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Abstract: The rapid adoption of Internet of Things (IoT) has encouraged the integration of
new connected devices such as Unmanned Aerial Vehicles (UAVs) to the ubiquitous network.
UAVs promise a pragmatic solution to the limitations of existing terrestrial IoT infrastructure as well
as bring new means of delivering IoT services through a wide range of applications. Owning to
their potential, UAVs are expected to soon dominate the low-altitude airspace over populated cities.
This introduces new research challenges such as the safe management of UAVs operation under
high traffic demands. This paper proposes a novel way of structuring the uncontrolled, low-altitude
airspace, with the aim of addressing the complex problem of UAV traffic management at an abstract
level. The work, hence, introduces a model of the airspace as a weighted multilayer network of
nodes and airways and presents a set of experimental simulation results using three UAV traffic
management heuristics.

Keywords: Internet of Things; traffic management; autonomous unmanned aerial vehicles;
low-altitude airspace; multilayer networks

1. Introduction

Characterised as a mega-network of heterogeneous technologies and standards, Internet of Things
(IoT), broadly refers to a network of uniquely addressable, interconnected objects, built on standard
communication protocols whose point of convergence is the internet [1]. The fundamental idea behind
IoT lies in connecting, both, virtual and physical everyday objects, thus enabling a wide array of
services that were otherwise deemed unfeasible to be realised.

The widespread of IoT has, therefore, motivated the advancement in information communication
technologies, catalysing the development and integration of new devices to this ubiquitous network.
One promising category of devices that recently found its way into IoT, is Unmanned Aerial Vehicles
(UAVs). The miniaturisation of lightweight, low energy consumption, wireless sensors has led to the
rapid advancement in UAV technologies. In turn, promising new means of efficiently collecting
and transmitting data as smart terminal devices capable of interacting with the physical world
for a magnitude of IoT applications. Some predominant examples include smart agriculture [2,3],
smart logistics [4], smart healthcare [5] and monitoring, surveillance and disaster management [6-9].
Nevertheless, UAVs promise a pragmatic solution to the limitations of existing terrestrial IoT
infrastructure that, in some cases, would not be economically feasible nor sufficient to guarantee

Sensors 2019, 19, 4779; d0i:10.3390/s19214779 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2398-5012
https://orcid.org/0000-0001-9419-4210
https://orcid.org/0000-0001-8155-0626
http://dx.doi.org/10.3390/s19214779
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/21/4779?type=check_update&version=3

Sensors 2019, 19, 4779 2 of 22

communication coverage with an acceptable level of quality [10]. Hence, making aerial technologies,
such as UAVs a promising solution where they can contribute to overcoming such limitations by
offering wider coverage, better availability and higher resilience when equipped with the appropriate
sensory payload [11,12]. Figure 1, based on the International Organisation for Standardisation (ISO)
and the International Electrotechnical Commission’s (IEC) IoT reference architecture published in
ISO/IEC 30141 [13], illustrates some examples of potential roles for UAVs within IoT.
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Figure 1. Role of unmanned aerial vehicle (UAV) within Internet of Things (IoT) as: (a) smart terminal
devices that interact with the physical world; (b) aerial base stations and gateways; (¢) communication
network connected to IoT cloud.

As research and industry continue to find more uses for UAVs [14], it is reasonable to envision
a near future where heterogeneous swarms of UAVs would dominate the low-altitude airspace,
operating beyond direct line of sight, hence, making their safe operation and management a critical
research challenge. One viable solution is a dedicated UAV Traffic Management (UTM) system [15],
an infrastructure building upon IoT concepts, such as its layered design, to complement conventional
Air Traffic Management (ATM) by facilitating data exchange between UAVs as well as different
stakeholders, as illustrated in Figure 2. However, in comparison to Air Traffic Management (ATM),
UAV Traffic Management (UTM) introduces new research challenges with UAVs’ higher degree
of mobility and energy limitations. Recently becoming an important research topic, with the
expected large airspace traffic demand, dynamic geo-fencing and intrusion detection requirements,
the currently under-development constructs, like NASA UTM [16] and EU U-Space [17] to name a few,
will eventually face limitations in scalability and resilience due to their ATM-comparable centralised
architecture. On the contrary, a distributed UTM relying on local decisions and ad-hoc UAV-to-UAV
and UAV-to-infrastructure communications would reduce latency by allowing UAVs to exchange the
more frequent awareness messages directly as explained in Reference [15], utilising paradigms such as
multi-access edge computing [18]. Hence, achieving scalability and better resilience [19].

A mandatory first step towards a distributed UTM is to design and model the low-altitude
airspace as its structure will have a significant role in air traffic management. This is emphasised
in Referebces [20,21] where authors investigate the impact of the airspace structure and capacity for
traffic densities.
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This work builds on the foundations laid in our previous work [22] where we addressed the
aforementioned, complex problem of UAV traffic management at an abstract level by proposing a
structure for the uncontrolled low-altitude airspace; presented as a weighted multilayer network of
nodes and airways. The main contribution of this paper, therefore is extending [22] by:

e emphasising on the role of UAVs within IoT;
e  providing a broader state of the art analysis;
e extending the UTM model description with UAV communication;

e  considering more realistic experimental scenarios.
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Figure 2. UAV traffic management (UTM) facilitating communication between main stakeholders [22].

The remainder of this work is structured as follows. Section 2 discusses the state of the art on
multilayer networks, UAV traffic management and distributed path planning. Section 3 describes the
proposed multilayer low-altitude airspace model followed by a corresponding optimisation problem
and resolution approaches in Section 4. Section 5 explains our experimental setup and results analysis.
Finally, Section 6 concludes the work and presents future research directions.

2. State of the Art

This section first presents the related work in multilayer networks as the groundwork on which
our model is based, followed by a discussion on recent UTM developments and autonomous robot
path planning. At the end of each subsection we emphasise our contributions to the literature.

2.1. Multilayer Networks

One particularly useful way to study complex systems is by analysing the networks that encode
the interactions among the system’s elements. However the complexity of some real systems is such
that it is not possible to study them as single layer networks. To account for this complexity, a more
general framework, known as multilayer networks is considered. Over the recent years, research in
physics and computer science developed different notions and models for complex networks referred
to as networks of networks [23], multilayer social networks [24] and interconnected networks [25]
to name a few. Literature provides many applications for such systems in ecology [26], biology [27],
economic applications [28] and game theory [29] but what interests us most are those addressing
transportation [30].

Transportation systems are one distinct example of systems where the multilayer formulation
arises in a natural way [30] as there can be multiple modes of transport between given locations.
This can be represented as a multilayer network where each layer is a representation of one mode of
transportation forming an already complex network. Different segments, later referred to as paths,
can have very different properties such as allowable velocity, energy consumption or traffic capacity and
it is thus necessary to distinguish each of them when studying the whole system [30]. A similar
multilayer representation is used in aerial transportation systems such as in Reference [31] where the
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authors built the European air transport multilayer network having each network layer represent an
airline. Similarly, References [32-34] analyse, respectively, the Greek and Chinese airline transportation
networks using the same aforementioned framework.

Our main contribution is expanding a similar methodology to represent the structure of the
low-altitude airspace—Class G—as a multilayer network which, to the best of our knowledge, has never
been proposed in the air traffic management literature.

2.2. UAV Traffic Management

With the evolution of wireless sensor networks and the potential uses of loT-enabled UAVs as
smart terminal devices in a magnitude of applications, it is important to acknowledge and address the
legitimate challenges of privacy, airspace management and safety, that will accompany their integration
into Class G airspace over cities [14].

In order to address such pressing issues, Standard Development Organisations (SDOs) and other
regulatory bodies have recently established working groups to lay down the foundations to accelerate
the development of a new dedicated infrastructure for UAV management [35]. Starting with operator
control, vehicle identification and control and, finally, traffic flow control, the envisioned infrastructure
should allow seamless integration of heterogeneous systems and facilitate the data exchange between
various stakeholders. Conflict detection and resolution, localisation & tracking and scheduling are
some among many of the key function a UTM must offer.

From vehicle identification and control, conflict detection and resolution, localisation and tracking
to scheduling, the envisioned infrastructure should allow seamless integration of heterogeneous
systems and facilitate data exchange between various stakeholders. Supported by the foundations
being laid down by Standard Development Organisations (SDOs) recently established working
groups [35], research institutes and companies have recently proposed multiple UTM projects.
Spearheaded by NASA Ames Research Centre in close collaboration with the Federal Aviation
Administration (FAA) and over 125 industry partners [16], literature provides some constructs and
architectures as part of on-going projects. Some of the most notable government led initiatives
include U-Space project by the European Commission lead by the European Aviation Safety Agency
(EASA) [17], China’s Civil UAS Operation Management System (UOMS) [36] the Japanese UTM [37] in
collaboration with the private sector. Additionally, over the recent few years, multiple platforms were
proposed by commercial industry. Deployed in over 9 countries across Europe, Asia and the United
States of America, one platform that stands out is AirMap’s UAS Traffic Management [38], building on
their widely adopted ATM platform. AirMap facilitates the collaboration between flight operators,
industry, governments, 7 Standard Development Organisations (SDOs), 4 regulatory bodies including
EASA and FAA. The interested reader can find an exhaustive list of commercial concept architectures
and constructs in Reference [39] and a regularly updated map of international UTM implementations
and test sites in Reference [40].

While the proposed systems offer a viable solution, such centralised systems will not be able to
cope with the highly dynamic nature of the UAV traffic networks, let alone the dynamic geo-fencing,
intrusion detection and communication challenges. To this extent, we envision a distributed UTM
where UAVs dynamically plan their paths based on local information and decisions while optimising
ad-hoc communications. This in turn would allow better scalability and resilience of the system [15,19].

2.3. Distributed Path Planning

In all the aforementioned promising applications, in order for UAVs or any other autonomous
mobile robots, to perform their tasks, efficient and collision-free path planning becomes a necessity.
Path planning for robotic applications is a research topic that has been actively studied over many
years. However, literature have mainly focused on 2-dimensional (2D) and 2.5-dimensional (2.5D)
methods [41], while approaches for UAVs, underwater vehicles and other highly mobile autonomous
robots requiring 3-dimensional (3D) path planning, remain less explored.
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Commonly used UAVs can be categorised as non-holonomic mobile robots [42] as the degree
of their controllable actuators is less than their degree of freedom in the space which they operate;
therefore, path planning optimisation adds further complexity in comparison to holonomic systems.
In order to address such challenges, researchers divide path planning into two main subsystems;
a global path planning subsystem complemented by a lower level addressing collision avoidance.
The latter being out of the scope of this work, the interested reader can find various approaches and
algorithms in Reference [43].

With focus on global path planning of UAVs, Yang et al. in Reference [44] provide a thorough
survey of successful UAV 3D path planning algorithms found in literature. Additionally, the authors
analyse and categorise the algorithms into sampling-based, mathematical model based, node-based
and bio-inspired algorithms; out of which, we pay particular attention to the latter two, provided our
proposed model of Class G. In addition to the well-known Dijkstra and A* algorithms, Likhachev
et al. in Reference [45] propose an anytime heuristic search algorithm that improves on classical
A* by ensuring that a robot has at least a sub-optimal path at any given time. The authors then
develop further on this and propose [46], a heuristic-based re-planning method (AD¥) relying on an
anytime dynamic A* algorithm to continuously improve its solution within a predefined time frame
as well as allow for re-computation of the path when information is updated. Another approach is
the Lazy Theta*, proposed in Reference [47], building on the Theta* algorithm, this search method
is not constrained to the topology of first hop neighbours in a multilayer network, in turn offers
an improvement to classical A*. While this category of algorithms can find optimal paths through
decomposing networks, they are not ideally suited for complex environments; hence, researchers
rely on bio-inspired algorithms. From Particle Swarm Optimisation, Genetic Algorithm, Artificial
Bee Colony and Bacterial Foraging Optimisation, to list a few, literature provides many bio-inspired
optimisation algorithms for 3D path planning [41].

In contrast with the majority of the aforementioned heuristics, our algorithm should not only
focus on optimising distance and time but should be able to optimise travel time while taking into
consideration energy limitations, inspired by energy-aware routing in wireless sensors networks [48].
Therefore, we rely on our previous work in Reference [49] and on the work presented in Reference [50]
on Inverted ACO for vehicle traffic management, to adopt a pheromone guided greedy heuristic in
order to evaluate UAV traffic behaviour in the proposed model.

3. Multilayer UTM Model

This section encompasses our main contributions. We firstly describe the airspace model
including key terminology, followed by a formal description of the network model and an illustrative
operational example.

3.1. Class G Airspace Multilayer Model

The International Civil Aviation Organisation (ICAO) [51] divides the world’s navigable airspace
into seven, three dimensional segments, represented by the first seven letters from the ISO basic Latin
alphabet. All segments are controlled and regulated by Air Traffic Controllers (ATCs) except for the
lower-most one, known as Class G. The latter ranges from 0 to 700 ft above ground level and remains
uncontrolled [52] except in the proximity of published airports.

In our proposed model, illustrated in Figure 3, we further divide the Class G airspace into
horizontal segments, referred to as layers, at different operational altitudes with separation allowing
safe UAV flight. This extends a variation of the hemispheric rule [51] to Class G, where the separation
between layers is guided by the Containment Limit (CL) of the largest UAV allowed in Class G. The CL
of an aircraft is explained by ICAO as the volume with a 95% probability the aircraft is within, at any
time of its stated position, both horizontally and vertically [53]. This can be derived from the Total
System Error (TSE), illustrated in Figure 4. The TSE is the difference between the true position and
the position on the desired/assigned flight paths of a UAV. It is the vector sum of the Navigation
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System Error, the Flight Technical Error and Path Definition error. The TSE defines the accuracy of a
navigation system.

Following the approach explained in Reference [54], a city’s elevation map can be discretised
using a topological analysis into a data-set of static-obstacle-free points within the different layers.
This is key for structured airspace design and path planning. The level of detail of the discretised
airspace is defined by the volume representing the UAV (alpha shape) as explained in Reference [55].
The resulting volume of obstacle-free space is referred to as the airspace which is the shared resource
that is utilised by the UAVs. The latter comprises of Airways and Nodes, airways being corridors
connecting nodes within a layer (horizontal) or between layers (vertical or diagonal). Airways allow
UAVs to fly without direct communication with the UTM, guided only by the rules of the airway
(velocity limits, flight headings and maximum traffic capacity) and information exchanged between
UAVs through ad-hoc communication. Airways’ cross-sectional size is defined by the UAVs’ CL,
while their lengths is defined by the segment’s static-obstacle-free space as well as airway-intersections,
referred to as nodes (cf. Figure 5).

38 Airways

Airspace

Layers Vertical
‘ Flight
__|Lateral
Flight
a8

Figure 3. Proposed multilayer UTM model of the Class G airspace [22].
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Figure 4. Total System Error of a UAV [22].

Within nodes, UAVs are allowed to change their Flight Mode. In our model, three main flight
modes are considered, lateral flight, vertical flight and hovering for multirotor UAVs. We finally define a
Path as a complete route from origin to destination, through different nodes and airways. Additionally,
in our model, the different airspace layers allow different velocity ranges, that increase with altitude.
This is supported by the argument that higher altitudes contain less static obstacles [54] and hence,
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longer airways are possible. UAVs rely on ad-hoc communication to exchange dynamic traffic
information such as their flight velocities and airway traffic density. This in turn reduces latency
and allows UAVs to make local routing decisions through the airspace eliminating the need for
continuous direct communication with a centralised UTM [15].

~ Cross-Sectional — Nod ~ Containment Limit
[ Area of Airway ode of UAV(CL)

&0

Length of .., Discritisation
Airway \ Parameter
.. defined by

UAV’s Alpha

Shape

Figure 5. Airways and Nodes in proposed UTM model [22].
3.2. Multilayer Network Model

We propose to model of the Class G airspace as a multi-weighted multilayer network,
MClassG/ where:
Mciassc = (GMr N, WE)

The airspace contains a non-empty set of layers N, each layer being represented as a graph of nodes
and airways Gyr = (Vp1, Am). Nodes can belong to one or more layers.

IN|
Vu=JV5aeN

a=1

Each edge, that is, airway, is assigned three different weights defining travel time, energy cost and
traffic capacity respectively: ay; = (u,v,a,t,e,c) withu,v € Vjy, & € N and t,e,c € W, anon-empty
set of weights at event step, E.

The set of edges is composed of intra-layer edges, that is, airways within one layer (A%) and
inter-layer edges, that is, airways connecting layers (A%F), with &, B € N.

IN| IN|
av=(Ua)U( U aF),

a=1 a,f=1,0#p
with A* C V* x V* and V* a finite, non-empty set of nodes on layer a and AYB C V% x VP; with «, B e
N, a # B and VP a finite, non-empty set of nodes on layer B.

Based on the definition in Reference [56] each layer is considered an incremental network where

link weights are dynamic, that is, the structure of the network remains as is but the weights vary
over time.

3.3. UAV Communication

According to IEEE’s technical committee on networked robots [57], a wireless networked robot
system (WNR) is a subset of wireless sensor and actuator networks (WSANSs). Such a system can
be identified by two elements: (a) autonomous capabilities and (b) network-based cooperation.
The first refers to the necessity, for a robot, to autonomously move and interact with the physical
environment; while the second refers to its capability of communicating with others using radio
technology. Over the recent years, the interaction between IoT and flying ad-hoc networks (FANETs)
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has become an important topic of research [58,59]. The interested reader can find a detailed analysis of
such communication protocols in References [60-62]. Due to the high mobility of UAVs in flight, at this
stage of work, we consider UAVs to communicate together (UAV-to-UAV) and to the infrastructure
(UAV-to-Infrastructure) in an ad-hoc manner, similar to the communication model proposed in
References [62,63]. A simplified view of the different types of communicated messages is presented
in Figure 6 based on Reference [15]. In the same article, the authors firstly categorise the types of
communicated messages based on their repetition rate and size then compare the communication
performance of a centralised and a distributed UTM in a conflict resolution scenario.

Command

Telemetry
Awareness
Messages

\d

Telemetry

Mission Updates

Distributed
UTM

rator

Status Updates

)

Command

Awareness Messages Command

A\

Telemetry

Mission Updates

Conased }

UTM Status Updates

rator

Telemetry

Awareness Messages Command

Figure 6. Communicated messages in a distributed and centralised UTM [15].

Here each UAV is a flying node in FANET with some acting as gateways, as illustrated in Figure 1,
to relay communicated information as explained in Reference [64]. UAVs exchange information using
standard IoT communication protocols [62,64] at predefined time intervals, similar to automatic
dependent surveillance-broadcasts and at node locations within the network. The broadcast is
composed of the UAVs’ identification, lateral flight velocity, location and timestamp. With reference to
Figure 6 above, in our envisioned UTM, UAVs rely on communicated awareness messages to locally
evaluate traffic conditions in airways and make routing decisions.

3.4. Operational Example

To consolidate the model’s description, this subsection narrates one operational example relying
on the proposed multilayer model of the Class G airspace. However, our proposed model can lend
itself to multiple other scenarios.

Considering two groups of loT-enabled UAVs, the first one is on a routine surveillance mission
such as the crowd-surveillance use-case discussed in Reference [58], while the second group consists
of emergency intervention UAVs such as medical rescue UAVs. Both groups, equipped with different
sensory payload, entering the airspace have different mission priorities and incentives to get to their
destination. UAVs enter airways through different nodes and traverse from origin to destination along
paths at different layers. Each altitude segment, referred to as layer, allows different velocity ranges
that increase at higher altitude layers. We assume that higher altitudes offer shorter travel times at the
cost of higher energy consumption.

As each UAV traverses the network, it communicates and exchanges information with other
UAVs in an ad-hoc manner using standard IoT communication protocols at predefined time intervals.
Based on the exchanged traffic parameters information and rules such as critical traffic density and
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minimum flight velocities, UAVs make local routing decisions to switch between airways, airspace
layers and flight modes according to their respective objectives of minimising time of flight or energy
consumption.

4. UAV Traffic Optimisation

Given the size of the airspace, the corresponding multilayer network might become large,
making path selection NP-complete [65]. This section presents the second contribution of this work,
that is the path optimisation problem formulation followed by a first approach to optimise travel time
and energy separately in our model of the Class G airspace.

4.1. Energy-Aware Path Optimisation

We formulate the problem of minimising the total travel time and energy consumption of UAV
traffic in the network. Based on our multilayer network description, the two objective functions we
aim to optimise are expressed as:

min P:ZZaﬂ*e, (1)

i=11=1
I L
min T=) Y a;xt )
i=11=1
I
s.t. Zail:cl,lzl,...,L, 3)
i=1
<", 1=1,...,L, 4)
a; €{0,1},i=1,...,I,1=1,...,L, (5)
P, TEN, (6)
El,tl,CleN,lzl,...,L, (7)

where:

P—objective function (energy consumed),
T—objective function (time elapsed),

I—number of UAVs,

i—index for UAVs,

L—number of airways,

[—index for airways,

a—selection indicator for airways/UAVs (€ 0, 1),
e—energy consumption component for airways,
t—time elapse component for airways,

c—traffic capacity for airways,

c"** —maximum traffic capacity for airways.

In our proposed model, each airway in a path has a critical traffic capacity of UAVs that it can
traverse; in addition to an allowable maximum velocity which is expressed in terms of time ¢ and
energy e. Therefore, for a number of UAVs I over a complete path our first utility function (1) addresses
our first objective, minimising the total energy consumption. While (2) addresses our second objective
which is minimising the total travel time.

4.2. Optimisation Approach

This subsection introduces the three heuristics used in our experiments. The first one is a static
path planning approach; the second is a probabilistic heuristic addressing the dynamic nature of our
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proposed model assuming global knowledge of the traffic conditions in the network; while the third is
a pheromone guided greedy heuristic relying on local knowledge of traffic conditions. All heuristics
are single objective, thus optimising either time or energy.

4.2.1. Global Offline Static—UTM (GOS)

To address the static nature of the network, at the beginning, UAVs follow a pre-computed shortest
path from origin to destination. This shortest path is calculated with the A* algorithm [66] using a
the respective network weights t or e, depending on the minimisation objective of each UAV and a
heuristic that takes into account the Euclidean distance between network nodes, assuming optimal
traffic conditions, no congestion and that UAVs can traverse the network at the maximum allowable
speed of the layer. UAVs follow their given path (A*_shortest_path) and update the weights ¢, e, c of the
respective airway | as long as the traffic capacity on the airway, ¢; < ¢;""* (c.f. lines 14 in Heuristic 1).
Once maximum capacity is reached, UAVs queue at the airway entrance node, until the condition

¢y < c"™* is satisfied (c.f. line 5 in Heuristic 1).

Heuristic 1 : Global Offline Static—UTM (GOS)
Data: network, weights (¢, ¢, c), start, destination, A*_shortest_path
while UAV not at destination do
take next_move from A*_shortest_path

if c; < c"™ then

set current to next_move > UAV move
update f;, ¢, ¢

else

| add to queue on node > hover
end
end

4.2.2. Global Probabilistic Dynamic—UTM (GPD)

Assuming global knowledge of network weights, firstly, UAVs follow the shortest path initially
computed by A* algorithm (c.f. lines §-11 in Heuristic 2); however, on the contrary to GOS, when they
encounter congestion on one airway, that is, when the maximum capacity of this airway is reached:
c; = c""*, each UAV takes a probabilistic decision pyeroute Of either hovering in queue at the current
node or to take an alternative shortest path computed with the same A* algorithm as in GOS on the
multilayer network with updated t, ¢, c weights (c.f. lines 12-16 in Heuristic 2).

Heuristic 2 : Global Probabilistic Dynamic—UTM (GPD)
Data: network, weights (¢, ¢, c), start, destination, A*_shortest_path

8 while UAV not at destination do

10

11
12
13
14
15
16
17
18

take next_move from A*_shortest_path
if ¢; < """ then
set current to next_move > UAV move
update t;, ¢, c;

else
if rand < preroute then

| compute new A*_shortest_path from current to destination > using A*
else

| add to queue on node > hover
end
end
end
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4.2.3. Local Pheromone Guided—UTM (LPG)

Relying on UAVs local knowledge of traffic condition, UAVs start by following the offline
generated shortest path (A*_shortest_path) similar to in GOS and GPD, until the traffic on the next
airway is superior to a predefined threshold defined by Tj;,, that is, when ¢; = Tj;,, where Tj;,,, < ¢]"*
(c.f. lines 19-22 in Heuristic 3). In reality, Tj;,, would correspond to the critical traffic density explained
in traffic theory as the capacity after which traffic flow becomes congested. At that stage each UAV
lays down a pheromone trail T, where 7; = 1/¢;""* of airway . The deposited trail of pheromone acts
as a repellent to other UAVs, hence making the airway less desirable to take. In our model, intersecting
nodes act as decision points at which the following UAVs receive the updated pheromone level and
use the commonly used state transition rule introduced by Dorigo et al. in Reference [67] to decide
which airway to select. This can be expressed as a function of the pheromone on the airway in addition
to the quality of the airway: p; = f(7, 1), where p; is the probabilistic transition rule for UAV i to
take airway [ with quality #; represented by t/c;"** or e/c;""* depending on the optimisation objective
of the UAV. UAVs then take a decision of either staying on the same path or selecting a new airway.
If the latter, UAVs recompute a path to destination, from the newly selected airway, using A* on
the multilayer network with initial weights, assuming optimal traffic conditions (c.f. lines 23-25 in
Heuristic 3), otherwise UAVs remain on their initial path (c.f. lines 26-30 in Heuristic 3).

Heuristic 3 : Local Pheromone Guided—UTM (LPG)
Data: network, weights (¢, ¢, c), start, destination, traffic_threshold (T};,,,), A*_shortest_path
while UAV not at destination do
take next_move from A*_shortest_path
if Cy S Tlim then
set current to next_move > UAV move
update t;, ¢, c;

else
evaluate alternative airway quality
if rand < preroute then
set current to next_move > UAV move
compute new A*_shortest_path from current to destination > using A*
update t;, ¢, ¢
update pheromone T
else
if c; < ¢/""" then
set current to next_move > UAV move
update t;, e;, c;
update pheromone T
else
| add to queue on node > hover
end
end
end
end

5. Simulation and Results

This section outlines our experimental setup and discusses the preliminary results obtained using
the aforementioned three UAV traffic management heuristics.

5.1. Experimental Setup

Experiments are conducted on a three layer network based on the Erd6s — Rényi model using
Python’s NetworkX library and the multiNetX package. Each layer contains the same number of nodes
and each airway (intra and inter network) is assigned three weights, t, e and ¢, uniformly at random in
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predefined intervals. Figure 7 presents an example of a three layer network with 75 nodes (25 nodes
per layer) and its adjacency matrix. The parameters used for the experiments are described in Table 1.

0

Figure 7. Example of a 75-Node three layer network and its adjacency matrix.

A single network with a total of 300 nodes and 3 layers (100 nodes per layer) has been used.
Between every pair of nodes, there is a 20% probability an edge is created. The ranges of the three
airway weights (time, energy and capacity) were selected to ensure that the lowest network layer
allows less energy consumption by permitting UAVs to fly at their optimum or near optimum lateral
velocity—the velocity at which a UAV is most energy efficient benefiting from transitional lift; while the
higher layers allow incremental increase in flight velocity, hence reduce travel time at the cost of a
higher energy consumption. Additionally, UAVs hovering in queuing state consume more energy
than those in lateral flight. This is supported by the general power consumption model explained in
Reference [68]. The selected capacity ranges also ensure that congestion can occur at different network
layers for the tested UAV traffic values. Five traffic sample sizes were generated ranging from 10 to
500 UAVs (for experiment 1 and 2) and up to 1500 UAVs for experiment 3. All UAVs are assigned
a pair of origin and destination nodes, both located on the lowest layer. All pairs are similar for
experiment 1 and 2 while they differ in experiment 3. Each UAV keeps record of its current position,
destination as well as its total travel time and energy consumption. Simulations were run 30 times for
probabilistic heuristics.

Table 1. Experiment parameters.

Parameter Value

Number of UAVs (experiment 1 & 2) 10, 50, 100, 200, 500

Number of UAVs (experiment 3) 10, 50, 100, 200, 500, 1000, 1500
Number of nodes 100 per layer

Number of layers 3

Edge creation probability 20%

Interlayer energy weight interval [15,20]

Intralayer energy weight intervals [5,10], [15,20], [25,30]
Interlayer time weight interval [1,5]

Intralayer time weight intervals [25,30], [15,20], [5,10]
Interlayer capacity weight interval 50

Intralayer capacity weight interval  [1,5]

GPD decision probability (preroute) 50%, 80%, 100%
LPG Ty, percentage of cj"™* 0%, 50%, 80%

Three main experiments are conducted. The first two aim to evaluate heuristics LPG and GPD
respectively. For all three experiments we compare total UAVs’ travel time in the network—in arbitrary
time units, total UAVs’ energy consumption—in arbitrary energy units, as well as the number of path
changes, network layer change and total UAVs’ queuing counts.

The first experiment aims to investigate the effect of varying the decision probability preroute Of
GPD on its performance. With all UAVs having the same origin and destination pairs for all 5 traffic



Sensors 2019, 19, 4779 13 of 22

samples, the decision probability peroute is varied between 50%, 80% and 100% (c.f. Table 1), firstly
with all UAVs having the same minimisation objective (i.e., time) and in a second stage with each UAV
assigned either time or energy as objective.

The second experiment aims to study the effect of varying the traffic threshold Tj;,,, of LPG, which
in turn varies the point at which UAVs start depositing pheromones on the network airways. Ensuring
all UAVs have the same origin and destination pairs for all 5 traffic samples, Tj;,, is varied between 0%,
50% and 80% on traffic samples with mixed minimisation objectives.

Finally, the main objective of the last experiment is to study the performance of the three heuristics
(GOS, GPD, LPG) in a more realistic scenario. Each UAV is given a different pair of origin and
destination and a minimisation objective (energy (1) or time (2)). The origin and destination pairs are
all on the lowest layer and are more than two hops apart. The network and traffic sample size allow
that airways might be shared by UAVs, hence ensuring that congestion can occur. The traffic threshold
Tiiy value of LPG and decision probability preroute of GPD that demonstrated best performance in the
first two experiments are used.

5.2. Results

This subsection presents the main results obtained during our experiments. The impact on the
total UAVs’ travel time in the network, total UAVs’ energy consumption as well as the number of path
changes, network layer change and queuing/hovering counts is explored. All obtained results are
presented in Figures 8-11 and summarised in Tables 2-5. Figures 8-11 present the impact in traffic
performance by indicating the median, 25th and 75th percentile, while Tables 2-5 present the mean
and standard deviation in the results after 30 runs of the probabilistic heuristics for every varied
parameter over all traffic samples: for every Tj;;, in LPG and for every perouting in GPD. Statistical
confidence in our comparisons is assessed by performing Kruskal-Wallis test [69] for Experiments 1
and 2 respectively and by performing the Wilcoxon test [70] for Experiment 3. The overall best result
per comparison parameter is shown in bold. Additionally, the dark grey background emphasises the
best results that showed statistically significant difference with a 95% confidence.

5.2.1. Experiment 1: Impact of perouting 0n GPD Performance

In the first experiment we aim to study the impact of the decision probability preroute On the
performance of GPD, firstly, for traffic samples consisting of UAVs with the same minimisation
objective, then with traffic samples with varying minimisation objectives. Three pyeroute values are
tested as indicated in Table 1: 50%, 80% and 100%.

Table 2. Impact on traffic performance from varying pyeroute in Global Probabilistic Dynamic (GPD)

(50%, 80%, 100%).
Traffic  preroute Time Energy Path Changes Layer Changes Queue Counts
Meansp Meansp Meansp Meansp Meansp

50% 52.912562 24.32.073 To 60 0o

10 80% 55.2213532 2491324122 0.7330412 442657 0.2670412
100% 59.5714.195 26.06327518 0.2330.423 1.4250 0.7670.423
50% 72.5832901 126.0660.396 410 2460 0o

50 80% 71.60951.663 113.49052779  31.11578 180.53312631 14.067 47127
100% 95.70954.985 142.730s5650 = 19.42260 108.613.237 46.76766s3
50% 101.5444173 185.7877.196 910 5460 41

100 80% 97.80711.408 168.03471.125  80.6673.123 444 811975 53.0671.999
100% 119.549¢s.633 203.49811243¢ = 55.5332301 311.414881 132.413.439
50% 184.779s.650 321.89152576 3230 11460 2730

200 80% 174.2929s 3507 293.76215383  241.2490 1012.29.780 255.7672362
100% 155.05179.231 274.623138601  142.3333.261 790.66715.0s6 344.715.775
50% 403.158218.089 692.006359752 22190 29460 21690

500 80% 362.4707200s18  626.50731041a  1474.86720854 27465534 2002.0679.609

100% 317.376175.792 560.534297477  660.66723310 2403.53323.408 1932.65397
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Figure 8. Impact on traffic performance by varying preouting in GPD (50%, 80%, 100%).

It can be deduced from Table 2 and Figure 8, of the first part of the experiment, that for the smaller
traffic sample sizes of 10 and 50, GPD with pyeroute 50% and 80% generally showed improvement over
Preroute Of 100% in total UAVs’ travel time and energy consumption. Nevertheless, preroute of 100%
showed better performance when it came to total traffic path and layer changes for the same samples.
However, since the main global objective is a scalable system, it is important to study the performance
of the heuristic at larger sample sizes. While that is the case, GPD with pyeroute 0f 100% outperforms the
same heuristic with preroute 50% and 80% for the larger traffic samples. Improvements can be observed
with statistically significant difference across all the traffic performance indicators tested for traffic
sample size 500 and 200, with exception of total UAVs’ queue counts in the network for the latter.

A similar trend is observed in the second part of the experiment, presented in Table 3 and Figure 9
where UAVs have different minimisation objectives as explained in Section 5.1.

Compared to the first part, Table 3 and Figure 9 showed a significant improvement for the total
UAVs’ travel time and energy consumption for GPD with pjeroute 100% for larger traffic samples,
regardless of the individual minimisation objective of UAVs.
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Table 3. Impact on mixed objective traffic performance from varying preroute in GPD (50%, 80%, 100%).

Traffic Time Energy Path Changes Layer Changes Queue Counts
Preroute Nfoan Mean Mean Mean Mean
50% 36.98316.054 81.48359.709 0.5670.668 44612 0o
10 80% 34.69315.101 64.13311.679 0.70972 346461 0o
100% 35.2923.037 55.494.019 0.0660.219 30.45.346 0o
50% 90.25645.051 184.0117.146 19.0335.231 353.2673327 0.10.300
50 80% 56.01023.587 122.049x.648 20.2335.364 2705347 0.20541
100% 53.61225564 119.0724721  17.4398 2582558 0o
50% 87.81845792 143.507%0s22  63.8298 531.86718.179 62161
100 80% 67.753028.558 105.88355172  62.4458 431.820.706 4.81.939
100% 67.03727.55 127.3857s.674 82.9676.368 439.415.98 22.2332654
50% 113.01361.736 18847911389  174.56329 1259.228304 17 14962
200 80% 97.52266.314 153.513130743  182.0675994 1034.629251 16.5671.064
100% 79.36330.954 133.671e738¢  517.5365602 731.86729.662 90.2337.196
50% 160.941115246 239.410170669 =~ 673.912081 3372.93346.131 548.03344.961
500 80% 149.9787130437  232.05425226s  745.73317309 3040.260176 39.8676.265
100% 118.104¢3245 180.317108839 4177.130099 1705.067s0.250 38.6336.264
900 [ ]
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Figure 9. Impact on mixed objective traffic performance by varying preroute in GPD (50%, 80%, 100%).

5.2.2. Experiment 2: Impact of Tj;;,, on LPG Performance

Similar to Experiment 1 (Section 5.2.1), the impact on total UAVs’ travel time and energy
consumption in the network as well as the number of path changes, network layer change and
queuing counts is explored as result of varying traffic threshold Tj;,, of LPG between 0%, 50% and 80%

of o

max
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Figure 10. Impact on traffic performance by varying Tjim in Local Pheromone Guided (LPG) (80%,
50%, 0%).

Table 4. Impact on traffic performance from varying traffic threshold in LPG (80%, 50%, 0%).

Traffic T, Time Energy Path Changes Layer Changes Queue Counts
- Meansp Meansp Meansp Meansp Meansp

80%  35.8971605 81.48359.700 0.567 o669 446120 0o

10 50%  36.98321.050 60.21138.524 2.167052 26.3332199 0o
0% 41.0482.902 42.88351.621 0.0330.179 19.255131 0.0330179
80%  90.25645051 184.0117146  19.0333.231 353.2673327 0.10303

50 50%  58.08334547 104.55538795  56.26.597 256.457ss 0.0330.179
0% 38.53523.058 60.26346.212 3.7670555 118.26713177 3.7670558
80%  87.8175s5792  143.507%0s12  63.8298 531.86718.179 62.165

100 50%  82.312s5216 138.0276s533  161.7676355 604.06717.257 0.6670.7ss
0% 39.9292709 59.78416.062 7.20653 23017.400 7.20653
80% 113.01461736  188.479%113800  174.56329 1259.228303 17 14962

200 50%  91.602s50.154 134.861s163¢  338.96711102 1079.451.008 3.8671557
0% 40.28222734 60.97446.324 14.8671.118 465.73326.97 14.8671117
80%  160.942115246 239.411170660  673.9120816 3372.93346131 38.6336263

500 50%  131.893ss07%6  191.934122321 1218.333s7.382 3355.66751543 35.66.988
0% 40.79822.697 60.92546.422 37.0671672 1154533765 37.0671672

Analysing the results obtained, it can be deduced from Table 4 and Figure 10 that, with the
exception for the smallest traffic sample size of 10, LPG with Tj;,, of 0% generally showed improvement
with statistically significant difference over Tj;,, of 80% and 50% across all the traffic performance
indicators tested for the remaining traffic sample sizes. These results indicate that pheromone deposit
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caused a fast dispersion of UAVs across the network, which had a negative impact only for the smallest
traffic sample. On the contrary, it led to an overall improvement in reducing total UAVs’ travel time
and energy consumption across for all other traffic samples.

5.2.3. Experiment 3: Performance Comparison of GOS, GPD and LPG

Finally, Experiment 3 aims to study the performance of the three heuristics (GOS, GPD, LPG) in a
more realistic scenario as explained in Section 5.1 to address the assumptions made in the previous
work in the literature [22]. Here each UAV has a different origin and destination pair as well as one of
the two minimisation objectives (energy (1) or time (2)).

Figure 11 and Table 5 present the obtained results when comparing the impact the three heuristics
(GOS, GPD, LPG) have on traffic performance in a more realistic scenario. It can be observed that, with
the exception for traffic sample 10, LPG results show improvement in total UAVs’ travel time for all
traffic samples, where the percentage of UAVs with the minimisation objective (2) (i.e., time) is 50%,
40%, 45%, 19.5%, 48.8%, 49% and 48.13% for every traffic sample size respectively. On the other hand,
it is worth to mention that due to the selected parameters and the nature of GPD, encouraging UAVs
to be more inclined to reduce layer changes, led to the significant difference in reduction of energy
consumption in comparison to LPG for traffic samples 50-200. However, for the larger traffic samples,
which are more decisive in the devised scenario, LPG outperforms GPD with significant difference
across 4 of the 5 main parameters of comparison, with the exception of total number of layer changes,
which can be explained by the nature of the heuristic LPG which encourages UAVs to explore vertical

airways between layers as they offer a higher ¢j"**.
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Figure 11. Performance comparison of Global Offline Static (GOS), GPD and LPG.
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Table 5. Comparison of traffic performance using GOS, GPD and LPG.

. s Time Energy Path Changes Layer Changes Queue Counts

Traffic Heuristic Meanso Meanso Meansp Meansp Meanso
GOS 36.62433 33.22253 0o 160 0o

10 GPD 37.00527.207 37.46825.579 0o 17.9337.006 0o
LPG 41.4828525 34.63624.805 0o 15.4675102 0o
GOS 424824708 36.1225274 0o 800 0o

50 GPD 40.07527.126 38.06926.758 0.20.603 84.612759 0o
LPG 38.56726.527 39.74127.140 1.2671367 9212365 0o
GOS 38.9625.905 42.7527.810 0o 1960 0o

100 GPD 40.55126.018 40.8840s378 2.1331.707 175.66713511 0.1670.453
LPG 36.0524306 47.79629.5793 13.64957 228.733s8952 0o
GOS 46.75551.381 52.4235264 0o 3600 170

200 GPD 41.47525571 51.012752667 27 84527 420.615512 4.7672458
LPG 34.82321.419 59.73751560 63.1676.79 585.06716.426 0o
GOS 80.35555.447 109.5917379 0o 8640 3000

500 GPD 54.50232.619 82.032859.460 258.33320.19 127535084 101.433109m
LPG 45.67625.424 84.797 11121 33124960 1895.53349.537 111247
GOS 123.007s4.501 189.113131.16 0o 16680 13720

1000 GPD 76.06950318 111.649101.205 982.43340502 2425.93354.944 441.46725.967
LPG 49.86727.228 82.8454.7s6 670.533.05 3592.26757.933 10.4334315
GOS 162.340114.463 264.691193.237 0o 25840 30970

1500 GPD 93.35569.075 137.715102.167 2267 .9s1.103 3400.93375.662 1059.03366.985
LPG 59.88754.963 100.8399s3.250 1220.53352.787 6051.53396.466 11.84.490

6. Conclusions and Future Work

IoT has catalysed and facilitated the development of new devices that are capable of interacting
with our physical world, generating unprecedented amounts of information. One category that not
only promise a new means of capturing information but also new means of overcoming limitations
of IoT’s existing infrastructure are UAVs. However, despite the significant advantages UAVs bring,
as their number continues to grow, UAV deployment is faced with challenges in their safe operation
and management. This emphasises the need for a new dedicated, distributed UAV traffic management
system supported by regulations and international technical standards.

In this paper, we have extended our first contributions towards our envisioned distributed
UTM by presenting a broader state of the art analysis as well as description of UAV communication.
The work, firstly, described our model and structure of the low altitude, Class G, airspace and
outlines key terminology and an operational scenario. Secondly, the paper contributed to existing
literature by representing the airspace model as a multilayer network of nodes and airways. Finally the
corresponding UTM optimisation problem has been defined and some first experimental results have
been obtained using three traffic management heuristics. The results showed that for the larger traffic
samples, the heuristic assuming local traffic knowledge, LPG, outperforms GOS and GPD across the
main traffic performance indicators selected for the study.

Whilst the simulation included assumptions to simplify the challenging multifaceted problem,
future work will focus on more realistic communication scenarios. We intend to investigate different
communication protocols on traffic behaviour and explore more realistic communication metrics,
given the challenging nature of flying ad-hoc networks. Finally, we intend to develop and evaluate
different metaheuristic optimisation techniques for this challenging problem.
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