this case. One of the cells contains the empty set, 

but the belief attributed to this celi is not zero. This wasted belief must be balanced 

by introducing the normalising coefficient N, which in the earlier examples was just 

one. For alibi example, N is calculated according to N = 1 — X ) x n y = e m i ( - ^ ) m 2 ( ^ ) — 

1 — mi ( / )m 2 (G) = 1 — S1S2. To get the actual beliefs in différent statements in the 

combined frame of discernment, the entries in the intersection table must be divided 

by N. 
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Table 3.3: Intersection table for alibi 
7711 © 7712 {G} s2 G 1-82 

{ / } *1 0 s\s2 { / } a i ( l - * 2 ) 

e i - s i {G} ( l - s , ) s 2 e ( i - S l ) ( i - 5 2 ) 

The normalised probability assignments then become 

- s2) ( m i © m 2 ) ( { 7 } ) = 

( m i © m 2 ) ( { G } ) -

1 - S i 5 2 

(1 - S l ) 5 2 

( m i © m 2 ) ( { 0 } ) = 

and zero elsewhere. 
The belief in the accused's innocence -

1 - S i S 2 

( l - S l ) ( l - a 2 ) 

1 - S ! S 2 

belmi(Bm2({I}) = ( m i © m 2 ) ( { / } ) = 
S i t 1 - ' ^ ) 

1 - 5 i S 2 

while the belief in his guilt is 

({G}) = (m1®m2)({G}) = (1 ~ si)s2 

1 - S l S 2 

The plausibility of either outcome 

. plsmi9ma({I}) = 1 - belmi@m2(e \ { / } ) = 1 - 6 e / m i e m 2 ( { G } ) 

and 

plsmi®m2({G}) = 1 - 6e / m i e m 2 ( e \ {G}) = 1 - 6 e / m i e m 2 ( { / } ) 

The probabüity intervals for each possibility are 

si(l - s2) 1 - s2 

({/»] = 1 — S\S2 ' 1 - S\S2 
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and 

[belmìmm2({G}),pls ({G})) = 
5 2 ( 1 - S i ) 1 - Si 

1 - S i S 2 1 — S i 5 2 

The outcome of évidence combination is quite predictable, beliefs in both possibilities 

are perturbed, and each side's case is weaker than it was in the beginning: 

si(l - s 2 ) s 2 ( l - s i ) 
Si > —- and s 2 > 

1 - S i S 2 1 - S i 5 2 

3.2 Semantic models 

3.2.1 Models and validity of formulae 

A basic définition of an intuitionistic Kripke model was first given in Chapter 2. 

The présent discussion demands more background knowledge, so some time will be 

devoted to filling in the lacunae. The Kripke model is a convenient tool that is 

used for différent purposes and in différent settings. Sînce their introduction, Kripke 

models have earned a fully deserved popularity among the researchers in philosophy, 

mathematics and computer science. Given the variety of applications, the définitions 

of Kripke models differ slightly from researcher to researcher. An interesting overview 

of various définitions of the Kripke model is given in [85]. A detailed analysis of 

Kripke's philosophy can be found either in his own works, say [69], or in monograph 

[70]. 

Définition 2.1.3 is closest to the one in [48]. Kripke models provide understanding 

of the reìational semantics associated with the Dempster-Shafer theory. Using Kripke 

models as a starting point has beèn a popular approach since the 1970's in many 

différent settings. A good review of possible directions of the cnquiry and basic 

results can be found in [97]. 

The background given in the two previous chaptèrs meant to help the reader 

to develop some kind of intuition about the building blocks of the Dempster-Shafer 

theory. A few observations below are intended to help develop a similar feel for the 

semantic models. Recali that a Kripke model is triple # = {W, R, V), where W is a 

set of possible worlds, R is a partial order (accessibility relation) on W, and V is a 

valuation that maps statements from C into UpW. 

To get a better intuition about the nature of relation R consider a local newsagent. 

Let W be the set of ail newspapers on sale, C be the set of reported news. Valuation 

V(p) shows which newspapers reported news p 6 C; relation R is quoting: xRy means 

that newspaper y, perhaps a small régional tabloid that cannot afford to hire many 
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reporters, can quote newspaper x, which can be a national broadsheet that has a lot 

of correspondents and bureaus around the World. 

* A Kripke frame is a Kripke model without a valuation function: a Kripke frame 

5 is a tuple 5 = {W, R), where W and R are as in Définition 2.1.3. Alternatively, one 

can refer to a model as a pair V) . 

The relationship between the propositions of C and their semantic model coun-

terparts is straightforward. A proposition can be instantiated at a node, and then it 

stays true in ail of the node's successors. The relationship between the truth of state-

ments in the real world is somehow more complicated. Modelling the reality using 

Kripke models as defined above leads to minor discrepancies of a particular type. The 

statement 'The solar system has eight planets' was known to be false until recently, 

because Pluto was classified as a planet and the count was nine. An example of the 

converse can be constructed easily too: 'Anatoli Karpov is the world chess champion. ' 

It is important though to remember that the model in question does not attempt to 

describe the world we live in, so the latter is impossible. In other words, if one built a 

Kripke model that describes the ranking of the chess players any time between 1975 

and 1985 (the time when Karpov was the undisputed World champion), he would not 

be able to adjust it to the modem reality. 

The limitation outlined in the previous paragraph is not too important for the 

purposes of évidence combination, though. The author is more interested in combin-

ing old and newly learnt évidence rather than tracing the changing values of différent 

statements. The impossibility of changing the truth assignment of some variables 

can be easily overcome by introducing an extra piece of évidence that contradicts 

the évidence introduced earlier. This situation was analysed when the évidence was 

combined for the alibi on page 39. 

Kripke models are capable of representing richer semantics than the one of Cl, 

which is the set of formulae true at a single node. The gain in representational 

power is accompanied with increased complexity because it requires a special valua­

tion function that keeps track of the formulae valid at différent states of the world. 

The valuation function also makes checking a validity of a formula — a much more 

complicated business than in the case of Cl. Developing an inferential apparatus 

requires the terminology that describes the truth and validity of formulae. The first 

concept to be introduced is the inductively defined relation (=. 

Définition 3 .2 .1 (Validity o f formulae) Let SDÎ = {W, R, V) be a Kripke model, 

let x G W, (f), yj G For C, p G V a r £ , then (971, x) \= x, which is read 'x is true at x 
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in SDÌ7 if: 

(mtx)\=p iff xev{p)) 

{VJl,x)\=<t>Aip iff. (SDÌ, x)\= <j> and (SDÌ, x) \= ip; 

(SDÌ,x) [=0VV iff (SDÌ,a;) (= <f> or(SDÌ,x) \= ip; 

(9tt, x) (= 0 -+ ip iff for ali y €W such that xRy, (SOI, y) \= <f> implies (SDÌ, y) \= tp; 

(m,x) t̂ x. 

There are several degrees of a formula's validity within the realm of intuitionistic 

or si-logic. The weakest degree of validity is the truth at a point in a model. In this 

case it is said that a formula is satisfied in a model. Following [48], we denote by 

V(4>) the truth set of a formula 

V((j>) = {x € W | (93ì,x) f= 0 } . 

Thus, V{<j>) is then the set of ali nodes where the formula is valid. 

A formula <fi is trae in a model if (9ÏÏ, x) \= 4> for every x € W. The validity in a. 

frame is even stronger. A formula <f> is satisfied in a frame # if it is (SDÌ, x) \= <j> for 

some x and some SDÌ, such that Wl — V) . A formula is true at a point x G # if 

(371, x) f= 0 for ali models such that 27Ï = ( J , V). Finally, a formula <f> is valid in 

a frame $ if it is true in ali models based on A formula <f> valid in a frame # is 

denoted § \= <f>. 

The notion of réfutation is symmetric to the notion of truth: a formula <fi is refuted 

in a model 97Î if it is not true in it. 9JÎ is then a counter model to <f>. Similarly, a 

formula is refuted in a frame 5 if it is not true in it. 

To make manipulating models easier they are often represented graphically: the 

points are represented by circles, the relation R by arrows, the propositions true at a 

point are listed below it to the right of the vertical line, the ones that are false — to 

the left. The reflexive pairs xRx are not listed. For example, model SDÌ = (IV, R, V ) , 

where W = { w i , w 2 } , £ = {p,q, V} , R 3 (wi,u/ 2), V(p) = {wuw2} and V(q) = {u>2} 

is in Figure 3.2. 

W\ w2 

o o 

p,pVq p,q,pVq 

Figure 3.2: A simple Kripke model 
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3.2.2 Refuting tertium non datur 

The notion of a counter model allows one to demonstrate how the objectives stated 

in Section 2.3.3 are met by a logie represented by Kripke frames with more than one 

node. The example below is famous and used by many researchers. In this work it is 

quoted according to [61]. Consider a model such that W — {w0) wi}, and the relation 

fi = ( { w o , ^ i } ) - Let V(p) = {UÌI} and let V ( ) = 0 for any other propositional letter. 

Graphically, this model is just a pair of nodes joined by a single edge given in Figure 

3.3. Let us now compute the truth set V(p V (p —> _L)). From Définition 2.1.3 it 

follows that 

V{p v (p — X)) = V{p) U V(p ^ X ) = {w1}U V(p -> X ) = {Wl} u 0 - M . 

But this means that p V (p —* X) is not valid at wo. 

Formula p V (p —* X) is refuted at the root of a simple model. In this context, the 

root is the node that does not have any predecessors. Refuting the formula at a root 

of a model means that, as long as a model contains at least two nodes and a variable 

instantiated to being true at the root's immediate successor, it can serve as a counter 

model for p V (p —» X ) . The only models that do not réfute tertium non datur are 

the models that çonsist of a single node or of a collection of isolated single nodes. 

Such models are not expressive enough for our purposes. Later, it will be shown that. 

models that are collections of isolated nodes correspond to the situations that precede 

évidence combination and thus are only a subset of the models that interest us. 

3.3 Translating frames of discernment to Kripke 

models 

The procedure developed in this section should uriambiguously and meaningfully link 

the Dempster-Shafer theory and Kripke models. Unambiguous link means that the 

corrèspondence between Kripke models and frames of discernment should be a one to 

w 0 wi 

o *-o 

Figure 3.3: The model refuting p V (p 
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one and onto. Meaningful, in the context, means that one should be able to calculate 

the beliefs using both the frame of discernraent and its corresponding Kripke model 

without any loss of information. 

The construction begins with defining the Kripke model building procedure based 

on the knowledge of the frame of discernment. Then, the examples from Section 3.1 

are presented by Kripke models and the belief functions induced on the frames are 

calculated. Finally, it is proved that the belief functions induced on Kripke models 

are always equal to the ones calculated directly from the frames of discernment, thus 

demonstrating that the proposed procedure gives a meaningful semantic interpréta­

tion of the Dempster-Shafer theory. The results presented in this section were first 

published in [84], 

3.3.1 Constructing set W 

Kripke models for frames of discernment are built using an intuitive procedure. The 

présentation starts with a very general idea about what is wanted from the semantic 

interprétation of frames of discernment and show how the objectives may be achieved 

formally. First of ali, the semantic models must serve as inferential tools that facilitate 

calculating the support of statements known to be true. The models should also help 

to validate or réfute formulae whose support is not given explicitly, but could be 

inferred from the known premises. 

It is already known that attributing some belief to a particular statement should 

at least amount to instantiating a variable in a Kripke model. Cl is the set of formulae 

that is validated at a single node Kripke model. If there is only support for a single 

statement, and the statement is certain, the situation must be in the realm of Cl. 

Whenever more than one statement is supported, the semantics is richer, and the 

departure from Cl may be needed. The obvious way to represent such situation with 

semantic models is to have différent nodes for différent statements that are supported. 

The next objective is to represent évidence combination and update. Introducing 

new évidence affects relation R and valuation V. Relation R should show possible 

paths of consistent reasoning, while the valuation function is responsible for deter-

mining at which nodes a particular formula is valid. The degree of belief in each 

proposition should be determined by the total belief assigned to the nodes where it 

is true. First, one needs to decide which nodes to include and then analyse their 

relationships, thus constructing R and V. 

The procedure is twofold: it represents mass assignments on some existing frames 
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of discernment, and it provides a tool for combination of évidence represented by two 

différent mass assignments. While translating frames of discernment to elementary 

Kripke models is not too exciting, the évidence combination in terms of Kripke models 

is qui te effective and leads to constructing an inferential apparatus différent from Cl. 

In the Dempster-Shafer theory universe there is a trame of discernment G, which 

is a set along with some portion of its power subset 2 e discerned by the particular 

setup. The mass assignments over éléments of 2 e form the support function S. The 

mass assignments also allow one to calculate the beliefs for différent propositions, but 

recali the remark about the general belief functions: they are a very broad class and 

always useful from practical viewpoint. The support functions are more manageable 

while being general enough to describe almost any conceivable setup. It is important 

to remember that différent support functions give rise to différent Kripke models. In 

some sensé, the purpose of the procedure is not to model a frame of discernment 

itself, but to find the best représentation of support functions defined on frames. 

Representing support functions requires amending the définition of the objects 

that are studied. Instead of operating with semantic models the focus of attention is 

now switched to the semantic models with mass assignments. It will be demonstrated 

shortly that the structure of a model dépends on the support function that induces it. 

The starting point in this case is the frame of discernment and the support function 

over it. 

Assigning probability masses to différent subsets of 0 is unambiguously described 

through the propositions in some language C, which serves as a bridge between the 

Dempster-Shafer theory universe and the universe described by the Kripke models. 

As defined earlìer, a Kripke model is a triple 5 = (W,R,V), where W is the 

set of possible worlds, each with statements in C that are true in it. Relation R 

shows the possible direction of inference, while valuation V links V a r £ and UpW. 

The Kripke models for the Dempster-Shafer theory includes information about the 

mass assignments for each possible world. In order to distinguisi! between the Kripke 

models as a general concept and the Kripke models analysed in this work, a notion 

of Kripke model with mass assignments is used. 

Définition 3.3.1 (Kripke model with mass assignments) A Kripke model with 

mass assignments is a four tuple £ m = (3, ™™) = {W, R, V, mj), where W, R, and V 

are éléments of an intuitionistic Kripke model defined in Chapter 2, and mw : W —* 

[0,1] is the mass assignment on the éléments of set W. 

To get a meaningful transition from 0 to 3m one needs to form set W and then 
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determine the relationships among its éléments, thus constructing R. Valuation V is 

partially determìned by probability mass assignments. 

Set inclusion affects the beliefs: assigning some probability mass to a subset of 

a set changes (increases) the set's support. The relationship does not affect the 

subsets — adding beliefs to more spécifie propositions increases belief in more general 

ones. In terms of semantic models it means that the nodes that represent more 

general propositions must see the nodes that represent more spécifie ones. The last 

observation gives us a hint about the way to construct relationship R. 

Recali, that the core of a support function S on frame of discernment 6 is a 

collection of éléments of 2 e such that their mass assignments are not zero: X e C(S) 

if X € 2 e ; m(X) > 0. One can think of core éléments of a frame of discernment as of 

statements whose validity is known. It is then naturai to expect every core élément 

to translate into a separate node with some probability mass assigned to it. It will 

soon be shown that the intuition is correct, but requires some formai trickery in order 

to make it agree with the rest of requirements. 

The first élément in the pair {$,mw) from définition 3.3.1 is then determined by 

the core of the support function represented through the node mass assignments m^. 

Ih other words, the support functions with identical cores, but not necessarily identical 

mass assignments of the éléments, resuit in the same model In the discussion that 

follows the abbreviated version of définition 3.3.1 will be used. Whenever a référence 

made to a Kripke model # = (W, R, V) it includes ali possible mass assignments 

rtiw that represent support function S such that its core C(S) induces set W. The 

abbreviation makes sense, because the models that represent support functions with 

the same core are semantically équivalent: they validate the same set of formulae, 

even though différent beliefs can be attributed to the same statements depending on 

Thus, to translate support function S to the language of Kripke models one has 

to assign a separate node w € W to each élément of C(S). On the other hand, even 

the simplest support functions often assign some probability mass to the whole of 

the frame of discernment 6 . While perfectly reasonable from the theory of évidence 

viewpoint, such an assignment is not very convenient from the point the semantic 

models' point of view — it leads to existence of a 'supernode' whose support is one 

and thus equals to the support of the model's totality. In semantic terms it is more 

convenient to have a node where none of the core éléments is known to be true. This 

node is différent from the node where ali the core éléments are known to be false or 

the node that represents the whole of 0 . The meaning of this node will be illustrated 
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in more détail once ali the necessary définitions are given. 

The requirement to assign a node to each core élément of S formally amounts to 

a non-empty valuation for each such élément that includes a node that validâtes this 

élément and nothing else, meaning that for any X 6 C(S), there is a node w € W 

such that w 6 K(r) and w £ V(£), where propositions r and t are r — "x € Xn and 

t = "x € V" for any set Y ^ X. It would also be convenient to have V(o) = W, but 

not a single node v such that V(o) = {v}, where 'obvious' proposition is o = "x G 0 " . 

To progress further, one now needs to scrutinise relation R. The naturai interprétation 

of R could be the set inclusion relationship on 0 — the support of a more general 

statement contributes nothing to the support of a its subsets, but support of subsets 

increases beliefs in the more general proposition. 

Définition 3 .3 .2 (Set W) Let S be a frame of discemment with support function 

S, let C(S) be the core of S. Consider a Kripke model 5 m = {W, R, V,mw) meant to> 

represent 0 . Language C is the same as defined on page 24, where the set of variables. 

V a r £ = { x € A : A Ç 0 } . Let p be a variable in language C: 

p = "x(Ev4";p<E£; A C 0 . 

Then for every set A € C{S), A ^ Q, there must be a node w € W such thatw € V(p). 

Relationship R is determined by set inclusion on 0 , and may be pretty easily 

described by the définition below. 

Définition 3.3 .3 (Relation R) Let §m = (W7 R, V, m^} be a semantic model with 

mass assignments for frame of discemment 0 . Assume that 

p="xeA";q="xeB"-pìq€C-AìBCe; 

and let 

v G V(p), w € V(q)\ where v,w € W 

then 

1. IfAnB^Q, thenV(phq)^%; 

2. If A fi B = 0, then vl/lw and wtflv, where alflb means that a cannot see b; 

3. B C A and v, w such that w € V(p) \ V(q) and v € V(q) requires that vRw and 

wfiv, given A,B <£ C(5); 
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4- If there is w € W such that w € V(p), and TTI^UJ) < 1, then there musi exist 

v G W such that v £ V(p). 

The second part of condition 3 may look confusing at first glance. The require-

ments for the sets not to belong to the core of the support function is explained below 

and stili stems from the need to have non-zero mass assignments for the nodes that 

represent core élément and stili to account for the inclusion relationship. In many 

cases condition 4 is équivalent to having r = "x ^ A" and v € V(r ) . 

Next, the probability masses are assigned to existing nodes. There is nothing 

too complicated about this step; the already known mass assignments of the core 

éléments of the support function should be preserved. It is done with one exception: 

because of the reasons outlined above, there is no node that corresponds to the whole 

of the frame of discernment. Instead, a node that does not validate statements true 

at any other node is introduced. This node does not validate the négations of those-

statements either: it rather stores the unassigned mass. 

Définition 3.3 .4 (Node mass assignments) Let p be as in Définition 3.3.3. Let 

S be a simple support function centred around A. The probability masses in the 

corresponding Kripke model = {W, R} V^mJ), where W = {wnwz} and V(p) = 

{u>i} are then defìned according to the following rules: 

if m(A) = s, then mw(w{) = s, (3.8) 

and 

ifW\ V(p) = w2, then mw(w2) = 1 - s. (3.9) 

The subscript w is used for to stress the différence between mass assignments 

of éléments of 2 e and mass assignments of the nodes in W. Even though the values 

coincide on the core éléments of support function S, the domains of the functions are 

différent, and they represent différent things. The définition above can be extended 

to arbitrary support functions: 

Définition 3 .3 .5 Let S be a frame of discernment, let S be a support function over 

0 and 5 be a semantic model representing this support function. The probability mass 

assignments of the nodes in # are then defined according to 

VA G C(5); 3w e W, such that m^uj) = m(A). 
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It is important to see that in this case existence of a node whose mass is equal to 
the mass of élément A from the core of the support function, does not mean that 
proposition "x G A" is valid only at this node. Rather, the node supports exactly 
this atomic proposition and nothing else. 

To facilitate the discussion, note that a Kripke frame is a directed graph. In a 
directed graph the nodes that do not have any outgoing edges except for the ones 
pointing to itself is called a terminal node [87]. 

Only terminal nodes have non-zero mass assignments, non-terminal nodes have 
zéro mass assignments. The support function for non-terminal nodes is the sum of 
mass assignments of the terminal nodes reachable from them: 

Equation (3.10) gives an explanation why special amendments for the core élé­
ments in Définition 3.3.3 are needed. According to the définition above, it is enough 
to have a terminal node for each core élément. There is no problem in case of a simple 
support function — there are two separate nodes, each is terminal, and each one has 
some mass assigned to it. In case of a more complicated support function one may 
run into a situation when some core éléments include each other. In this case, the 
model should have a non-terminal node with its own mass assignment that may differ 
from the sum of the masses of terminal nodes reachable from it. Such a frame can 
not be a collection of disconnected nodes." In this case calculating the beliefs becomes 
impossible. There is a fairly straightforward trick that helps to overcome the hurdle 
without violating any of conditions stated above. 

Let us first look at translating a frame with a simple support function to a Kripke 
model and then at a procédure of translating a frame with an arbitrary support 
function over it. 

3.3.2 A simplest frame 

As before let 0 be a frame of discernment and x be the quantity of interest. Let the 
value of the quantity x be within set À C 0 , with m{A) = S\, nothing else is known. 
The support function for this frame of discernment is 

Vu, ru G W such that vRw, mw(v) = 0, (3.10) 

1 0 if B^A7B^e; 
S l if B = A; 
1 if B = S. 
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According to the procedure outlined in the previous section, the minimal W is then 

{101,102}, relation R is empty except for the refìexive pairs. Valuation V is V(p) = 

{wi} and W \ V(p) = { t i ^ } , where p as in Définition 3.3.2. Graphical représentation 

of the model is in Figure 3.4. 

o o 

P 

Figure 3.4: A single piece of évidence Kripke model 

In the model above mw{wi) = S\ and 7 7 ^ ( ^ 2 ) = 1 — si- The assignments are 

done under the assumption that the total should be one over the whole model: a very 

basic requirement for any evidential setup. These numbers are the basic probability 

assignments and may be used for calculating the values of the corresponding belief 

function. 

The set of atomic propositions validated at node w 2 is left empty. This is in line 

with the earlier discussion about trying to avoid creating 'supernodes'. Moreover 

having a node that validâtes lx is in G' violâtes the conditions of Définition 3.3.3: 

this node cannot be a terminal node, but it must have a non-zero mass assignment. 

Generally, the nodes that correspond to the statement of this kind are not listed: 

while not giving any additional information, they must be connected to every node 

in a model obscuring the rest of relationships. Recali the earlier remarks about a 

'supernode'. There is no contradiction to the originai premise, the mass assignment 

of a non-terminal node is the sum of the assignments of the nodes reachable from it. 

The belief in the statement above should be zero and it is: as it is composed of the 

mass assignments mw(wi) and mw(vj2). The belief in the statement corresponding to 

m(G) = 1 — s is the belief in any statement that is not based on the premise that A is 

true, so it is mw(w2)- When the mass assignments are distributed, it is important to 

remember that the ultimate goal of presenting frames of discernment through Kripke 

models is to calculate the beliefs, not the mass assignments. 

3.3.3 A slightly more complicateci model 

One of the attractive features of the Dempster-Shafer theory is in its flexibility. In 

particular, the only requirement for the mass assignment is not assign any beliefs to 

the empty set and to have an overall sum of one. It does not require any kind of mono-

tonicity or additivity. In most cases, especially when modelling human behaviour is 

concerned, such 'naturai' conditions are met. On the other hand, the Dempster-
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Shafer theory évidence combination rule is a more powerful procedure that handles 

non monotonie mass assignments as well. The example below shows a non monotonie 

mass assignment can be handled with the aid of the proposed interprétation. 

Assume (the function is taken from [98]) the following mass assignments about 

possible colour of some faraway object which can only be red, white, or blue. The 

sensor has some confidence in determining the colours, but it also assigns some lower 

masses to possibility of the object being one of two or to any colour. The situation is 

described by the mass assignment in Table 3.4. Instead of a single centre, the support 

Table 3-4: A non-monotonie mass 
Hypothesis Mass Belief 
Null 0 0 
Red 0.35 0.35 
White 0.25 0.25 
Blue 0.15 0.15 
Red or White 0.06 0.66 
Red or Blue 0.05 0.55 
White or Blue 0.04 0.44 
Any 0.1 , 1.0 

function is centred around several core éléments. The core is { R, W, B, R U W, R U 

B, W U B, R U W U B], every core élément is represented by an atomic proposition 

like x € R U W etc. Using the already familiär notation the support function S is 

given below: 

X £ C(S); 

X = fi; 

X = W; 

X = B, 

RUW-

RuB] 

WuB; 

x = e: 

Every core élément must have a node assigned to it. However, this S cannot be 

represented by seven disconnected nodes, because some of the core éléments include 

some other core éléments and according to Definition 3.3.3 must see each other (if they 

were not core éléments). Moreover, if this condition is met, then some non-terminal 

nodes must have a non-zero mass which also contradiets the rules introduced earlier. 

S(X) = { 

0 if 

m(R) = 0.35 if 

m(W) = 0.25 if 

m(B) = 0.15 if 

m(R)+'m{W) + m(RuW) = 0.66 if 

m(R) + Tn{By+m{RuB) = = 0.55 if 

m(W)-rm(B) + m(W U B) = 0.44 if 

1 if 
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I 

A simple trick helps to avoid both of the problems above. Ignore the masses 

at first, assign a separate node for every core élément. On the picture every nodeis 

labelled with the core éléments rather then with corresponding propositional variables. 

To save space in the picture, the core élément R U W U B is labelled 6 . Copy the 

frame using the map e(x) — y,xRy,yftxWx 6 8 , reflect the resuit of this opération 

on the Kripke model. Finally, induce R according to set inclusion, but only between 

nodes in the first and the second rows. Formally, it means that new edges on the 

model will only be added between non-terminal nodes (i.e. the 'ends' of the edges). 

o o o o o o o 
BuWW Bu RB B R RUW 

(a) Core éléments 

BUWW BuRB B RRUW 
Q O O O O O O 

BSw^ÈuRe òb òrMuw 
(b) After copying 

BuW W BUI® B RRUW 

BuW W BuRB "B "RRuW 
(c) Adding the new edges 

Figure 3.5: Building a model for a non-monotonie mass assignment 

The steps outlined in previous paragraph are in Figure 3.5. At first, a node is 

assigned to each core élément. This assignment produces a model in Figure 3.5(a). 

The only différence between this model and the models that were considered earlier 

(recali disjointed nodes in examples about évidence combination) is that ali the él­

éments represented by the nodes belong to the same frame of discernment. On the 

other hand, the model does not yet give full information that can be retrieved from 

the frame of discernment — no subset/ superset relationships are shown, and thus 

the only conclusions that can be drawn from the model at the moment are the degrees 

of confidence attributed to the core éléments. 

Picture 3.5(b), shows what happens if the nodes of the original frame of discern­

ment are copied. It is important to note that even though in terms of sets nothing 

has changed, the semantic of the model has changed. Kripke model on Figure 3.5(a) 

is not équivalent to the one on Figure 3.5(b). A model that contains only single nodes 

vérifies ali the formulae in Boolean logie Cl. Recali that the model in Figure 3.5(b) 
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refutes the law of excluded middle. The goal is to build a logic that allows 'strict 1 

inference without resorting to non-constructive proofs,so the process is on the right 
track so far. 

The last step is shown in Figure 3.5(c). The only nodes that gained new edges were 
the nodes that were generated at the very first step. In Kripké model's terms, this 
condition means that only non-terminal nodes can gain new edges, and that there are 
no edges between terminal nodes. This condition might seem a little counter intuitive, 
but it only appears here because of the nature of the mass assignment since the mass 
assignments of the core elements describe the beliefs attributed exactly to them. It 
is also known that the beliefs that are put upon non-terminal nodes are made of the 
masses of assigned to the terminal nodes that can be reached from them. In this 
case, the mass assigned to the event itself (say object being Red or White) is smaller 
than the masses of its subsets. The small confidence in the event itself is reflected in 
the low mass assigned to corresponding terminal node. Higher belief and plausibility 
of the same event are reflected in the sums of the masses of the nodes that can be 
reached from the corresponding non-terminal node. 

The terminal node corresponding to the same event occurs later then the non-
terminal one. Semantically, it means that even though one can probably verify more 
formulae at the terminal node, it can only be done with confidence such that be-
lief=plausibility=mass. There are fewer formulae validated at the earlier node, but 
there is higher confidence put on them: belief is no longer equal to plausibility. 

3.3.4 Updating the evidence 

The two examples demónstrate how a simple support function and an arbitrary (non-
separable, non-monotone) support functions can be translated to Kripke models. This 
demonstration gives us enough insight to proceed towards a more interesting task-
updating the evidence. 

There are two possiblesituations — homogeneous and heterogeneous evidence. 
Heterogeneous evidence involves two different support functions that put some con­
fidence on different statements. If supported statements overlap, then there is non-
contradicting confidence, if the statements do not overlap, that means that different 
pieces of evidence contradict each other. Homogeneous evidence means that there 
are different support functions that support exactly the same statements. 

Heterogeneous evidence may be thought of as the situation when the same decisión 
maker learns new facts. The homogeneous case corresponds to the situation when 

54 



two or more différent décision makers describe their beliefs attributed to the same 

facts. 

The latter situation gives less room for inference. The only update that may 

happen will change the degrees of confidence attributed to the statements known to 

be true. In other words, it does not change the set of true formulae, but updates their 

support. 

In case of heterogeneous évidence combination, the set of true formulae changes. 

From the semantic point of view the heterogeneous case is more promising. Even 

though the resulting semantics is more complicated, the procédure for heterogeneous 

évidence update is simpler, or, better said, less awkward. Heterogeneous évidence 

combination is illustrated on Shafer's famous examples already considered in the 

introduction to the Dempster-Shafer theory part of the chapter. 

Homogeneous évidence combination 

Consider two elementary mass assignments (simple support functions) 

= si; m i ( 6 ) = 1 - su 

m2(A) = s 2 ; rn2(S) - 1 - s2.. 

Both mass assignments support exactly the same proposition, but give rise to two 

différent support functions that reflect différent degrees of confidence in statement 

attributed to set A. Both functions are of the same form given below: 

1 0 if B^A-B^S, 

S i if B = A, 

i if B = e, 

where i = 1,2. This situation can be interpreted as two décision makers expressing 

their opinion on the same matter. Updating the évidence results in a certain common 

confidence level. There is nothing new to this situation — both pièces of évidence 

are combined the same way as was already demonstrated in relevant sections. 

The intersection table for thèse two mass assignments is in Table 3.3.4. Since both 

mass assignments support the same propositions, the new mass assigned to A is the 

same as the mass assigned to its subsets. The table gives: 

n i i @'Tn2(A) = sis2 + si(l - s2) + s 2 ( l - s i ) = s i +'s2 - sis2, 

55 



Table 3.5: Homogeneous évidence intersection table 
m i © m 2 A si 9 (1 — s i ) 

A s 2 A S1S2 A s 2 ( l - s i ) 

8 (1 - s 2 ) Asi{l~s2) 0 ( l - s i ) ( l - s 2 ) 

and 
m i © m 2 ( 0 ) = (1 - s i ) ( l - s 2 ) . 

It was already shown that such mass assignments give a simple support function of 
the form 

A simple support is represented by a simplest two-node model. The only point that 
is not entirely clear is how this two-node model is produced as a resuit of combining 
two original models that are constructed unambiguously. A little analysis shows that 
there is nothing especially tricky about the situation. The only drawback of such 
évidence combination is its apparent awkwardness that requires a few steps to arrive 
exactly to the point where it started bar the mass assignments. Original semantics 
is represented by two two-node models shown in Figure 3.6(a), since the évidence 
is supported by two différent mass assignments the masses assignéd to the nodes 
are listed next to them. The intersection table 3.3.4 induces the model given in 
Figure 3.6(b), the new nodes are labelled with the sets they represent (their mass 
assignments are not known yet). After analysing the model in the picture one can see 
that some nodes are actually équivalent (they have the same incoming and outgoing 
edges), so they can be collapsed into single nodes resulting in model given in Figure 
3.6(c), the nodes now are labelled with the sets membership in which they validate. 
The last model is différent from the model for a single support function earlier with 
the new mass assignments listed next to the nodes. The model in Figure 3.6(c) has 
a 'supernode1, but this situation was already discussed and semantically the model is 
équivalent to the one in Figure 3.6(d). 

3.3.5 Building the models 

Définition 3.3.3 is used to construct the Kripke models that represent the frames of 
discernment describing the examples from Section 3.1.2. 

' 0 if B ± A; B ± 0 
®m2{B) = < Si + S 2 - S i S 2 if B = A, 

. 1 if B = e. 
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o o 

O 
m2(A) mate) 

(a) Core éléments prior to évidence update 

mi[A) rm (6) 

\Ane 

&Ar\A À e n e 

|ma(j4]v4ne| m2(Q) 

(b) Translation of intersection table 

0> o o O 

I A I 6 I mi © 7*1204)1 mi © m2(B) 

(c) The model after collapsing identi- (d) The final model 
cal nodes 

Figure 3.6: this is homogeneous évidence 

Burglary of sweetshop 

The story behind this example is found on page 36. Recali, that known facts may 

be represented by two elementary frames 0 i = {L, R} and 02 = . { / , 0} that are 

later combined into a universal frame of discernment 0 = {LI, LO, RI, RO} and two 

différent probability assignments over its subsets. 

First piece of évidence tells the thief is a left-handed person m\({LÌ, LO}) = 

5i,77ii(0) = 1 — S\,m\{elsewhere) — 0. The second piece of évidence tells that the 

thief is an insider m2 = ({LI, RI}) = s2,m2(Q) = 1 — s2,m2{elsewhere) = 0. Even 

though there is only one frame of discernment and two pièces of évidence over it, more 

formai way to look at the same situation includes two separate frames of discernment 

with two separate mass assignments combined into © after évidence update. 

The same distinction works for Kripke models: prior to the évidence combination 

there are two elementary models, similar to the ones in Figure 3.4, that are later 

combined into a new, more complicated one. The initial setup is represented in Figure 

3.7. The first frame is 0 i = {L, R} following the notation abuse introduced earlier, 

induces nodes w\, w2. The second frame is Q2 = {1,0} gives nodés w^, W4. The 

relation R is empty except for reflexive pairs. It is the situation when two separate 
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W4, 1 — S2 

w2,1 - Si 

Figure 3.7: Burglary of sweetshop, initial setup 

pièces of évidence are presented but not combined. To update the évidence one has 

RI 
\LO 

W>8Ç> W 5 Q ^7 
RO 

Figure 3.8: Final frame for burglary of sweetshop 

to combine two separate models. This is done by looking at the possible intersections 

of éléments of Qi and 62 and then constructing R according to rules ( l)-(4) from 

Définition 3.3.3. The resulting model shown in Figure 3.8. To preserve the readability, 

the probability assignments for the points are not listed on the picture, instead, they 

are in Table 3.6. 

Before looking at the probability mass assignments in the new model, the following 

should be considered. When the data is combined, a new probability assignment 

function is constructed. The new function has the core différent from the core of 

the original mass assignment functions. The terminal nodes in the new model are 

différent from the terminal nodes of the original models. To get the mass assignments 

for this new function assume that given two pièces of évidence with basic probability 

assignments m\(A) = S\ and m2(B) = s2, the updated belief in A A B, where A A B 

is an obvious shorthand for lx 6 A1 AND lx G B'(this abbreviation will be used in 

the following sections), is given by m(A A B) = Sis2 and that the proposition A A B 

merits a new, terminal node. Shafer used the same postulate for developing the 

évidence combination rule. Keeping the above in mind and using the steps outlined 

in Définitions 3.3.3 and 3.3.4, the procedure yields the results given in Figure 3.8 and 

Table 3.6. 

When the graphical représentation of the model is complete, the sum of basic 

probability assignments is checked. The basic probabilities assigned to the terminal 

nodes add up to one. The degree of support for any of non-terminal nodes is retrieved 

by adding the probability assignments of the terminal nodes that could be reached 

from them. 
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Table 3.6: Probability assignments for Burglary of Sweetshop 

Node Wi mw(wi) Node Wi mw(wi) 

Terminal Nodes 
w5 - s 2 ) w7 (1 - si)s2 

w6 ( 1 - S l ) ( l - S 2 ) w8 sis2 

Non-terminal Nodes 
mw(w5) + mw(w8) - Si w 3 mw(w7) + mw(w8) = s 2 

. U)2 
mw(we) + mm(w7) = 1 - S i W4 mw(w5) -f mw(wG) = 1 - s 2 

In Table 3.6 we introduce yet another slight abuse of notation: only the terminal 

nodes have probability masses assigned to them; the non-terminal nodes have some 

beliefs equal to the sum of masses of the terminal nodes reachable from them. How-

ever, these are not exactly the same as the beliefs discussed in the Dempster-Shafer 

portion of the work. For the lack of a better term and to keep the notation consistent 

these values are still called masses and denoted mw(wi). For example, the belief that 

a thief is left-handed is now équivalent to belief in mw(w{) = mw(w5) + m^ftus) = 

m((LI) V (LR)) = 5 j s 2 + S i ( l — s 2 ) = s\. It is the initial belief attributed to a 

left-handed suspect. The created model does not change the initial beliefs. It rather 

gives beliefs attributed to some new statements. The next example shows when and 

how initial beliefs may be updated. 

Cabbage seed 

The available knowledge can' be represented by two frames of discernment 0 i = 

{^4, - I J 4 } and Ö 2 — {B, ~*B}. The mass assignments for the éléments of these frames 

of discernment were given when the example was first analysed on page 37. Assigning 

nodes is also straightforward: both frames of discernment are represented by two 

nodes that do not see each other. Having two isolated nodes is the case whenever 

only one statement is supported. Such models show the situation when a décision 

maker has only two options — either to believe in the statement or in its négation. 

The Kripke model representing the example prior to the évidence combination is 

identica! to the one in the burglary of the sweetshop. The model after the évidence 

combination has fewer nodes than the sweetshop's: the intersection Table 3.2 shows 

that since one of the pièces includes another there are only three terminal nodes. 

Figure 3.9.shows the model corresponding to the cabbage seed example. 

In Figure 3.9, note that node w\ is not a terminal node anymore, even though 
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it was in the original model. The opposite is true for node w3: it stayed a terminal 

node even after the evidence was combined. Nodes W5 and VJQ are the ones that were 

created after the evidence was combined. What happens to nodes W\ and w3 is 

explained by looking at the intersection table. In the formulae below, Vi and V2 are 

the valuation functions of the models prior to the evidence combination, and V is the 

valuation function for the model given in Figure 3.9: 

V1(A) = {w3}, V^A) = W , 

V2(B) = { W l } , K 2 (- .B) = {w2}. 

Checking the intersections of the pieces of evidence gives us the following set of 
statements that merit a terminal node: A A B = A, A A ->B = 0, -*A A B, and 
->A A -iB. The model has only three terminal nodes, one of which, w3, is inherited 
from the original model. The corresponding beliefs are in Table 3.7. A straightforward 

Figure 3.9: Cabbage seed 

check shows that the beliefs attributed to the terminal nodes add up to one and thus 

no normalisation is needed. Calculating the corresponding belief function gives the 

same beliefs as in Shafer's example. The model is a truthful representation of the 

classical example. 

Table 3.7: Probability assignments for Cabbage Seed 

Node Wi Node Wi mw(wi) 

Terminal Nodes 
w3 w5 ( l - C l ) ( l - c 2 ) . 
w6 (1 - c i ) c 2 

Non-terminal nodes 
Wi mw(w3) + rn^iwo) = c\ -\- c2 - c\c2 w2 771^(^5) = (1 - C i ) ( l - c 2 ) 

w4 ™tv(W5) + m ^ u / ß ) = 1 - Ci 

To see how combining two frames of discernment affects beliefs, consider the total 
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belief attributed to node u)\. From Table 3.7 the sum of mass assignments of the 

nodes reachable from w\ is 

mw{w{) = TNw(wz) + mw{w&) = C\ + (1 - c i ) c 2 = d + c 2 - c i c 2 , 

which, along with c 2 > ci, tells us that the resulting belief in proposition B has gone 

up. At the same time, the support for proposition A stays unchanged. 

Start again with two elementary 2-node frames: 61 = {G, ->G} and 6 2 = { / , - > / } . 

The resulting frame after the évidence combinationhas nodes for ail possible intersec­

tions between éléments of ©1 and 0 2 . There are more such nodes thanin the cabbage 

seed case. Two pièces of évidence contradict each other, so no piece of évidence from 

one frame can include another one. The statements like 'not guilty AND innocent' 

make perfect sensé and thus resuit in new nodes. The only impossible intersection is 

then 'innocent AND guilty', which is missing from the resulting model. The model 

after the évidence combination is shown in Figure 3.10. The model is différent from 

the two preceding ones: the mass assignments for the terminal nodes do not add 

up to one anymore, so some normalisation procédure is needed. The normalisation 

follows Shafer: the probability assignments that do not support anything, the beliefs 

committed to 0 are ignored. The basic probability attributed to the empty set is 

given by S1S2, so the normalising factor is 1 — S i S 2 . The normalised basic probability 

assignments are in Table 3.8. 

There.is also a non-obvious node w7. This node is needed because having two 

non-overlapping pièces of évidence does not necessarily mean that their compléments 

do not intersect. Intuitively, the situation at w7 can be explained as a kind of state 

of ignorance, believing neither pièce of évidence.- There is no node corresponding to 

the empty set though. The total of available probability assignments now amounts 

to one, and that the corresponding support function can be retrieved easily. 

Alibi 

h/ A G 
I A -G 

-G 

Figure 3.10: Alibi frame 
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Table 3.8: Alibi Probability Assignmcnts 
Node WI MW(WI) | Node WI | MW(WI) 

Terminal nodes 
W3 

AI(\-A2) 
1 - 8 1 81 

S 2 ( l - 3 l ) . 

_ _ l - 8 t S 2 

W7 
(i—i)(i-« 3J 

1 - 8 1 8-1 Non-terminal nodes 
WI , W2 TTHUIWA) + MW{W7) = î i ^ r 

t Ü 4 U>5 

3.4 Vérification of the approach 

So far, it has been demonstrated that the procedure outlined in Section 3.3 helps 
to translate Shafer's populär examples to the language of Kripke models, and that 
combining two models according to rules of Definition 3.3.3 induces the same beliefs 
over the resulting model as produced according to the Dempster-Shafer évidence 
combination rule. In this section, it is shown that the approach always works, and 
that it provides a meaningful translation of the frames of discernment to semantic 
models. The proof is done through showing that the basic probabilities assigned to 
the terminal nodes of the constructed models always give rise to a belief function, 
and that the rules for combining two models provide an analogue to Dempster-Shafer 
évidence combination rule. 

The observations above should be stated as a proposition. 

Proposition 3.4.1 Given a support function S on a frame of discernment 0 , a 
Kripke model with mass assignments on nodes 5 satisfying the conditions of Défini­
tions 3.3.2, 3.3.3 and 3.3-4 unambiguously represents support function S in a sensé 
that given a set A Ç 0 and a proposition 

p = 'x is in A ' 

where x is some quantity of interest we have 

S(A)= Y, nwM-

Conversely, given two models # i and $2 representing two support functions Si and S2 
they can be combined into a new model $ satisfying conditions of Définitions 3.3.2, 
3.3.3 and 3.3.4 and representing support function S defined through mass assignment 
m — mi © m2-
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Proof: The part about the belief functions is straightforward. Set W and relation 

R were constructed according to rules ( l)-(4) from Definition 3.3.3. By construc-

tion, mw(wi) satisfies conditions (l)-(2) of Definition 2.1.1, and thus gives rise to a 

belief function. The constructed models thus represent Dempster-Shafer evidential 

frameworks. 

Recall that Wl C 0 the belief is given by Bel (A) = YIBCA711^)- ^ n a m 0 Q > e l 

^ = (W, R, V, mw) for any node v G W, the belief in statcmcnts valid at this node is 

Bel{v) = ^2W£WvRw mw{w)- The nodes are ordered according to set inclusión on 0 . 

Every terminal node corresppnds to an element of C(S), every non-terminal node can 

see some terminal nodes. Thus, for any set A C 0 and for the statement ' 'p = x 

i s in A 1', we have that V(p) includes all the nodes representing core elements that 

are inside of A with masses assigned according to Definition 3.3.4. But this means 

that the beliefs indúced over the model are the same as calculated directly from the 

frame of discernment. 

The part about the evidence combination rule is a little more involved. The proof 

will be done by considering the properties of set W and relation R in the resulting 

model. 

First, consider the initial sepárate models. As there are two different models, 

there is a temptation to consider two sepárate frames of discernment. It is not the 

case: if there are two sepárate frames of discernment, then the evidence represented 

by one is not always combinable with the evidence from the other. Instead, assume 

that the frame of discernment is large enough to accommodate all the claims and 

distinguish between sets W\ and W2. There are no requirements to sets W\ and W2 

yet. The procedure described above dealt with the simplest type of evidence: the one 

that supports some statements from C and the complement of their unión. In the 

analysed examples the beliefs were mostly binary, as in the example of the left- or 

right-handed thief. Imagining three-handed creatures performing theft in the same 

example leads to assigning beliefs to three statements. The binary requirement is not 

an absolute must. 

In the simplest case, the models consist of disconnected nodes. This structure 

makes relation R empty except for the reflexive pairs. Consider two models 97ti = 

(Wi, R\, V\) and 9JÍ2 = {W2, V¿) based on the pieces of evidence that are combined. 

Let A,B G 0 be some subsets of the frame of discernment, 6 be the quantity of 

interest; p = l6 £ A' and q = l6 € B' be the statements of C, and m i ( J V), X e 

0 , i = 1,2 be the known basic probability assignments. 

The elements of respective sets W¡ are determined according to the available ev-
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idence for each pièce.' If m,-(j4) > 0, then 3vrJ G W{ such that Vi(p) = uP{ and 

ml(V4) = riM{A). 

On WIT the condition J^iujewi rnw(WÏ) — 1 is satisfied by construction according to 

rule (4) from Définition 3.3.3, and the basic probability assignment for a statement's 

complément is given in équation (3.9). Moreover, translàting the initial evidential 

setup produced the models in which every node is a terminal node. 

When models M\ and M 2 are combined, a new model M = (W, R, V, mw) is 

generated. Set W of the new model contains ail the nodes from W\ and W2, plus it 

has new nodes reflecting the combined évidence. 

Assume that propositions p and q are as above, and that wA€ V\(p) and w2 G 

V2{q)\ assume also that A fi B ^ 0. The new model then has nodes wA G V^(p), 

wB G V(q), and a new node, w^nB such that {wAnB} = V(pAq). Semantically, wAnB 

is the node where the proposition '0 € ADB' is true. According to Définition 3.3.3, the 

new node is in the following relation to its 'ancestor' nodes u)ARwAnB, wBRwAnB. It is 

a terminal node whose basic probability assignment is TNW(W
AR^B) = mw(w

A)mw(w
B). 

The situation above is the most straightforward case illustrated on the burglary of 

the sweetshop example. Définition 3.3.3 describes the other cases as well. The cases 

when AnB = i/i or AcB resuit in keeping some of the nodes from UJli in terminal 

positions and keeping their original basic probability assignments. Such 'preserved' 

assignments need a little purely formai clarification. 

Let v G W\ be such a node, let m^v) be its basic probability assignment in W\. 

In updated model 9JT this node has the same probability assignment mw(v) = m^v). 

The 'preserved assignment' can be seen as mw(v) = m^v) • 1 = m1

w(v)m2{6 G 0 ) 

to stress the parallelism with the Dempster-Shafer rule for subsets, which always 

opérâtes with pairs of probability assignments. One also needs to remember thàt 

probability assignments of ail non-terminal nodes are zéros. 

It is now time to check whether the conditions of Définition 3.1.2 are satisfied. 

Equation (3.3) is always satisfied. Vérification is a matter of translàting between the 

languages of subsets and Kripke models. The probability assignments of the subsets 

of 8 are now represented by the probability assignments of the nodes of W. Both 

models 97li and SDT2 satisfy X^'eWi m u > W ) = 1- Given the correspondence between 

subsets of 6 and éléments of WI} define the set 

C = {w}v G W | wftv}. 

C C W, with C = W only when the two pièces of évidence flatly contradict each 

64 



other. The case of evidence that is impossible to combine was considered and ruled 
out by Shafer. In all other cases, there is a proper set inclusión. Whenever inclusión 
C C W is proper, the inequality 

Y ML>(W)ML(V) < Y m i M Y m*(v) = 1 

is true, so equation (3.3) is satisfied. 
Equation (3.4) is the normalising factor. The normalising factor for model 9JT is 

calculated according to 

wljt v wRv 

where the summation is taken over all the possible pairs w G W\ and v G W2. 
Recalling the earlier remark about the nodes that stay terminal in the combined-
model, one can seé that the normalising factor used in the interpretation is the same 
as in equation (3.4). 

Checking the conditions of equations (3.5) and (3.6) is now straightforward. Equa­
tion (3.5) is trivially satisfied: according to Definition 3.3.3, no node is in V(0) , and 
thus no basic belief is attributed to the empty set. In model SOt the probability 
assignment of proposition p is calculated by 

where wls are the nodes within the valuation of p. The probability assignments of 
any terminal node wk €\V are based on the probability assignments of its ancestors 
w\ € JVi, ui\ G W2 using 

mw{wk) = ml{w\)m2

w(wÍ) 

and that m ^ v ) = 0 whenever v G W is not a terminal node. This effectively means 
that whenever V(A) = {w} we have that m(.4) = mw(w), where the left-hand side 
refers to the probability assignments over frame O and the right-hand side to the 
probability assignments over set W. The parallelism works whenever the evidence 
represented by different probability assignments is combinable. Thus the probability 
assignment m over W is indeed the orthogonal sum of basic probability assignments 
ml

w and mj, over W\ and W2 as desired. • 

Thus, any support function can be represented by a Kripke model. It would also 
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be useful to see whether the converse is true: does it mean that any Kripke model 

with mass assignaient on nodes represents as a support function. The answer is yes 

in case if the masses assigned to terminal nodes of a model represent core éléments 

of some support function. The only requirement to a Kripke model to represent a 

support function is to have some terminal nodes. Tliis requirement only amounts to 

excluding the cyclical constructions, that are semantically équivalent to single nodes 

(in case of transitive nodes). 

Proposition 3.4.2 Let $ = {W, R, V, mw) be a Kripke model with mass assignments 

on nodes. Then there is a support function S over frame 0 , such that for any X S 

C(S) there is a node w € W such that mw(w) = m(X), and that for any set A C © 

we have that S(A) = ^ w e v " ( ' x € A)171™^)' w ^ e r e x *5 some quantity of interest. 

Proof: The first half is obvious: every terminal node corresponding to a statement 

x € X is some élément in C(S). The second part is also automatici relation R is a par­

tial order; the ordering of subsets by set inclusion on 8 is also a partial order. There-

fore, it is possible to find a subset A of 0 such that S(A) = YlW£v(x 6 .4') mw(w)-

The results above demonstrate that any Kripke model can correspond to a Dempster-

Shafer support function and vice-versa. This means that a formula valid in some 

intuitionistic Kripke model corresponds to some situation described by the means of 

the Dempster-Shafer theory. This observation also points to the minimal intuition­

istic logie Int. To see why it is true, it is useful to abstract from the définition of a 

logie through a calculus and look at a logie as a set of true formulae. From this angle, 

Boolean logie Cl is the set of formulae valid in a single node intuitionistic Kripke 

model, and the minimal intuitionistic logie Int is the set of all formulae in language, 

C valid in ail intuitionistic frames [48]. As it was demonstrated that any intuitionistic 

Kripke model with mass assignments corresponds to a support function, the set of 

formulae validated in our case is the latter. The Dempster-Shafer theory is repre-

sented by the minimal intuitionistic logie. On one side, the resuit may be viewed 

as disappointing: there are many stronger logics. On the other hand, the logie in 

question is complete and sound and certainly provides a usable reasoning apparatus. 

3.5 Embedding issues 

So far we have not any explicit restrictions on the semantic models that represent 

support functions. It does not mean, however, that we cannot benefit from numerous 
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embedding results available for intermedíate logics [48]. Similar but non-universal 

results are possible for models that represent different support functions. The non-

universal nature of the results should not deter one from exploring the question. Plac-

ing a particular model within a class of models that represent some well-established 

intermediate logic can make inference over that model more effective. Knowing inclu­

sión relationship with respect to systems admitting finite axiomatisation allows one 

to use their syntax for inference within the analysed setup. 

A few simple embedding observations should give the taste of the problem. Int C 

L C Cl , where L is any intermediate logic [48]. This interval is quite broad: there 

are infinitely many intermediate logics. To get non-trivial results one can look into 

particular si-logics. Any connected frame representing a support function in refutes 

Dummett's formula (p —* q) V (q —> p), and in this case the inference can exelude 

tautology (p —*• q) V (q —> p) at some nodes. There are a few more general axioms 

that are satisfied depending on the number of evidence combinations performed and 

on possible branchings within each piece of evidence. 

The following definitions are needed for the later discussion. 

Definition 3.5 .1 (Chains) A chain of length n in a frame $ = {W, R) is a set 

C C W such that for any i>, w € C either vRw or wRv must be trae. The length of 

a chain is the number of elements in it. The depth of a frame is determined by its 

longest chain. An antichain is a set A C W such that for any v,w G A both vljlw 

and w^tv are true. The width of a frame is determined by its longest antichain. The 

branching of a frame is the maximal number of distinct immediate successors of a 

node. 

The family of axioms bwn is a genéralisation of Dummett's formula (with renamed 

variables): bwn = V|L0(p¡ —• Vi&pj), n > 1. The corresponding logic is B W „ , bwn 

is validated by a frame if its every rooted subframe is of width < n. The width 

of rooted subframes in Kripke models induced by evidence combination depends on 

the number of subsets within every piece of evidence and by the number of times 

the evidence combination rule was applied. The majority of cases described by the 

Dempster-Shafer theory deals with finite universes, making it possible to select n 

large enough to satisfy 6t iv 

A similar argument works for the family of axioms bdn, where bd\ — p\ V ->p! is a 

familiar law of excluded middle or (A10) in a slightly modified notation. A member of 

this family of axioms is given by the recursive formula Í K ^ + I = p „ + 1 V (pn+i —* bdn). 

The corresponding family of logics is B D n . A frame is known to refute bdn if it has 
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a chain of length n -f-1. The length of a chain in a frame within Cps dépends only on 

the number of times the évidence combination was applied. 

The family of axioms bbn = A" = 0 ((pi —• V ^ p ^ ) —> V^-pj ) —*• VJLQPÌ, n > 1 is 

validated by finite frames of branching < n giving rise to a family of logics T „ . The 

branching of a trame in CDS is determined by the maximal number of subsets within 

each piece of évidence. Thus there is a fairly straightforward criterion for this family 

of axioms too. 

Looking at the conditions above, one can construct the conditions for a Kripke 

frame 5" satisfying ail three axioms for an appropriate n G N. This can be written 

as Int -I- bwn A bdn A bbn Ç Forg, where For# is a set of formulae valid in The 

same line of reasoning suggests that if the estimate for n was accurate then for n — 1 

the relationship is Forg Ç Int + 6u>n_i A bd^-i A bbn-\. This approach allows one 

to place Fortf in the interval [ B W n U B D n U T n , B W f l _ i U B D n _ i U T „ _ 1 ] . 

Proceeding in the same fashion, the set of formulae available for reasoning in each 

particular case can be significantly transformed thus making the inferential apparatus 

at disposai of the décision maker even more effective. 

3.6 Incorporating the 'empty' évidence 

The construction above is baséd on the premise that pV (p —* X) is refuted in most 

of semantic models. This section provides a simple example that illustrâtes how 

attributing unconditional belief to the formula p V (p —> JL) can violate even the basic 

intuition. 

Recali the burglary of the sweetshop example from page 36 . The corresponding 

Kripke model was constructed on page 57. The constructive premises are violated by 

allowing Sherlock Holmes to incorporate empty évidence along with the one for which 

he has support. So, instead of having some belief in hypothesis about a left-handed 

thief, let us assume that no évidence whatsoever about the burglar being left-handed 

is available, si = 0. Is it reasonable in this case to just assume that a person was 

definitely a right-handed person? From the constructivist point of view the answer is 

'no'. pV (p —• X ) is true only if p or ->p is decidable. For any other logie that accepts 

AIO the answer is 'yes'. 

Let us now leave the constructivist shell and try to incorporate the empty évi­

dence into the model. The question then becomes: should one assume that whenever 

y(p) = 0 and whenever w is a-terminal node such that w G V(-»p) that m^iyS) = 1 ? 

Accepting the assumption corresponds to the model in Figure 3 .11 . The basic proba-
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bility a s s i g n m e n t 5 for terminal nodes RI and RO are the same as the assignments for 

the nodes / and O. In other words, adding an extra node R does not change anything. 

Such a situation does not contradict our basic intuition; introducing 'empty évidence' 

does not change anything. Moreover, the model in Figure 3.11 is the only possible 

I RI \RO 

\ I I R IO 

Figure 3.11: Burglary of sweetshop with empty évidence 

resuit of combining a piece of non-conclusive évidence with whatever other évidence 

is available. We illustrate this observation with another Shafer's example. 

Consider now the alibi example, and assume that the second witness does not 

provide any information in support of the suspect's innocence. If p V (p —» X) is true, 

then the corresponding model is identical to the one in Figure 3.11. Two situations, 

quite différent in non-degenerate case, become the same if one of the pièces of évidence 

is reduced to ignorance. Such a situation does not lead to a paradox or to an incorrect 

probability combination. Yet it is better avoided as it enables dérivation that is 

ultimately vacuous and increases the complexity of the model without increasing the 

amount of knowledge it represents. 

The ultimate goal of the current work is to develop an effective reasoning apparatus 

that can be implemented. From this point of view, a possibility to increase the 

complexity of a model without gaining anything in terms of inferential power is to be 

avoided. 
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Chapter 4 

Updating knowledge in the 

Dempster-Shafer theory 

The procedure linking the Dempster-Shafer theory frames of discernment with the 

semantic models was established. It was also shown that the procedure preserved 

the structure of the underlying frame of discernment and gave rise to the same belief 

function as Shafer's. In this chapter, the properties of the proposed framework are -

explored and further parallels between semantic models and frames of discernment 

are drawn. 

The Dempster-Shafer theory provides a set of tools for incorporating possible 

changes in knowledge. Thèse opérations are différent from inference on already built 

models. The aim of this chapter is to understand the effects of changing the frames 

of discernment on the corresponding Kripke models. To make the exposition more 

consistent, the Dempster-Shafer theory concepts and examples are given first, and 

then the connection with Kripke models is exposed. For brevity, we write in this 

chapter V(A) B w that should be understood as V(p) ^ VJ, where p = f x 6 A\ We 

continue using notation V{<f>) for truth sets of formulae. 

4.1 Refining 

There are two kinds of transformations of a frame of discernment. One, called frame 

refinement, accounts for learning new facts that make the universe more detailed; 

another, called frame coarsening, accounts for the circumstances that make some 

of the previous knowledge irrelevant and thus simplify the universe. In terms of 

sets, refinement partitions some of the sets within a frame pf discernment, and the 

coarsening merges some of the sets together. The analysis starts with the refinement 
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and then proceeds to the coarsening opération. The définitions are according to [82]. 

Définition 4 .1 .1 (Frame refinement) Let G = {a i , a2,..'., an} be a frame of dis­

cernment, let £1 be another frame of discernment. Frame Q is refined from © if for 

every singleton {ai} G 2 e there is a subset Tj 6 2°, such that {T^ Ç Q; i = 1, 2 , . . . , n} 

is a partition of fï. 

1. Ti ^ § for i = 1 , . . . , n, 

2. rinTj = for i^j, 

S- U?=1Ti = n. 

The refinement is a straightforward opération. A single élément in the old frame 

is split into several éléments in the new one. It is not difficult to find a function 

establishing correspondence between thèse sets. Ail that is needed is an onto map 

satisfying a few natural conditions. This function is called a refining mapping. 

Définition 4.1.2 (Refining mapping) Let 6 andÇl be two frames of discernment 

and o : 2 e —> 2 n be a map. a is a refining mapping if the following conditions are 

met: 

1. The collection o ({a»}) forms a partition on ïl, 

2. It is a singleton-union mapping: 

o '. 0 i—* 0 

and 

o : { a j v-> T j = o({oi}) 

for ail singletons in 2 e . For non-singletons a must satisfy 

a: A = U ^ e ^ O i } i-> UQieATi. 

The opération is called a singleton-union mapping because if o~({ai}) = T* then 

o~(A) — a ( U 0 i e A { o i } ) = U o ^ a d o i } ) — ^AIGA^i for a singleton-union A = Ua» e Afe} 

Intuitively, one can think of éléments of o*(A) Ç Ci as of a détail propositions of 

proposition A. By the same token, subset A Ç 6 represents a summary proposition 

of a(A) Ç Q. 
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Refining a frame of discernment results in a new frame of discernment and, con-

sequently, in a new Kripke model. The new model can always be built from scratch 

using the procedure introduced in Section 3.3. Depending on the model's complexity, 

although doing so might be computationally expensive. It is much more effective to 

have some analogue of map a on Kripke models. While doing so, it is important 

to keep in mind that the définition of refining mapping on frames of discernment is 

independent of possible mass assignments over the refined frames. Clearly, it cannot 

be the case for the Kripke models. The same frame of discernment may give rise to 

différent Kripke models depending on its mass assignments. So, at least one assump-

tion must be made before proceeding any further: the new partition éléments in the 

refined frame should have non-zero mass assignments. The requirement is formalised 

in due course. At the moment, let us look at a simple example. 

Let 0 and fì be two frames of discernment, let g and S 7 be corresponding Kripke 

models, and let o, be a map between 2 e and 2° . There should be a procedure trans-

forming 5 into Given frame of discernment G, the corresponding Kripke model 

# = (W, R, V, mw) must have a node for each subset 6 e 9 , such that m(Ô) > 0. 

This condition is obvious in the context of the semantic interprétation of frames of 

discernment, but it will later help to determine the representational ìimits of the in­

terprétation. The relation R is fully determined by the inclusion relation on G and 

by the rules given in Définition 3.3.3. According to the définition of refinement, only 

the sets corresponding to the terminal nodes are partitioned. In terms of Kripke 

models, a partitioning results in adding more terminal nodes to W and updating R 

accordingly. 

Using the new partitions as a basis for adding new nodes to the set of possible 

worlds may increase the complexity of the model and does not always provide the 

most effective reasoning tool. On the bright side, adding new nodes is much less 

computationally expensive than building a new Kripke model from scratch. A few 

examples in the next section should help to see the advantages and drawbacks of this 

approach. 

4.1.1 Refinement example 

This section présents an example of a frame refinement based on the principles out-

lined above. The example demonstrates how différent mass assignments over the same 

frame of discernment result in différent Kripke models. To spare the effort needed for 

inventing yet another faux-detective story Shafer's examples are revisited. Recali the 
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burglary of the sweetshop example in Section 3.1.2. The trame of discernment after 

évidence combination is 0 = {LF, LO, RI, RO}. Now assume that Sherlock Holmes 

has some idea about the sex of the burglar in each possible situation. 

It is important to note the différence between introducing a new piece of.évidence 

and refining a frame. In case of introducing a new piece of évidence, some beliefs about 

the burglar being male or female are introduced and then combined with already 

known information leading to updated beliefs about the burglar's identity. It is not 

the case with the refinement. The belief in the hypothesis about thief being a left-

handed insider is not amended; the already known beliefs are redistributed between 

female and male left-handed insiders. The belief in the general proposition about the 

burglar being a left-handed insider stays unaffected. This assumption is in line with 

the discussion about the rôle of the mass assignment in forming a Kripke model and 

is not always true for a general frame of discernment. 

Gaining knowledge about the sex of the intruder changes the initial frame 0 into • 

Q = {Hf, lof, lim, lom, rif, TO/, rim, rom}, the map a : 2 e —> 2 n is obvious: 

rest of the conditions from Définition 4.1.2 is satisfied by construction, so a is a 

refinement. No spécifie pièces of évidence {M, F} were introduced into the picture. 

If a belief about the sex of the offender is to be calculated, it has to be retrieved from 

the appropriate statements. 

First, assume that every singleton in the refined frame f2 has a non-zero mass 

assignment. Let us see why this assumption must be made. Consider map o defined 

in équation (4.1). Assume now that one of the singletons in Q has a mass assignment 

equal to zéro, say {lif}. But this means that fï does not discern this proposition. 

From the semantic représentation's point of view the framé of discernment becomes 

Ù = {lof, lim, lom, ri f, rof, rim, rom} and the refining mapping isno longer defined 

*({LI}) 

a({LO}) 

a({RO}) 

{lif, lim}, 

{lof, lom}, 

{rif, rim}, 

{rof, rom}. 

(4.1) 

The sets T j = {*m, * / } , where *. = LI,LO,RI,RO, form a partition of Sì. The 
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by équation (4.1). The new map o1 is given below: 

= .{loLlam}, 

= { n / , r i m } , 

^ ( { L O } ) = {rof,rom}. 

Equations (4.1) and (4.2) have différent images for set {LI} and thus represent two 

différent refìning maps. Every singleton in Çt should merit a new node in the corre-

sponding Kripke model, unless there is a condition about assigning new nodes only 

to the éléments with non-zero mass assignments. 

Let us now return to the refìnement described by o. Taking a little leap of rea-

soning rectified later, relation R is extended in the obvious way: Lf = lim U lif. So, 

because lif C LI, lim C LI, and V{LI) = {ws}, V'(lim) = {w9}, V'(lif) = {w1Q},. 

we have w&Rwg, wsRwio and so on. 

The old Kripke frame corresponding'to the example is shown in Figure 3.8 on 

page 58. The new évidence requires every subset represented by a terminal node of 

the frame to be split in two. So, each terminal node from the old model sees two 

new nodes. The new model is shown in Figure 4.1. The formulae true at Ws, • • •, w$ 

are the same as in the old frame. The refined évidence is reflected on the new 

terminal nodes WQ, • • •, WIQ. The new validated formulae are not listed because of 

space considérations. 

W9 Wio Wu Wi2 Wi3 IUU U>15 ™16 

I l I / l o I R 

Figure 4.1: Refined burglary of sweetshop I 

4.1.2 Refìning versus évidence combination 

The différence between the frame refìnement and the évidence combination becomes 

clearer after looking at the example below. Let us see the effects of introducing the 

sex of the offender into the setup. Assume that the évidence about the offendere 

sex is available based only on the knowledge that the burglar is an insider. The 
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refined trame of discernment is then 0, = {lif, rif, lim, rim, RO, LO}. Such a frame 

is not a result of combining 6 = {Lì, LO, RI, RO} with {M, F}. Yet it is a perfectly 

legittimate refinement1. The only différence is in a, which, in order to be representable 

by a Kripke model, becomes 

a(LI) = (lif, lim), 

a(RI) = (rim, rif), 

a(RO) = RO, 

a(LO) = LO. 

The corresponding Kripke frame is shown in Figure 4.2. Combining two independent 

lim lif rim rif 

I I , I / l o I R 

Figure 4.2: Refined burglary of sweetshop II 

frames of discernment 0 = {LI, LO, RI, RO} and 0 ' = {M, F} according to the pro­

cedure in Section 3.3 results in yet another Kripke frame in Figure 4.3. Even though 

it is possible to construct models with equal mass assignments of the corresponding 

nodes, the models in Figures 4.1 and 4.3 do not verify the same sets of formulae. 

I M I F 

\L \I I -» / I - .L 

Figure 4.3: burglary of sweetshop after another évidence combination 

^ntroducing additional conditions such that RO C\M~LOC\M = LOr\F~ RO fi F = 0 may 
result in n = {UfjrifylimjrimjROjLO}. Such models will not be semantically équivalent. 
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4.1.3 Formalising model refinement 

The example above is very straightforward and logical, but not too strict. The rea-
soning is as follows: without much justification, a new node was assigned to each 
singleton of the refined frame. While doing so is not necessarily wrong, it may not 
always be the case. Even though it is straightforward, the procédure of building 
the models from trames of discernment first calls for translating sets in a frame of 
discernment to statements in propositional language C. 

The définition of refinement on frames of discernment does not take the mass 
assignments into considération. It is only concerned with the sets discerned by a 
frame. The Kripke models considered here should also take into account the mass 
assignments. It only makes sensé to assign new nodes to the sets in the core of the 
refined model's support function. To proceed further this condition must be made 
explicit. 

Définition 4 .1 .3 (Set W on refined frames) Let 3 = (W, V, m^) be a Kripke 
model over frame of discernment 0 ; and let 0 = {W, R', V',mfw) be its refinement 
over frame fi. Let be the mass assignment over Q. Define the set of possible 
worlds of & as 

W :=WU {wA : mn(A) >OyÀC Q}. (4.3) 

Définition 4 .1 .4 (Relation R' on refined frames) Let 5 = (W,R,V,mw) be a 
Kripke model and = {W, R', V, m'w) its refinement. Relation R' satisfies the 
following properties 

1. R Ç R!; 

2. wfiv, vfiw for allv,w €W'\W; 

3. wR'v and v G W \ W implies w is a terminal node in # ({w} f R = {w}). 

The next restriction ensures that the new mass assignments actually refine the 
already known facts rather than just reshuffle the known things randomly. The con­
dition amounts to checking whether the core éléments of the new support function 
are within the partitions of the refined frame. 

Proposition 4 .1 .1 (Conditions on refinement's support function) Let frame 
H be a refinement of frame 8 , let o : 2 e —• 2 n be the refining mapping, S a support 
function on 8 , and S' a support function on fî. Then S' must satisfy the following 
condition: 
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{x} 6 C(S') only if x G cr({y}) for some {y} G C(5) , (4.4) 

where C(-) is a core of a support function. 

Proof: Assume the opposite (that {y} £ C(S)}. This means that support for {y} is 

zero. Therefore, set {x} Ç cr({y}) also has zero support by monotonicity property of 

support function with respect to set inclusion, which is a contradiction. • 

The définition above makes restrictions on the possible mass assignments explicit. 

The restrictions are needed because the opérations do not produce a totally new 

frame of discernment, but rather modify the existing one. The mass assignment on 

the refined frame should not contradict any previously gained knowledge. The mass 

assignment restricted according to (4.4) will only resuit in a model within the limits 

of the developed logie. 

Consider the burglary of the sweetshop again. Assume that Sherlock Holmes 

knows something about the sex of the burglar, but not for every possible situation. 

In other words, assume the same refining mapping a, but a new mass assignment. 

The new knowledge is given by the mass assignments below 

m({lim}) = S i , 
m({lif}) = s 2 , 

m({lom,lof,rim}} = S3, (4.5) 

m({lim, lif, ri/}) = 54, 

m(everywhere else) = 0. 

Thé mass assignments above give rise to a support function S', but the-conditions of 

équation (4.4) are violated. For instance, {lom, lof, rirn) is a core élément of S', but 

there is no singleton {x} in the core of support function S such that {lira, lof, rim} Ç 

o({x}). Building a refined Kripke model with the mass assignments of the terminal 

nodes given by équation (4.5) is stili possible, but this model would not resuit from 

refining the model in Figure 3.8. If the model given in Figure 4.2 is kept, then 

assigning masses to the terminal nodes of the model becomes quite an impossible 

task. Following the earlier procedure will resuit in assigning some mass to a non-

terminal node, which leads to contradiction. 

Refining frames of discernment has several nice mathematica! properties, which 

should be transferred to Kripke models. To see whether a property is preserved, the 

formai description òf the proposed procedure must be completed. The limitations 

applied to the support functions and ordering relations were already shown. Below, 
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it is shown how the sets of possible worlds in two models are linked. The universes 

under considération are firiite, and thus it is always possible to find the smallest subset 

with a non-zero basic probability assignment. 

Let 9 be a frame of discernment, let Q be its refînement, let o : 2 e —» 2U be the 

refining map, and 3" — (W, R, V, mj) and 5''= {W, /?', V'^m'J) be the Kripke models 

corresponding to 9 and Q. According to the just outlined procédure W Ç W and 

R Ç R'. One can even rnake a stronger statement about the ordering relations in 

both frames X \ R C X \ R', VX e W. 

Consider Wi & W such that V(aï) = {wi} and a({ai}) = T*. What happens with 

the valuation of a* on H? V'(a(ai)) must include Wi. Because the opération just adds 

new nodes, the model must also include the nodes corresponding to T*: 

V > ( a O ) = V(oi) U V ' ( ï i ) = V(ai) U V ( U ^ j ) (4.6) 

V(di) is known and V(UjVj) = 0, therefore V'(UjVj) must correspond to nodes in 

W \ W. Thus, a new node has to be assigned to every vlj whose mass assignment is 

non-zero mft(uj) > 0 and that $Ç E Q such that mn(Ç) > 0 and C C VJ. T^s form a 

partition of f2, VjS in their own partition T j , and thus Uj(UjuJ-) = fi. 

4.2 Properties of refînement 

Before exploring the properties of the refined frames, it must be established whether 

the frames in question are well-defined. If the Kripke model analog of the refînement 

is defined correctly, every refînement mapping will resuit in a unique Kripke frame. 

Proposition 4.2.1 Kripke model refînement is a well-defined opération. 

Proof. Let = (Wu Ru V^ml) and 5 2 = (W2ì R2, V2im
2

w) be two Kripke models 

corresponding to frame of discernment A, both constructed according to définitions 

3.3.2- 3.3.4. Two models are identica! up to a node permutation if there is a permu­

tation 7T : W\ r-* W2 such that Vu, v 6 W\ having uR\v implies TX(U)R2'ÏÏ(V). The 

cardinalities of both sets are equal by construction, and thus only one-to-one maps are 

to be considered. Assume there is no such map. Then, there are nodes x\,y\ G W\, 

such that xiRipi but ^(xi)^l2TX(y\) for ail 7r : W\ —* W2. According to the procedure 

for building Kripke models, if there is a node Xi € Wi then there is a set A Ç A 

such that Vi(A) = xi- Therefore V2(X) is not empty either, so there must be a node 

V2(\) = x2. Similarly, if xiR^yi then /x C A, where Vi(fj) = yi, V2(fi) = y2 and 

x2R2y2- t • 
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Thus, every frame of discernment corresponds to a unique, up to a node permu­
tation, Kripke model before refinement. Each partition of the frame of discernment 
produces a unique model, so the refinings and frames of discernment are in one-to-
one correspondence, as desired. A well-defined transformation préserves some set 
opérations. The détails are in the theorem below quoted from [1]. 

Theorem 4.2.1 (Préservation properties) Refining mapping a : 2 e —*• 2 n pré­
serves set opérations and relations: 

1. a is a one-to-one mapping from 2 e into 2 n

; and a(G) — fi; 

2. ForallA,Bçe 
o(AUB) = a(A)Ua(B), 
o-(AC\B) = ,a(A)nà(B)t 

*(A\B)-= o-(A)\a(B), 
a(S\B) = U\a(B), 

(4 .7 ) 

Consider a Kripke model $ — (W, R, V, mj) corresponding to the frame of discern­
ment G and the model's refinement = {W, R'\ V , m'w) corresponding to frame of 
discernment fi. Let a : 2 e —» 2 n be the refining mapping. It is already known that 
V'(a(a)) = V{a) U V'(T), where T = a(a) for ail a Ç G. The question is whether 
V'(a(A U B)) = V'(o-(A)) U V'(tr(B)) or not. Since a(A U B) = a(A) U a(B), it is 
enough to know if V(A U B) = V(A) U V(B) is satisfied. The latter is true according 
to the Définition 3.2.1 of a valuation map. 

The same argument holds for the rest of equalities in équation (4.7). Thus, given 
the parallelism between the propositions in C and sets in G, the equalities (4.8) 
directly follow from Définition 3.2.1: 

V(%) = 0, 
V(AUB) = V(A)UV(B), 
V(ADB) = V(A)r\V(B), 
V(A\B) = V(A)\V(B). 

In a models' terms, a refining is a simple opération adding extra nodes reachable from 
some of the original model's terminal nodes. Moreover, the properties of a refinement 
given by Shafer apply to ail possible future mass assignment on the refined frame. 
The proposed translation procedure only deals with a well-behaved subset of mass 
assignments. The summary of the properties of a Kripke model's refinement is in the 
proposition below. 
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Theorem 4.2.2 (Kripke model refinement) Let 0 , Q be two frames of discern­
ment, let a : 2 e —• 2n be a refinement mapping and m : 2U —» [0,1] be a rnass 
assignment over Q satisfying tke conditions of équation (4-4)- Let § = {W, R, V, mj) 
be a Kripke model induced by 9 and = (W, R', V, m'w) by f2. Call 5' a refinement 
o/#. The following must be true for model $ and its refinement 3"'. 

1. 

V{™} G 2 n \ 2 e ifm{{w}) > 0 3v G W such that V'({w}) = {v}; (4.9) 

2. Relation R is a restriction of R' to set W: 

Vw € W (w r R) Ç (w \ #); (4.10) 

3. For any singleton a E 9 , such that V(a) = {w} and a(a) = T 

V'(ff(a)) = w \ R'; (4.11) 

4- On refined frame 3 ' for o/ny A, B Ç 0 the equalities below are true 

V'{a{A U B)) = V'(<j(A)) U V'(a(B)) = (V(A) f R') U {V(B) \ R!), (4.12) 

V'(a(A fl B)) = V'(<j(A)) n V'{o-{B)) = (V(A) \ R') fl (V(B) \ R'), (4.13) 

V'(c(A \ B)) = V'{o{A)) \ V'(a(B)) = {V(Ay \ R') \ (V(B) \ Rf), (4.14) 

V>(e \ B)) = V'(Q) \ V'{o{B)) = W \ (V(B) \ R'). (4.15) 

Proof. Equations (4.9), (4.10) and (4.11) are the immédiate conséquences of the déf­
initions of the corresponding concepts. Equations (4.12)-(4.15) follow from équation 
(4.8) and Définition 3.2.1 of validity of formulae. 

The properties listed in Theorem 4.2.2 are useful, because they allow for the 
manipulation of models almost as easily as frames of discernment. The properties 
above are true regardless of the mass assignment on the refined frame. The next 
question is to which extent the refining can be reversed in the frames of discernment, 
and what are the corresponding effects of this reversai on the Kripke models. 
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4.3 Coarsening 

The opposite of refining is coarsening. In the Dempster-Shafer theory, the coarsening 
is viewed as an opération secondary to refining. This angle of view works well for the 
taken approach too. A refining map a is not necessarily a bijection. The existence of 
the inverse, a-1, is then not guaranteed, but some approximation can be produced. 
This approximation is the coarsening map. The coarsening cornes in two différent 
flavors: inner and outer coarsening. 

Definition 4 .3 .1 (Coarsening) Assume that a : 2 e —* 2 n is a refining. Mapping 

; 2 " _> 2 6 

is then called the inner coarsening of a. It is defined by 

o-1~(r) = {xee\a{{x})cr}. 

Mapping 

CT-1+ ; 2 " _> 2 e 

is called the outer coarsening of a and is defined by 

a " 1 + ( T ) = {x e 9 I a({x}) 

for ail T ÇÇl. 

Given the nice properties of the refinement, there is some expectation of convenient 
algebraic properties from its converse. Just as expected, some set opérations are 
preserved, but the set-preserving properties of coarsening are much weaker than for 
refining. 

Theorem 4.3 .1 (Coarsening properties, Shafer 1974) The inner and outer coars 
enings preserve set opérations and the set relation: 

1. o~l+ préserves set union: 

o~1+(PuQ) = ( a - 1 + ( P ) ) U ( a - ' 1 + ( Q ) ) , (4.16) 

for ail P,QÇ Q;' 
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2. o 1 preserves set intersection: 

a-1' (P n 0 ) = (a-1' (P)) fi (a-1' (Q))t (4.17) 

for ali P,Q CSI; 

3. For set difference, the jollowing is irne for ali R C fi: 

o--1+{Q\R) = B\a-1~{R)1 

(T-1~{Q\R) = e\a-l+{R); 

4- c~l and <7~1+ preserve set inclusion: if P C Q in 2^ then 

<T~1*(P) C < 7 " 1 + ( Q ) . 

(4-18) 

(4.19) 

The immediate consequence of Theorem 4.3.1 fills in the gaps in the inner/outer-

coarsening — union/intersection paradigmi 

Theorem 4.3.2 (Coarsening and set operations) Let the setup he the some as 

in the previous theorem. Then the following are true: 

a'1' (PUQ)D o--1' (P) U o'1' ( 0 ) (4.20) 

and 

a-1+{P C\Q)C a-1+{P) n ff~1+(Q) (4.21) 

for ali P,Q C Q [1]. 

Clearly, a~1+ = < 7 _ 1 , when a is an isomorphism: If it is not, the relationship is not 

as straightforward, but stili quite predictable. The details are in the theorem below. 

Theorem 4.3.3 Let a2e -> 2" be a refining map, let a 1 and a 1+ be inner and 

outer coarsenings, then the following equalities are true: 

1. a-1-(0) = 0 = <T-1+(0); 

2. a-
ì~{Q) = e = a-1+{Q); 

3. < 7 - 1 " ( T ) C a~1+(T) for allT C Q; 
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4- o-'l~(a(A)) = A = a-1+{a(A))forallAÇe} l e . a~l~a = <j~l+o = i d e ; 

5. a ( a - 1 _ ( T ) ) Ç T and T Ç a(o-1+(T)) for ail T Ç fl; 

6. a{A) ÇT iffAÇ a " 1 _ ( T ) and T Ç a (A) iffa~1+{T) Ç A [82]. 

Whenever a coarsening is applied to a frame of discernment, the effect on the cor-

responding Kripke model amounts to reducing the number of nodes and updating 

the ordering relation accordingly. The only cumbersome parts of the procedure are 

updating the masses of the nodes. and ensuring that the new mass assignments stili 

give rise to a mass function: Below, thèse effects are described in some détail and 

the analogies are drawn between the coarsening and its Kripke model counterpart. 

Just as it happened with the reflnement, the scope of the procedure in the realm of 

Kripke models is narrower. An illustrative example opens the exposition followed by 

the rigorous part. 

4.3.1 Coarsening and Kripke models 

Assume that # = (W, R, V, mw) is a Kripke model on frame of discernment 6 , 

let u}\,w2 € W be two nodes in the model. A fragment of 3 is shown in Figure 

4.4(a). Now, assume that a : 2 e —+ 2n is a refining map transforming 0 into fi. 

3 ' = {W'jR^V^m'J} is a Kripke model on fi, where V'{a(wi)) = { ^ 1 , ^ 3 , 1 ^ 4 } and 

V'(er(u>i)) = { ^ 2 ) ^ 5 , ^ 6 } . The relevant fragment of is given in Figure 4.4(b). Let 

w3 wA wb w6 

0 0 0 0 

v . v 

(b) After refining 

Figure 4.4: Frame and is reflnement 

i4, B Ç 0 be subsets satisfying V(A) = {wi} and V(B) - {w2}. Now if a(A) = 

and c(B) = T s in model valuations are given by V'(TA) = { ^ 1 , ^ 3 ) ^ 4 } and 

V'(TB) = { ^ 2 . ^ 5 , ^ 6 } - Coarsening has the predictable result of removing some of 

the terminal nodes: V(a~ì~ (TA)) = V(a~1+ÇÏA)) = V(A) = { ^ i } according to 

Theorem 4.3.3. In this case, the inner and outer coarsenings are equal. It happened 

because the coarsened sets were the images of singletons in the originai frame. If the 

coarsened sets were not images of singletons in the originai, then the results of inner 

and outer coarsening might differ. To see the différence, consider set T e such that 

o • • • o 
Wi w2 

(a) Before refining 
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V'Çïc) = {w3,w4,w5}. Now Vip-rÇïc)) = M , but V ( f f - 1 + ( T C ) ) = {™i,u> 2}. 

The coaxsening is a 'reversai opération' on frames of discernment which can only be 

defined in terms of previously conducted refining. As the example above shows,, it 

is différent on Kripke models: by définition, the nodes corresponding to the refining 

partitions are the terminal nodes, and the coarsening of a Kripke model results in 

removing some of its terminal nodes. To understand the effects of removing the ter­

minal nodes on the truth values of différent propositions from C, some interprétation 

of V is needed. 

The examples above demonstrated that in the models the coarsening amounted 

to removing some terminal nodes from the model and updating the ordering relation 

on the set of possible worlds accordingly. Removing ali the edges in the downward 

closure of the removed nodes reflects outer coarsening, while removing only the edges 

stemming from the nodes whose upward closure is within the coarsened set reflects 

inner coarsening. 

Définition 4 .3 .2 (Coarsening on set of nodes) Let 3 = (W, /?, V,m«,) and = 

(W',R!, V',m'J be two Kripke models such that W C W and R = R' n {W x W). 

Define outer coarsening p - 1 : 2W' —* 2W and inner coarsening p~l+ : 2W> —> 2W, 

such that 

p'1'{X) =• {weW\{w\R!)\{w}ÇX}i (4.22) 

p - 1 + ( x ) = {w e w | w e x [ R', [w \ R') n X ^ 0 } , (4 .23) 

where X € UpW and X n W = 0. 

The condition X n W = 0 ensures that sets X only contain newly added terminal 

nodes. If this condition is not met, then X cannot correspond to any set T forming 

a partition and cannot be coarsened. Condition wRy => y G X in équation (4.23) 

cancels the transitivity of R': only the immediate predecessors of the terminal nodes 

should be présent in the coarsened subset. The same condition in équation (4.22) is 

guaranteed by (w \ R') \ {w} Ç X. The relationship between valuation functions 

of both models follows directly from Définition 4.3.2. Both the inner and the outer 

coarseriings are maps between 2 n and 2 e , and maps p~ ~x" and p~l+ link 2W' and 

2W. Maps V : VarC —> 2W and V : V a r £ —* 2W' are the maps between éléments 

of frames of discernment and sets of possible worlds. The coarsening of a frame of 
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discernment can thus be related to the coarsening of a Kripke model through 

• V(a~1+(X)) = p~1+(V'(X)) for any fi. ^ ' • 

The left hand sides of the équations in (4.24) have V, and the right hand sides have 

V: the resuit of changing the domain. Left hand sides describe the facts in model 

right hand sides tell us about 

4.3.2 Coarsening example 

Let 0 = { a i , 0 2 , 0 3 } be a frame of discernment, let = { r n , r 2 ì ì r - n , T $ \ , r 3 2 , r ^ } 

be its refining. The refining mapping is then cr({di}) = { ry € Q}, and it is a 

one-to-one correspondence between 2 e and 2 n . Let us now consider coarsening dif­

férent sets in fi. In the simplest case, the results of a refining are simply reversed 

a - 1 (a(Ä)) = a~1+ (<T(A)), the equality holds for any A Ç 0 . Consider now X C fi': 

which is not a resuit of refining any set in 0 : $A Ç 0 , such that cr(A) = X. 

The inner and outer coarsening of this set are no longer equal. For example, take 

X = ( { r n , r 2 i } ) , there is no set A C 0 such that <J(A) = X, therefore the inner and 

outer coarsenings do not need to be equal: er - 1 ( X ) = CT-1 ( { r n , r 2 i } ) = { ^ î } , but 

o-~l+(X) = a~l+({ru,r2i}) = {aua2}. 

Let us now translate the example in the previous paragraph to Kripke frames. 

Let 3 = (W, R, V, mj) be the frame representing 0 , and let 0 = {W, R', V, m!w) 

represent frame of discernment fi. The models satisfy the conditions of the définition 

of a frame refinement, so 0 is a refinement of frame 

W2\ W22 W32 

o 0 0 0 33 

0 0 0 o 
W\ W2 W3 W\ W2 W3 

(a) Frame S (b) Frame 0 

Figure 4.5: Coarsening example 

Equations (4.23) and (4.22) are used to calculate the coarsenings of différent sub­

sets in W. Take A — {w\,w2} Ç W. Indeed, if V(a2) = {w2}, where a2 ë V a r £ , 

trien.V'(a(a2)) = A, so inner and outer coarsenings of A should be equal: p~l (A) = 

p~l+(A) — {w2}. Consider now X = {w22iw3\} C W. There is no formula <p, such 

that V'(a(<f>)) = X, so the inner and outer coarsenings of the set should not be equal: 
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p~l (X) = 0, but p - 1 (X) — {w2,W3}. The calculations can be continuée! in a similar 
fashion for the rest of the subsets in 2 f i . The natural question is: if m g and m j are 
the mass assignments over frames 5" and 0, would the results of coarsening mean that 
in case of outer coarsening m$({w2, W3}) = " ^ ( { t ü ^ } ) + " ^ ( { ^ î } ) ? Even though 
the intuition tells us that it should be the case, giving the answer requires further 
analysis. 

In the examples above, the issues of mass assignments in the coarsened frames 
were deliberately left out. The issue of coarsening the mass assignments is quite far 
from trivial in both frames of discernment and Kripke models. Moreover, coarsen­
ing plays a pivotai rôle in classifying the support functions. The discussion on the 
topic involves a few références to the formal properties of the opérations in question, 
namely, coarsening. So, to proceed further some time has to be devoted to the formal 
properties of a frame coarsening. 

4.3.3 Properties of coarsening Kripke models 

The theorem below gives a little insight into the relationship between the coarsenings 
in frame of discernments and Kripke model universes. Most of the properties are 
quite predictable and almost immediately follow from the relevant définitions and 
corresponding properties of the frames of discernment. 

Theorem 4 .3 .4 (Propert ies of coarsening) Let a : 2 e —• 2n, be a refining of 0 
into Q, a~l be an inner and an outer coarsenings of ft. Let 3 = (W, ß , V, m-J) 
and 3' = (W", R'I V, m'w) be the corresponding Kripke models, p~l , p~1+ : 2W' —» 2W 

be 3' inner and outer coarsenings. Then for any sets P, Q C fi the following are true: 

V(a-1+ (P U Q)) = p-1+(V'(P)) U p-l+ (V'(Q)) (4.25) 

V(a-1' (P n <?)) = p-'~ (V{P)) n P-1' (V(Q)) (4.26) 

K ( a - 1 - ( Q \ P ) ) = W \ p - 1 + ( l / ' ( P ) ) (4.27) 

V(<r-i\n\P)) = W\p-1-(V'(P)) (4.28) 

i 3 Ç Q = ^ p - 1 " ( V " ( P ) ) Ç p - 1 " ( V " ( Q ) ) (4.29) 

PQQ^p-1+(V'(P))Cp-i+(V'(Q)) (4.30) 

V(o-1+ (P U Q)) 2 p'1' (V'(P)) U p-1- (V'(Q)) (4.31) 

v(a-l~(PnQ)) ç p-1+(V(P))nP-1+(v'(Q)) (4.32) 
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/ ? - 1 + ( 0 ) = p - 1 " ( 0 ) = 0 

p-1+(V(n)) = P-1-(.V(n)) = w 

p^~(X) C p " 1 + ( X ) V X Ç w. 

( 4 . 3 3 ) 

( 4 . 3 4 ) 

( 4 . 3 5 ) 

P r o o f sketch. The proof is based on putting together définitions of the opérations 
in question. To demonstratc the line of reasoning équation ( 4 . 2 5 ) is proved. 

Via'1 {PU Q)) = V ( C T _ 1 ( P ) U < 7 _ 1 ( Q ) ) follows from équation ( 4 . 1 6 ) , accord-
ing to properties given in équation ( 4 . 8 ) V{o-1+{P) U < T ~ 1 + ( Q ) ) = V{a~1+(P)) U 
V(a~i+ (Q)), which after substitution given in équation ( 4 . 1 6 ) becomes V(a~1+ (P))U 
V{a~1+(Q)) = p-1+(V'(P)) U p-l+(V'(Q)) as desired. 

The rest of identities in Theorem 4 . 3 . 1 are proved using the argument very similar 

Equations ( 4 . 2 7 ) and ( 4 . 2 8 ) are the immediate conséquences of equalities ( 4 . 1 8 ) . 

The only point to be checked is whether V ( 0 ) = W. Surprisingly, this equality did 
not appear in the discussion earlier. According to Définition 3 . 3 . 3 there is a node for -

every singleton a G 0 , such that m(a) > 0 . Thus, V ( 0 ) is the set of nodes where r 
being a part of any subset of 0 is true, which includes ali the nodes of the model, or 
the whole set W. 

There is no immediate analogue to this property on frames of discernment. The 
valuation of the core of a support function on a frame always equals the totali ty 
of the possible worlds. On the other hand, the core of a support function is not 
necessarily equal to the frame's universal set. Speaking strictly, the semantic models 
did not represent abstract frames, they represented particular belief functions over 
the frames. In the next section, this relationship is addressed in more détail. 

4.3.4 Mass assignment and updating frames 

The redistribution of the masses in case of a frame refinement was straightforward in 
both frames of discernment and Kripke models. The frame refinement redistributes 
the belief already assigned to a set among its non-overlapping subsets. So, to update 
the corresponding support functions the masses of the old focal éléments should be 
redistributed among the new ones. Such transformation was just as easy in the case 
of Kripke models, the mass assignment of old terminal nodes was pushed to new 
terminal nodes they could reach. 

To illustrate the point of the previous paragraph, let us again look at Figures 
4.5(a) and 4 .5 (b ) . Assume that in model prior to the refinement, we have masses 

to the one shown above. • 
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m$(wi): 7715(^2) and 7715(103) assigned to corresponding nodes. Denote the mass 

assignments on refined frame 0 by m©. Take 7715(102). After the refìnement this mass 

should be distributed between the new terminal nodes W21 and w22- The equality 

have me (w2i ) + ra»(w>22) = " 1 5 ( ^ 2 ) should also hold. 

Coarsening the sets of terminal nodes accessible from a single non-terminal node 

does not présent much trouble. Let the masses of nodes W31, W32 and w 3 3 be given 

by 771*3(^31), m&(w32) and m g ^ ) . Coarsening X = {w3ìì 1/J32, W33} would not pose 

any problem. Results of both inner and outer coarsening are w 3; the mass assignment 

on the coarsened model should be 7715(^3) = mie(u>3i) + m©(u;32) - f m^w^). 

In a set whose coarsening is less trivial, the situation becomes slightly more com-

plicated. Let Y — { 1 ^ 2 1 , ^ 2 2 , ^ 3 1 , ^ 3 2 } , then P~l (Y) = ™ 2, but the mass assign­

ment 7715(^2) = "^©(^21) + "10(^22) + ™e (™3i) + ^ » ( ^ 3 2 ) is no longer equal to 

its pre-refinement mass. Outer coarsening becomes p~1+(Y) = {w2ìwz}. The mass 

assignment now becomes. even trickier: some portion, of it should be assigned to 

node tj;2 and the remainder should be assigned to node w3, which is not always a. 

terminal node. It is not clear what happened with the rest of the terminal nodes 

they could reach. The only reasonable, if excessive, solution to introduce a new 

node wr which 'stores1 the leftover portion of coarsened mass. First, define a set 

o 
WI 

Figure 4.6: Frame 0 after coarsening 

Y* = {w G Y I 3x € v f Rr\{v,w}, vR'w, x ^ V*}. The mass of this node is given by 
rn${wr) — Ylwew w&v m © ( w ) - The expressions in the previous phrase are awkward, 

but have a very simple meaning. Set V** is a collection of nodes in Y that belong to 

some upward closure not fully contained in Y. The upward closure of node w2 is fully 

contained in V, but the upward closure of W3 is not, so Y* = { ^ 3 1 , 7 j ; 3 2 } . The mass 

assignment node wT (r for remainder) is just a sum of masses in Y". In the example 

under scrutiny it is m(wT) = 77i©(tj;3i) -f 7720(7.032). Frame 0 then takes shape shown 

in Figure 4.6. 

There is a problem though: the coarsening opération should be defined for ail 

the sets in 2W\ so the 'remainder' node in each case will be différent. Not using a 

remainder node solves the problem. Instead, every node in the coarsened frame must 

have the mass equal to the sum of masses of the terminal nodes it sees. The support 

for coarsened images of subsets of 2W> is then the sum of the masses of new terminal 
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nodes in it. The définition below gives a formai summary of the observations given 

in this paragraph. 

Définition 4 .3 .3 (Mass assignment on a coarsened Kripke frame) 

Let 3 = (W,R), 0 = (W',R!) be two Kripke frames, lei p~1'.fT^ • 2*" — 2W be 

inner and outer coarsening of 0 into 3- Let m$, m© be the mass assignments over 

the frames. The mass assignments are then related through 

m$(w) = — m©(vt), where w is a terminal node in (4.36) 

where N = Ylwew {YIwR'vì m<£>(vi)) * s the normalising coefficient. The support for 

coarsened images of subsets on 2W> is calculated by 

S(p-1~(X))= £ m , ( 4 • (4.37) 

or 

S(p-l+(X))= 

where S : 2W —> (0,1] is a belief function over 3-

The normalising coefficient N is one, when frame 0 is refined from some other frame. 

N may differ from one if the frame to which coarsening is applied is not a result 

of a refining. Checking whether mass assignment m j gives rise to a belief function 

is trivial: no new mass assignments are introdùced. Instead, the already known 

assignments are reshuffled to create a différent belief distribution, and no further 

check is needed. 

To see how the définition works, let us refer to the same model. Consider the inner 

coarsening p" 1 " ({1031,1032}) = 103, P _ 1 ~ ( { ^ 3 1 , ^ 3 2 , ^ 3 3 } ) = ™3, and p - 1 " ( { u / 3 i } ) = 

103. Continuing the line of reasoning suggested in the previous paragraph and intro-

ducing extra nodes storing the leftover beliefs results in the model identical to the 

original one. On the other hand, it is obvious that the coarsening should not be 

trivial. A trivial coarsening distinguishes the same propositions with the same mass 

assignments before and after coarsening. 

To substantiate the point, a few coarsened mass assignments are calculated for the 

model in question. There are six terminal nodes in frame 0 , so set 2W' has 2 6 — 1 = 63 

non-empty subsets. Calculating ali the mass assignments is not so interesting, and 

(4.38) 
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the first five give a clear idea of the whole process. 

P _ 1 ~ ( { ^ 2 i } ) = p'1" {{1021,1022}) = p'1'({1021,1022,1031}) = 102 

the list could be continued for the rest of the subsets. 

The attention now can be directed towards the mass assignments of the nodes 
in the coarsened frame. The masses are assigned according to the rules given in the 
original description of the procedure. Recali that only the terminal nodes have non­
zero mass assignments. The non-terminal nodes are supported by the évidence visible 
from them: the support of a non-terminal node is calculated by adding the masses 
of the terminal nodes accessible from it. According to this procedure m$(wi) = 
m<g,{w\) because these nodes are terminal in both models. 7715(102) = "^©(^21) + 

"10(^22) and m$(w$) = 7710(1031) -1- 771,5(7032) + 7710(1033). The support attributed to 
the coarsened images of différent subsets of W is then calculated from the masses of 
the nodes in their coarsened images. For example, since p~ 1 + ({1^22, iozi}) = {102, wa}\ 
the coarsened support for the propositions verified at 1022 and to 3 1 is equal to m 5 ( i o 2 ) + 
m$(wz) a n Q l s o o n - There are many more différent statements in the coarsened frame 
with same degree of support as there were in the originai frame. The coarsened frame 
does not distinguish between some of the propositions distinct in the originai frame. 
In some sense, the proposed mass assignment approach ensures that the coarsening 
actually makes the frame cruder. 

4.4 Refining, coarsening and support functions 

The opérations of frame refinement and coarsening serve two fundamental purposes. 

The first task is to enable the décision maker to implement the new knowledge into 

an already existing framework. The second purpose is less obvious, but no less impor­

tant. By analysing the possible refinings and coarsenings on frames of discernment, 

Shafer was able to prove severa! important facts about différent types of the belief 

functions. In particular, he proved that every inclusion in the scheme of différent 

support functions shown in Figure 3.1 is a proper inclusion. 

According to Shafer, actual évidence can be represented by simple support, sep-

arable support and support functions, but not by general belief functions. In the 

realm of Kripke models, understanding which types of support functions can be ex­

pressed through the means of the proposed procedure helps determine the limits of 
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the approach's applicabilité The limits of the interprétation 's expressive power were 
already established. Understanding which types of support functions can be inter-
preted via the proposed procedure will enable us to understand if the semantics of 
Int represents the whole of the Dempster-Shafer theory or not. 

The answer to the latter question is positive, but with réservations. To understand 
the réservations, a short overview of Shafer's findings about the support functions is 
given, and then the results relevant for the approach are chosen. 

The work so far operated with the notions of simple and separable support func­
tions and a belief function, but not with a support function. Recali, that the distinc­
tion between these functions was discussed in Section 3.1.2. Introducing such a basic 
notion was postponed unti! late in the progress because a support function is defined 
as a coarsening of a belief function and thus could not be introduced any time earlier. 
The définition below is due to Shafer. 

Définition 4.4.1 (Consistent belief functions) Lei 0 and Q be two frames of 
discemment, lei a : 2 e —» 2 n be a refining mapping. Bel0 • 2 e -> (0,1] and Bel1 : 
2 n —> [0,1] are belief functions on Q and Q. Bel and Belo a r e consistent if for any 
set A C 6 the following is true 

Belo(A) = Bel(a(A)). 

In this case, Belo is a restriction of Bel to S. The restriction of a belief function to 
a coarsened frame is denoted Belo — Bel\2Q. 

Whenever a refining is performed according to the proposed procedure on a Kripke 
model, the original support function is the restriction of the refined one. This obser­
vation is not neçessarily true for the frames of discemment, but always works for the 
Kripke models. A Kripke model with mass assignment does not represent a frame 
of discemment, but a frame of discemment with a belief function over it. In other 
words, différent belief functions over the same frame of discemment may result in 
différent Kripke models. The distinction between support functions and separable 
support functions is given through the possibility of coarsening a belief function into 
a separable support function. 

Définition 4.4.2 (Support functions) Let S be a frame of discemment. A belief 
function Bel : 2 G —> [0,1] is a support function if there is a refinement Q ofB and 
some separable support function S : 2n —> [0,1], such that Bel = S\2e. 
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For every support function, there is a common refinement of a such function with' 
some separable support function. The condition is nothing but demanding some 
'middle ground' between support functions and their simpler counterparts which can 
be reached from both domains. The condition, as it is stated in the définition, is not 
too useful for determining whether a belief function is a support function or not. The 
theorem below gives the necessary practical tools. 

Theorem 4.4 .1 (Conditions on Support functions) Let 0 be a frame of dis-
cemment, let Bel : 2 e —> [0,1] be a belief function on 0 ; lei C(Bel) be ils core. 
The following are équivalent: 

1. Bel is a support function; 

2. C(Bel) has a positive commonality number; 

3. C(Bel) has a positive basic probability assignment fîj. 

Theorem 4.4.1 is useful for checking if the belief function belongs to a support func­
tions class. Can Kripke models represent support functions? Can Kripke models 
represent belief functions that are not support functions? To answer both questions, 
the examples of belief and support functions are given first. Plenty of simple and sep-, 
arable support functions on Kripke models were already constructed, so the discussion 
will be centred around support functions and belief functions. 

Consider Shafer's example of a belief function that is not a support function. Let 
0 = {a , 6, c, d], the focal éléments of belief function S are m({a , 6}) = S ] , m({c}) = 
1 — S i and m(A) = 0 for ail other sets. The core of this belief function is C(S) = 
{a, 6, c } . According to the last condition of Theorem 4.4.1 this belief function is not 
a support function because m(C(S)) = 0. 

Frame 0 with this belief function cannot be represented by a Kripke model, but the 
reason is différent. First of ail, there is a singleton in 0 with a zero mass assignment 
which does not merit a node. Following the developed procedure results in the model 
no différent from the model over a smaller frame of discernment not including {d}. 
Thus, the procedure is only capable of representing the beliefs S such that C(S) = 0 . 
Stili, the cases in which the mass assignment of the core was zero were not ruled out. 

The distinction between representing a belief function that is not a support func­
tion and a support function is somehow trickier. Ali the belief functions given by the 
mass assignments in the previous paragraph can be easily represented by two isolated 
nodes, and in this case the semantic model would not look any différent from a model 
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representing a simple support function centred around a single focal élément. The 

différence is in the semantics of the nodes. While in the case of a simple support func­

tion one of the nodes supports some particular piece of évidence, and the other node 

collects unassigned beliefs, in the case of representing a belief function that is not a 

support function every node supports some particular piece of évidence. A simple 

procedure helps to check whether a model represents a belief or a support function. 

Recali the procedure used to build a model representing a support function in 

which some core éléments include others. The procedure was described on page 53. 

The idea of making a copy of each node representing a core élément and then updating 

therelation R accordingly works for the problem at hand too. Let # = {W, R, V, mw) 

be a model, = {W, R', V , m'w) its refinement, and a : 2W —* 2W' a refinement 

mapping. Define a as <?({w}) = { u / } for ail terminal nodes w in 5- Update R' 

according to the rules. Model 5 represents a support function if there is a node v' in 

W, such that v' \ R' = {v'} U W \ W. If there is no such node, then # represents 

a belief function that is not a support function. The condition can be restated as 

checking whether applying a to a model yields a node whose immediate successors' 

masses amount to one. 

The testing procedure outlined in the previous paragraph is in agreement with 

Shafer's observations. Combining a belief function with a support function produces 

another belief function, which is in agreement with the earlier observations. The 

limits of the proposed représentation can be outlined and some conclusions about 

the semantic of both the Dempster-Shafer évidence combination rule and évidence 

update can be made. 

The procedure in Chapter 3 is capable of-representing ail types of belief functions: 

belief functions, support functions, separable support functions, and simple support 

functions. The procedure is only suitable for support functions S : 2 e —• [0,1] 

such that C(S) = 0 . This limitation is important from the semantic point of view. 

Consider two frames of discernment 0 and fi, such that 0 C fi. Let me and TTIQ 

be the mass assignments over them. Define mçi(X) = m e ( X ) for ali X Ç 0 and 

let mufV) = 0 otherwise. From the evidential point of view thèse two frames are 

différent, and refining them can yield totally différent results. From the semantic point 

of view the two are identica! and will be represented by the same model. Moreover, 

refinements or coarsenings of the corresponding Kripke models will not represent ail 

the possible results of refinements and coarsenings of 0 and fi. 

The limits of représentation are well in line with the original premises outlined 

in Chapter 2. The logie should not only represent the Dempster-Shafer theory world 
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view, it should also contribute to building a system for consistent reasoning. The 
consistency in Kripke models requires that a proposition originally known to be true 
cannot become false later. The limitation on the mass assignments introduced in this 
section and on the models themselves makes this change of validity impossible. The 
requirement for the core of support function to be equal to the frame of discernment 
was needed to limit the scope only to formulae with non-zero support. 

It was already mentioned that Shafer limited actual observable évidence to the 
situations described by support functions, but not by general belief functions. Ex­
position above suggests that only the support functions whose core is equal to the 
frame of discernment are suitable for a consistent inferential apparatus. The main 
strength of the proposed approach lies in its analogue to the évidence combination 
rule. Any two Kripke models may be combined according to the analogue of the 
Dempster-Shafer évidence combination rule. The possibilities for évidence updates 
done with the aid of frame refinement or coarsening are limited to the transformations 
which do not violate the semantic integrity of the model: the transformations do not 
change the set of valid variables in the non-transformed nodes. 

l 
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1 

Chapter 5 

Discussion 
5 

The results présentée* in this work belong to more than one field: the proposed inter­

prétation of the Dempster-Shafer theory is useful for uncertainty représentation; the 

discussion in Chapter 2 attempts to answer some epistemological questions, the re-

sulting formalism is within limits of multivalued logic. Below, the main contributions 

are recaptured, and possible future research directions are outlined in a structured 

way. 

5.1 The contribution 

The main inspiration behind this work was to construct a logic specifically for the 

needs of the Dempster-Shafer theory. The apparatus should not only allow for trans-

lating the evidential setup to some propositional language, but should also help un-

derstand the semantics of the theory. The latter goal differentiates the proposed in­

terprétation from the earlier logical approaches to the Dempster-Shafer theory. Most 

•of the earlier logic interprétations started with analysis of the meaning of the logical 

connectives, and the functions describing thèse connectives were chosen early in the 

development. The approach in this work is différent. First, an effort to understand 

the nature of the mathematical objects viewed through the prism of the Dempster-

Shafer theory was made. There are infinitely many propositional languages, and 

most of them can be used for describing the Dempster-Shafer theory universe. The 

problem is interesting because there is no objective criterion that governs the choice 

of a propositional language. When viewed from this angle, the interprétations men-

tioned above can be classified as being ad hoc or naïve. However, the semantics of 

such logic S y s t e m s are influenced by the choice of the propositional language. The 

Dempster-Shafer theory is a universal theory applicable to any kinds of sets and 
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universes. Having some particuìar logie connectives for its interprétation is unneces-

sarily restrictive. To avoid this shortfalì, the problem was addressed from the other 

end: without specifying the language, the author tried to understand the general se-

mantics of the logie expressible through the evidential universes. Once the semantic 

was understood, the pool of suitable languages was narrowed, and the criteria for a 

propositional language définition became clearer. 

Putting the priority on the semantics requires selecting a ground theory providing 

the direction of search. This ground theory must answer the fundamental questions 

about the nature of the mathematica! objects. An important feature of the Dempster-

Shafer theory is its ability to incorporate changes in the world. Viewing the universe 

as a dynamic system moves the understanding of the mathematica! objects away from 

Russell-Wittgenstein paradigms. To achieve a reasonable balance between imprecise 

and rigorous, the analysis of the nature of mathematical objects was conducted from 

the viewpoint of constructive mathematics or Brouwer's intuitionism. Accepting a 

certain philosophical stance had forma! implications. From the very beginning it 

was assumed that formula p V ->p is true only if one of the disjunction members is 

decidable. 

Once the philosophical questions were addressed, the attention was switched to 

the forma! part of the work. Given the considérations above, representing Dempster-

Shafer frames of discernment through Kripke models was a natura! choice. Even 

though semantic models were used for interpreting the Dempster-Shafer theory theory 

earlier, the proposed procedure is différent. Only models that are both reflexive, 

transitive and antisymmetric were used. The set of formulae validated in the resulting 

models was analysed and shown to be equal to the 'minimal' intuitionist logie Int 

thus ensuring that the formalism is useful in a sense that underlying logie is complete 

and sound. 

Another distinguishing feature of the proposed approach is its full parallelism with 

the Dempster-Shafer theory: while many earlier interprétations offered the methods 

for calculating the propositions' beliefs and have some kind of analogue to the évi­

dence combination rule, they lack the parallels between frame transformations in the 

evidential setup and the logie constructions. 

The ali embracing nature of the developed procedure makes it possible to use 

the frameworkas reasoning apparatus in decision-making S y s t e m s that base their 

inference either on imprecise or uncertain information. This possible application is 

well in line with the original inspiration behind the whole work which followed from 

the author's interest in decision-making agents and différent formalisms used to rank 
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the alternatives. The next section provides a more detailed overview of the différences 

between the proposed approach and earlier interprétations. 

5.2 Comparison with earlier interprétations 

The procedure developed in this work offers a comprehensive approach to logie inter­

prétation of the Dempster-Shafer theory. The earliest applications of the Dempster-

Shafer theory used Boolean logie for inference. In this case only calculating the beliefs 

was différent from the classical probability theory. The set of true propositions was 

determined only by the non-zero mass assignments. Such situation may be described 

by validating ali the formulae true at a single node. Using a single-node semantic 

model does not capture the spirit of the Dempster-Shafer theory too well. Having a 

single node does not reflect the possibility to learn new faets and.operate with dif­

férent sets of beliefs at différent moments of time. Using Boolean logie thus does not 

really reflect the state of affairs as it is implied by the frames of discernment. 

The problem with Boolean inference was observed quite early and numerous inter­

prétations that used richer semantics followed. Some of these results were reviewed in 

Chapter 1. The proposed framework differs from most of them. First of ali, most of 

proposed interprétations, while accepting the need to have différent semantic models 

in order to represent the Dempster-Shafer theory, focussed their attention on ex­

pressing the beliefs through modal operators. This premise led to constructing modal 

logics whose semantics were determined by the choice of connectives rather than by 

the underlying theory. As an example of such logics the already reviewed L I l | can be 

mentioned [76]. Operator-centred approach may.lead to negative conséquences as in 

[71] where the particular requirements to modal connective led to a logie that were not 

capable to provide an analogue of the Dempster-Shafer évidence combination rule. 

The approach which is the most close in spirit to the approach in this work was 

used by Tsiporkova et al. [77], [78], who took the most general définition of the modal 

operator and looked into what properties followed from linking the Dempster-Shafer 

evidential setup and modal logics. The results presented by the authors include 

the procedure that induces beliefs and has some analogue of the Dempster-Shafer 

évidence combination rule. On the other hand, there is no analysis of the resulting 

set of semantic models, and the completeness properties of the logie are not explored. 

Boutilier [75] takes the approach in which the set of modal connectives is defined 

based on the author's understanding of the evidential setup, and the main focus of the 

work is on analysing the semantic models. The modal models introduced by Boutilier 
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reflect the possibility to learn facts, and the accessibility relation is a total preorder. 
Therefore, the models introduced by Boutiller allow for clusters of possible worlds 
that are equally likely. Note that a total pre-order (A,<) can be factorised into a 
total order (A/ ~ , <) (or a chain) by canonical projection TX : A —• A/ ~ , where 
A/ ~ is the quotient set (set of equivalence classes [a] = {b £ A : b ~ a} and TT is a 
map a •—*• [a]). 

In the proposed approach, relation R is a partial order (antisymmetric), which 
means that different nodes can only represent different worlds. A chain corresponding 
to A/ ~ is a particular case of R (when it is a total order). In this sense, models 
induced by the proposed approach are richer. 

The other significant difference between Boutillier's approach and the current 
approach is Bouttilier's desire to develop qualitative rather than quantitative frame­
work, which results in providing a procedure for getting a non-numerical ordering of 
the worlds rather than a developed apparatus for calculating the beliefs in proposi­
tions. 

Most of the proposed frameworks do not pay much attention to studying the 
properties of induced semantic models. The author beheves that studying the se­
mantic models, especially in combinatorial or algebraic context, leads to interesting 
results and may provide useful tools for developing effective algorithms for the whole 
undertaking. 

Early graphical representation of the Dempster-Shafer approach can be found in 
Barnett's work [79], [82] dating from the early eighties. The results are, however, 
not universal; the evidential setups are represented as binary trees that may be used 
to calculate the beliefs. The model only covers the setups described by-separable 
support functions, and no semantic analysis is available as the authors developed 
their approach within the realm of Boolean logic as a reasoning apparatus. 

None of the earlier approaches which are known to the author followed the princi­
ples of constructive mathematics, and none of the proposed logics explicitly ruled out 
tertium non datur. Instead, additional axioms were often introduced. Even though 
the situation when tertium non datur is explicitly refuted does not occur too often, 
the possibility to incorporate 'empty evidence' should be avoided as the example in 
Section 3.6 demonstrates. 

Overall, the proposed approach may be described as a framework that addresses 
all the aspects of reasoning with beliefs: finding a set of true formulae, calculating 
the beliefs, and providing graphical representation. The approach can also be seen 
as the one that provides the minimal set of true formulae. As shown by Alechina the 
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set of true formulae validated in the induced semantic models is equal to Int [99]. 

5.3 Summary 
The proposed approach represents a support function S over a Dempster-Shafer frame 
of discernment 0 as a semantic model Ai with weighted nodes. The distinguishing 
feature of the approach is its ability to represent support functions and évidence 
combination through non-trivial semantic models. 

The traditional approach to reasoning in the Dempster-Shafer universe is to use 
Boolean logie, which is semantically équivalent to ali formulae valid at a single node. 
However, in many cases it leads to 'too many' formulae being valid. 

An attractive property of non-trivial semantic models is their ability to réfute 
certain formulae at différent nodes. In the current work- it was shown that the under-
lying logie, whose formulae are guaranteed to be valid at any node of any model is 
Int. Thus, any formula that is not in Int may be refuted at some node of a semantic 
model. It does not mean that given a formula and a model it is guaranteed that the 
formula will be refuted at some node. It only means that given a formula not in Int 
there is a model that réfutes it. It is also possible to find formulae refuted by the 
model if the model is known. 

The simplest example of the relation above is p V (p —* _L), and any model that 
has two connected nodes, instantiating p in a 'later' node leads to p V (p —* _L) being 
invalid at the earlier one. Depending on the model structure the set of formulae that 
is not valid at certain nodes changes. Knowing the valuation of particular formulae 
gives a possibility to limit the set of possible inferences at each particular node since 
there is a set of formulae <p ^Int that are not valid at that node. 

In terms of building an inferential apparatus the limitations above mean that only 
logically possible conclusions are made based on each belief (the nodes of a model 
represent beliefs). 

Let us now return to the example given in Section 3.3.3. Recali that the support 
function described a sensor checking the colour of some faraway object. Now let us 
try to make inference based on measurements of many such sensors. We also need to 
take into account a belief that some of them may be broken without any opportunity 
to check if they are indeed broken: the sensors are not accessible for examination (e.g. 
they are on Mars). 

There are a few points that should be considered in a situation like that. 

1. The différence between probabilistic/statistical approach and the Dempster-
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Shafer approach — one cannot reaìly formulate and test a statistical hypoth-

esis. It is not an experiment that may be reproduced, thus a probability law 

describing the odds that the sensor is broken is not available, because we cannot 

formulate the requirements for a test to achieve désirable statistical significance. 

In this case, beliefs are, perhaps, a more appropriate concept, even though it is 

a matter of opinion. The Dempster-Shafer theory is a computational formalism 

to deal with beliefs, not probabilities. 

2. The set of possible values of the parameter x measured by the sensor is G. 

Select a relevant subset of G, where mass assignments are not zero and build 

a sematic model with mass assignments according to Définitions 3.3.2, 3.3.3 

and 3.3.4. Possible inference at each node of this model will be différent (i.e. 

sets of provable formulae are différent). Using models that represent logie Int 

allows one to operate within a richer semantic. In case of Boolean logie the 

model is trivial. With Int there is a possibility of différent nodes that rep­

resent différent possible worlds that could correspond to the same data, and 

which could produce différent inference. The mass assignments provide some 

numerical estimate how believable each world is. 

3. To illustrate the previous point consider the following situation. Assume that 

temperature of red objects may be measured, but that the colour sensor can­

not measure temperature, so that some other, difficult to operate, sensor must 

be used. The temperature of blue and white objects is irrelevant. In case of 

Boolean semantics there is nothing that prevents a décision maker from evalu-

ating formulae that involve p V (p —> X ) , where p = ' ' o b j e c t i s ho t ' even 

at the nodes that correspond to, say, white objects. Moreover, according to the 

axioms of Boolean logie, the agent must use this formula as a tautology even 

in cases when there is no information about the temperature of the object and, 

strictly speaking, using any proposition involving it, is not justified. 

4. There could be too many possible worlds, and the problem of proving/validating 

too many formulae. In the proposed approach, the nodes represent only non-

trivial beliefs (i.e. the ònes that are neither one or zero), and this réfutes certain 

formulae from the very beginning. Having numerical mass assignments on the 

nodes can further help to prioritize the inference process by focussing on the 

most 'believable' worlds rather than proving ail possible formulae. This ability 

may be quite important for computational applications. 
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5. The décision can be made whether the belief in some state of affairs (world) is 

strong enough or not and some additional measurement have to be made. 

6. New évidence can be obtained, and it can change the beliefs. The process of 

incorporating new évidence resnlts in updating the models as well, and the 

procédures for it were developed (refinement, coarsening) in Chapter 4. Thus, 

after obtaining and incorporating new évidence, the new inference process may 

reuse many resuits of previous computations. 

The possibility to limit the number of valid formulae at a particular node also suggests 

a direction for future research that was analysed in some détail in Section 3.5. Even 

though there are no explicit conditions that the semantic models representing support 

functions should satisfy, some properties can be inferred from the evidential setup. It 

was shown that having at least two connected nodes leads to refuting p V (p —* X ) , 

there are similar conditions on the présence of chains and so on. Many intermediate 

logics are defined through conditions on frames which can be applicable to particular 

models representing support functions. Determining which conditions on frames are 

satisfied by a particular semantic model will help the décision maker to limit the set 

of valid formulae and thus lead to more effective inference. 

In the most gênerai sensé the proposed approach agrées with the ideas behind 

the rule based Systems that operate using probabilistic logic networks [100]. The 

latter is a much more ambitious work aimed at providing both fundamental theory 

and implementation of the authors' ideas about cognitive development which they 

crédit to works of Piaget and Vygotsky. The same authors discuss the aspects of the 

uncertain inference and come to the conclusion that one of the hardest tasks is to 

contro! préférence with regard to which rules apply first and what should wait until 

more knowledge is available: 

The subtlest part of uncertain inference is inference control: the choice 

which inferences to do, in what order [101]. 

The semantic models contribute to addressing the problem outlined above, by giving 

a natural hierarchy of the rules based on the information at disposai of a décision 

maker at a particular state of the world. When viewed from this angle of view, the 

proposed formalism is especially attractive. As it is observed in the paper just quoted, 

people are not very efficient in applying inference rules, but they exceed machines in 

their ability to choose thèse rules. The Dempster-Shafer theory is a formalism aimed 

at representing human beliefs rather than additive probabilities. It can model human 
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behaviour when the probability theory is not applicable. Thus a Dempster-Shafer 

theory based mechanism for inference rule selection can be an alternative approach. 
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