3,060 research outputs found

    Recent Trends and Innovations in Modelling City Logistics

    Get PDF
    AbstractThere are many challenges associated with moving goods within cities as urban areas become larger and elderly residents require more healthcare in their homes. Air quality is also impacted by urban freight vehicles. This paper presents a review of recent trends and innovations in modelling city logistics. New techniques for modelling city logistics developed in the areas of emissions, healthcare and mega-cities are outlined. This paper describes the formulation, solution methodologies and applications of these models

    Managing Congestion in Vehicular Networks Using Tabu Search

    Get PDF
    © 2018, Springer Nature Switzerland AG. In this era of communication, exponentially growing networks bring a lot of challenges to address for smoother network functionalities. Among them is efficiency in handling packet traffic to avoid and control congestion. A particular case is applicable to Vehicular Ad-hoc Networks, which are known with unbalanced resource utilisation, communication overheads, high transmission delay and least transmission capacity. This paper aims to minimise the delay and jitter for enhancing the Quality of Service (QoS) in Vehicular Adhoc Networks (VANET) using tabu search algorithm with multi-channel allocation capability. We proposed a scheme that prioritises each message considering the basis of message type or its substances, such as crisis, reference point, and administration oriented etc., and uses tabu search for scheduling the transmission of queued messages in order to enhance the efficiency, security, and durability of VANET. A comprehensive simulation is conducted to validate the proposed scheme and to evaluate the performances in comparison with other state-of-the-art approaches

    Performance enhancement of wireless communication systems through QoS optimisation

    Get PDF
    Providing quality of service (QoS) in a communication network is essential but challenging, especially when the complexities of wireless and mobile networks are added. The issues of how to achieve the intended performances, such as reliability and efficiency, at the minimal resource cost for wireless communications and networking have not been fully addressed. In this dissertation, we have investigated different data transmission schemes in different wireless communication systems such as wireless sensor network, device-to-device communications and vehicular networks. We have focused on cooperative communications through relaying and proposed a method to maximise the QoS performance by finding optimum transmission schemes. Furthermore, the performance trade-offs that we have identified show that both cooperative and non-cooperative transmission schemes could have advantages as well as disadvantages in offering QoS. In the analytical approach, we have derived the closed-form expressions of the outage probability, throughput and energy efficiency for different transmission schemes in wireless and mobile networks, in addition to applying other QoS metrics such as packet delivery ratio, packet loss rate and average end-to-end delay. We have shown that multi-hop relaying through cooperative communications can outperform non-cooperative transmission schemes in many cases. Furthermore, we have also analysed the optimum required transmission power for different transmission ranges to obtain the maximum energy efficiency or maximum achievable data rate with the minimum outage probability and bit error rate in cellular network. The proposed analytical and modelling approaches are used in wireless sensor networks, device-to-device communications and vehicular networks. The results generated have suggested an adaptive transmission strategy where the system can decide when and how each of transmission schemes should be adopted to achieve the best performance in varied conditions. In addition, the system can also choose proper transmitting power levels under the changing transmission distance to increase and maintain the network reliability and system efficiency accordingly. Consequently, these functions will lead to the optimized QoS in a given network

    Multilayer optimisation for day-ahead energy planning in microgrids

    Get PDF
    In the search for low carbon, reliable and affordable ways to provide electricity, an increased attention is going to the microgrid, a small-scale power system that uses a combination of energy generation and storage devices to serve local customers. The most promising feature of the microgrid is its flexibility to act as a standalone source of electricity for remote communities, and to be connected to the main power system, selling and purchasing power as required. Additionally, a microgrid can be considered as a coordinated system approach for incorporating intermittent renewable sources of energy. Microgrid customers can have power from their batteries or distributed generators, they can buy it from the utility grid, or they can reduce their consumption.When designing a new optimal planning tool for a microgrid, a major challenge (and opportunity) is to decide on what units to operate in order to meet the demand. The question is what mix will provide the performance needed at the lowest cost, or with the lowest possible emissions. Unfortunately, both objectives are often contradictory. Generally, low costs mean high emissions, and vice versa. A microgrid system operator may care more about achieving lower costs rather than lower emissions. Given the preferences, the operator needs to decide how to configure and operate the microgrid while satisfying all technical requirements, such as voltage stability and power balance. In order to control and manage the microgrid units in real-time while fully exploiting the benefit of long-term prediction, an off-line optimisation approach imposes itself to devise the online microgrid management. In this PhD thesis, an efficient multilayer control approach is developed which obtains a day-ahead unit commitment method to provide an economically and environmentally viable unit commitment (UC) that is physically feasible in terms of voltage violations. With the multilayer control approach, the future operational states of the controllable units within the microgrid are determined ahead of time. The proposed concept follows the idea of a day-ahead coordination including the unit commitment problem (scheduling layer), an off-line power flow calculation (executive layer) and a security check with feedback control (adjustment layer). Since the complete multilayer control concept works on a day-ahead time scale, the model can be considered as an off-line optimisation approach. The power reference set points provided by the multilayer control approach can, in turn, be used for an online microgrid implementation to achieve real-time system state updates

    Internet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management

    Get PDF
    The rapid adoption of Internet of Things (IoT) has encouraged the integration of new connected devices such as Unmanned Aerial Vehicles (UAVs) to the ubiquitous network. UAVs promise a pragmatic solution to the limitations of existing terrestrial IoT infrastructure as well as bring new means of delivering IoT services through a wide range of applications. Owning to their potential, UAVs are expected to soon dominate the low-altitude airspace over populated cities. This introduces new research challenges such as the safe management of UAVs operation under high traffic demands. This paper proposes a novel way of structuring the uncontrolled, low-altitude airspace, with the aim of addressing the complex problem of UAV traffic management at an abstract level. The work, hence, introduces a model of the airspace as a weighted multilayer network of nodes and airways and presents a set of experimental simulation results using three UAV traffic management heuristics
    • …
    corecore